1
|
Wyman-Chick KA, Ferman TJ, Weintraub D, Armstrong MJ, Boeve BF, Bayram E, Chrenka E, Barrett MJ. Distinguishing Prodromal Dementia With Lewy Bodies From Prodromal Alzheimer Disease: A Longitudinal Study. Neurol Clin Pract 2025; 15:e200380. [PMID: 39399551 PMCID: PMC11464229 DOI: 10.1212/cpj.0000000000200380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/17/2024] [Indexed: 10/15/2024]
Abstract
Background and Objectives It can be clinically challenging to differentiate dementia with Lewy bodies (DLB) and Alzheimer disease (AD). As potential therapies emerge with the goal of slowing or halting misfolded protein aggregation, it is imperative to be able to identify individuals before the disease becomes disabling. Differentiating between DLB and AD in the preclinical or prodromal phase of DLB and AD becomes more important. Studies are needed to validate the proposed criteria for prodromal DLB. Methods Longitudinal data were obtained from the Uniform Data Set of the National Alzheimer's Coordinating Center. Included participants had a baseline diagnosis of normal or mild cognitive impairment and a consecutive 2-year follow-up diagnosis of DLB or AD. We examined whether core DLB clinical features, supportive neuropsychiatric features, and neuropsychological data in the 2 years preceding the dementia diagnosis distinguished DLB from AD. Results We identified 143 participants with DLB and 429 age-matched/sex-matched participants with AD. The presence of 2 or more core DLB features in the year before dementia diagnosis yielded the greatest AUC (0.793; 95% CI 0.748-0.839) in distinguishing prodromal DLB from prodromal AD. Sleep disturbances, hallucinations, and a cognitive profile of worse processing speed, attention, and visuoconstruction performance were evident at least 2 years before the dementia diagnosis in DLB compared with AD. Discussion Data from this multisite, longitudinal, well-characterized research North American cohort support the validity of the recently published criteria for prodromal DLB. In the prodromal stage, patients who subsequently develop DLB are more likely to have core DLB clinical features and worse attention, processing speed, and visuospatial performance than those who go on to develop AD. Differentiation of DLB and AD before dementia emerges provides an opportunity for early, disease-specific intervention and overall management.
Collapse
Affiliation(s)
- Kathryn A Wyman-Chick
- Struthers Parkinson's Center (KAW-C), Department of Neurology, HealthPartners/Park Nicollet, Golden Valley, MN; HealthPartners Institute (KAW-C, EC), Bloomington, MN; Department of Psychiatry and Psychology (TJF), Mayo Clinic, Jacksonville, FL; Departments of Psychiatry and Neurology (DW), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Parkinson's Disease Research (DW), Education and Clinical Center (PADRECC), Philadelphia Veterans Affairs Medical Center, PA; Norman Fixel Institute for Neurologic Diseases (MJA), University of Florida; Department of Neurology (MJA), University of Florida College of Medicine, Gainesville; Department of Neurology and Center for Sleep Medicine (BFB), Mayo Clinic, Rochester, NY; Department of Neurosciences (EB), University of California San Diego; and Department of Neurology (MJB), Virginia Commonwealth University, Richmond
| | - Tanis J Ferman
- Struthers Parkinson's Center (KAW-C), Department of Neurology, HealthPartners/Park Nicollet, Golden Valley, MN; HealthPartners Institute (KAW-C, EC), Bloomington, MN; Department of Psychiatry and Psychology (TJF), Mayo Clinic, Jacksonville, FL; Departments of Psychiatry and Neurology (DW), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Parkinson's Disease Research (DW), Education and Clinical Center (PADRECC), Philadelphia Veterans Affairs Medical Center, PA; Norman Fixel Institute for Neurologic Diseases (MJA), University of Florida; Department of Neurology (MJA), University of Florida College of Medicine, Gainesville; Department of Neurology and Center for Sleep Medicine (BFB), Mayo Clinic, Rochester, NY; Department of Neurosciences (EB), University of California San Diego; and Department of Neurology (MJB), Virginia Commonwealth University, Richmond
| | - Daniel Weintraub
- Struthers Parkinson's Center (KAW-C), Department of Neurology, HealthPartners/Park Nicollet, Golden Valley, MN; HealthPartners Institute (KAW-C, EC), Bloomington, MN; Department of Psychiatry and Psychology (TJF), Mayo Clinic, Jacksonville, FL; Departments of Psychiatry and Neurology (DW), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Parkinson's Disease Research (DW), Education and Clinical Center (PADRECC), Philadelphia Veterans Affairs Medical Center, PA; Norman Fixel Institute for Neurologic Diseases (MJA), University of Florida; Department of Neurology (MJA), University of Florida College of Medicine, Gainesville; Department of Neurology and Center for Sleep Medicine (BFB), Mayo Clinic, Rochester, NY; Department of Neurosciences (EB), University of California San Diego; and Department of Neurology (MJB), Virginia Commonwealth University, Richmond
| | - Melissa J Armstrong
- Struthers Parkinson's Center (KAW-C), Department of Neurology, HealthPartners/Park Nicollet, Golden Valley, MN; HealthPartners Institute (KAW-C, EC), Bloomington, MN; Department of Psychiatry and Psychology (TJF), Mayo Clinic, Jacksonville, FL; Departments of Psychiatry and Neurology (DW), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Parkinson's Disease Research (DW), Education and Clinical Center (PADRECC), Philadelphia Veterans Affairs Medical Center, PA; Norman Fixel Institute for Neurologic Diseases (MJA), University of Florida; Department of Neurology (MJA), University of Florida College of Medicine, Gainesville; Department of Neurology and Center for Sleep Medicine (BFB), Mayo Clinic, Rochester, NY; Department of Neurosciences (EB), University of California San Diego; and Department of Neurology (MJB), Virginia Commonwealth University, Richmond
| | - Bradley F Boeve
- Struthers Parkinson's Center (KAW-C), Department of Neurology, HealthPartners/Park Nicollet, Golden Valley, MN; HealthPartners Institute (KAW-C, EC), Bloomington, MN; Department of Psychiatry and Psychology (TJF), Mayo Clinic, Jacksonville, FL; Departments of Psychiatry and Neurology (DW), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Parkinson's Disease Research (DW), Education and Clinical Center (PADRECC), Philadelphia Veterans Affairs Medical Center, PA; Norman Fixel Institute for Neurologic Diseases (MJA), University of Florida; Department of Neurology (MJA), University of Florida College of Medicine, Gainesville; Department of Neurology and Center for Sleep Medicine (BFB), Mayo Clinic, Rochester, NY; Department of Neurosciences (EB), University of California San Diego; and Department of Neurology (MJB), Virginia Commonwealth University, Richmond
| | - Ece Bayram
- Struthers Parkinson's Center (KAW-C), Department of Neurology, HealthPartners/Park Nicollet, Golden Valley, MN; HealthPartners Institute (KAW-C, EC), Bloomington, MN; Department of Psychiatry and Psychology (TJF), Mayo Clinic, Jacksonville, FL; Departments of Psychiatry and Neurology (DW), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Parkinson's Disease Research (DW), Education and Clinical Center (PADRECC), Philadelphia Veterans Affairs Medical Center, PA; Norman Fixel Institute for Neurologic Diseases (MJA), University of Florida; Department of Neurology (MJA), University of Florida College of Medicine, Gainesville; Department of Neurology and Center for Sleep Medicine (BFB), Mayo Clinic, Rochester, NY; Department of Neurosciences (EB), University of California San Diego; and Department of Neurology (MJB), Virginia Commonwealth University, Richmond
| | - Ella Chrenka
- Struthers Parkinson's Center (KAW-C), Department of Neurology, HealthPartners/Park Nicollet, Golden Valley, MN; HealthPartners Institute (KAW-C, EC), Bloomington, MN; Department of Psychiatry and Psychology (TJF), Mayo Clinic, Jacksonville, FL; Departments of Psychiatry and Neurology (DW), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Parkinson's Disease Research (DW), Education and Clinical Center (PADRECC), Philadelphia Veterans Affairs Medical Center, PA; Norman Fixel Institute for Neurologic Diseases (MJA), University of Florida; Department of Neurology (MJA), University of Florida College of Medicine, Gainesville; Department of Neurology and Center for Sleep Medicine (BFB), Mayo Clinic, Rochester, NY; Department of Neurosciences (EB), University of California San Diego; and Department of Neurology (MJB), Virginia Commonwealth University, Richmond
| | - Matthew J Barrett
- Struthers Parkinson's Center (KAW-C), Department of Neurology, HealthPartners/Park Nicollet, Golden Valley, MN; HealthPartners Institute (KAW-C, EC), Bloomington, MN; Department of Psychiatry and Psychology (TJF), Mayo Clinic, Jacksonville, FL; Departments of Psychiatry and Neurology (DW), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Parkinson's Disease Research (DW), Education and Clinical Center (PADRECC), Philadelphia Veterans Affairs Medical Center, PA; Norman Fixel Institute for Neurologic Diseases (MJA), University of Florida; Department of Neurology (MJA), University of Florida College of Medicine, Gainesville; Department of Neurology and Center for Sleep Medicine (BFB), Mayo Clinic, Rochester, NY; Department of Neurosciences (EB), University of California San Diego; and Department of Neurology (MJB), Virginia Commonwealth University, Richmond
| |
Collapse
|
2
|
Alsemari A, Boscarino JJ. Neuropsychological and neuroanatomical underpinnings of the face pareidolia errors on the noise pareidolia test in patients with mild cognitive impairment and dementia due to Lewy bodies. J Clin Exp Neuropsychol 2024; 46:588-598. [PMID: 38949538 DOI: 10.1080/13803395.2024.2372876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
OBJECTIVE Prior research on the Noise Pareidolia Test (NPT) has demonstrated its clinical utility in detecting patients with mild cognitive impairment and dementia due to Lewy Body Disease (LBD). However, few studies to date have investigated the neuropsychological factors underlying pareidolia errors on the NPT across the clinical spectrum of LBD. Furthermore, to our knowledge, no research has examined the relationship between cortical thickness using MRI data and NPT subscores. As such, this study sought to explore the neuropsychological and neuroanatomical factors influencing performance on the NPT utilizing the National Alzheimer's Coordinating Center Lewy Body Dementia Module. METHODS Our sample included participants with normal cognition (NC; n = 56), LBD with mild cognitive impairment (LBD-MCI; n = 97), and LBD with dementia (LBD-Dementia; n = 94). Archival data from NACC were retrospectively analyzed for group differences in neuropsychological test scores and cognitive and psychiatric predictors of NPT scores. Clinicoradiological correlates between NPT subscores and a small subsample of the above LBD participants were also examined. RESULTS Analyses revealed significant differences in NPT scores among groups. Regression analysis demonstrated that dementia severity, attention, and visuospatial processing contributed approximately 24% of NPT performance in LBD groups. Clinicoradiological analysis suggests a potential contribution of the right fusiform gyrus, but not the inferior occipital gyrus, to NPT pareidolia error scores. CONCLUSIONS Our findings highlight the interplay of attention and visuoperceptual functions in complex pareidolia in LBD. Further investigation is needed to refine the utility of NPT scores in clinical settings, including identifying patients at risk for visual illusions and hallucinations.
Collapse
Affiliation(s)
- Ahmad Alsemari
- Department of Neurology, Cleveland Clinic, Cleveland, Ohio OH, USA
| | - Joseph J Boscarino
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida FL, USA
| |
Collapse
|
3
|
Wyman-Chick KA, Chaudhury P, Bayram E, Abdelnour C, Matar E, Chiu SY, Ferreira D, Hamilton CA, Donaghy PC, Rodriguez-Porcel F, Toledo JB, Habich A, Barrett MJ, Patel B, Jaramillo-Jimenez A, Scott GD, Kane JPM. Differentiating Prodromal Dementia with Lewy Bodies from Prodromal Alzheimer's Disease: A Pragmatic Review for Clinicians. Neurol Ther 2024; 13:885-906. [PMID: 38720013 PMCID: PMC11136939 DOI: 10.1007/s40120-024-00620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
This pragmatic review synthesises the current understanding of prodromal dementia with Lewy bodies (pDLB) and prodromal Alzheimer's disease (pAD), including clinical presentations, neuropsychological profiles, neuropsychiatric symptoms, biomarkers, and indications for disease management. The core clinical features of dementia with Lewy bodies (DLB)-parkinsonism, complex visual hallucinations, cognitive fluctuations, and REM sleep behaviour disorder are common prodromal symptoms. Supportive clinical features of pDLB include severe neuroleptic sensitivity, as well as autonomic and neuropsychiatric symptoms. The neuropsychological profile in mild cognitive impairment attributable to Lewy body pathology (MCI-LB) tends to include impairment in visuospatial skills and executive functioning, distinguishing it from MCI due to AD, which typically presents with impairment in memory. pDLB may present with cognitive impairment, psychiatric symptoms, and/or recurrent episodes of delirium, indicating that it is not necessarily synonymous with MCI-LB. Imaging, fluid and other biomarkers may play a crucial role in differentiating pDLB from pAD. The current MCI-LB criteria recognise low dopamine transporter uptake using positron emission tomography or single photon emission computed tomography (SPECT), loss of REM atonia on polysomnography, and sympathetic cardiac denervation using meta-iodobenzylguanidine SPECT as indicative biomarkers with slowing of dominant frequency on EEG among others as supportive biomarkers. This review also highlights the emergence of fluid and skin-based biomarkers. There is little research evidence for the treatment of pDLB, but pharmacological and non-pharmacological treatments for DLB may be discussed with patients. Non-pharmacological interventions such as diet, exercise, and cognitive stimulation may provide benefit, while evaluation and management of contributing factors like medications and sleep disturbances are vital. There is a need to expand research across diverse patient populations to address existing disparities in clinical trial participation. In conclusion, an early and accurate diagnosis of pDLB or pAD presents an opportunity for tailored interventions, improved healthcare outcomes, and enhanced quality of life for patients and care partners.
Collapse
Affiliation(s)
- Kathryn A Wyman-Chick
- Struthers Parkinson's Center and Center for Memory and Aging, Department of Neurology, HealthPartners/Park Nicollet, Bloomington, USA.
| | - Parichita Chaudhury
- Cleo Roberts Memory and Movement Center, Banner Sun Health Research Institute, Sun City, USA
| | - Ece Bayram
- Parkinson and Other Movement Disorders Center, University of California San Diego, San Diego, USA
| | - Carla Abdelnour
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, USA
| | - Elie Matar
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Shannon Y Chiu
- Department of Neurology, Mayo Clinic Arizona, Phoenix, USA
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institute, Solna, Sweden
- Department of Radiology, Mayo Clinic Rochester, Rochester, USA
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas, Spain
| | - Calum A Hamilton
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Paul C Donaghy
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | | | - Jon B Toledo
- Nantz National Alzheimer Center, Stanley Appel Department of Neurology, Houston Methodist Hospital, Houston, USA
| | - Annegret Habich
- Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institute, Solna, Sweden
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Matthew J Barrett
- Department of Neurology, Parkinson's and Movement Disorders Center, Virginia Commonwealth University, Richmond, USA
| | - Bhavana Patel
- Department of Neurology, College of Medicine, University of Florida, Gainesville, USA
- Norman Fixel Institute for Neurologic Diseases, University of Florida, Gainesville, USA
| | - Alberto Jaramillo-Jimenez
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- School of Medicine, Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellín, Colombia
| | - Gregory D Scott
- Department of Pathology and Laboratory Services, VA Portland Medical Center, Portland, USA
| | - Joseph P M Kane
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| |
Collapse
|
4
|
Hamilton CA, Gallagher P, Ciafone J, Barnett N, Barker SAH, Donaghy PC, O'Brien JT, Taylor JP, Thomas AJ. Sustained attention in mild cognitive impairment with Lewy bodies and Alzheimer's disease. J Int Neuropsychol Soc 2024; 30:421-427. [PMID: 38017617 DOI: 10.1017/s1355617723000772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
OBJECTIVE Attentional impairments are common in dementia with Lewy bodies and its prodromal stage of mild cognitive impairment (MCI) with Lewy bodies (MCI-LB). People with MCI may be capable of compensating for subtle attentional deficits in most circumstances, and so these may present as occasional lapses of attention. We aimed to assess the utility of a continuous performance task (CPT), which requires sustained attention for several minutes, for measuring attentional performance in MCI-LB in comparison to Alzheimer's disease (MCI-AD), and any performance deficits which emerged with sustained effort. METHOD We included longitudinal data on a CPT sustained attention task for 89 participants with MCI-LB or MCI-AD and 31 healthy controls, estimating ex-Gaussian response time parameters, omission and commission errors. Performance trajectories were estimated both cross-sectionally (intra-task progress from start to end) and longitudinally (change in performance over years). RESULTS While response times in successful trials were broadly similar, with slight slowing associated with clinical parkinsonism, those with MCI-LB made considerably more errors. Omission errors were more common throughout the task in MCI-LB than MCI-AD (OR 2.3, 95% CI: 1.1-4.7), while commission errors became more common after several minutes of sustained attention. Within MCI-LB, omission errors were more common in those with clinical parkinsonism (OR 1.9, 95% CI: 1.3-2.9) or cognitive fluctuations (OR 4.3, 95% CI: 2.2-8.8). CONCLUSIONS Sustained attention deficits in MCI-LB may emerge in the form of attentional lapses leading to omissions, and a breakdown in inhibitory control leading to commission errors.
Collapse
Affiliation(s)
- Calum A Hamilton
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Peter Gallagher
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Joanna Ciafone
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Nicola Barnett
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sally A H Barker
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Paul C Donaghy
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Alan J Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
5
|
Hamilton CA, O'Brien J, Heslegrave A, Laban R, Donaghy P, Durcan R, Lawley S, Barnett N, Roberts G, Firbank M, Taylor JP, Zetterberg H, Thomas A. Plasma biomarkers of neurodegeneration in mild cognitive impairment with Lewy bodies. Psychol Med 2023; 53:7865-7873. [PMID: 37489795 PMCID: PMC10755229 DOI: 10.1017/s0033291723001952] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/17/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Blood biomarkers of Alzheimer's disease (AD) may allow for the early detection of AD pathology in mild cognitive impairment (MCI) due to AD (MCI-AD) and as a co-pathology in MCI with Lewy bodies (MCI-LB). However not all cases of MCI-LB will feature AD pathology. Disease-general biomarkers of neurodegeneration, such as glial fibrillary acidic protein (GFAP) or neurofilament light (NfL), may therefore provide a useful supplement to AD biomarkers. We aimed to compare the relative utility of plasma Aβ42/40, p-tau181, GFAP and NfL in differentiating MCI-AD and MCI-LB from cognitively healthy older adults, and from one another. METHODS Plasma samples were analysed for 172 participants (31 healthy controls, 48 MCI-AD, 28 possible MCI-LB and 65 probable MCI-LB) at baseline, and a subset (n = 55) who provided repeated samples after ≥1 year. Samples were analysed with a Simoa 4-plex assay for Aβ42, Aβ40, GFAP and NfL, and incorporated previously-collected p-tau181 from this same cohort. RESULTS Probable MCI-LB had elevated GFAP (p < 0.001) and NfL (p = 0.012) relative to controls, but not significantly lower Aβ42/40 (p = 0.06). GFAP and p-tau181 were higher in MCI-AD than MCI-LB. GFAP discriminated all MCI subgroups, from controls (AUC of 0.75), but no plasma-based marker effectively differentiated MCI-AD from MCI-LB. NfL correlated with disease severity and increased with MCI progression over time (p = 0.011). CONCLUSION Markers of AD and astrocytosis/neurodegeneration are elevated in MCI-LB. GFAP offered similar utility to p-tau181 in distinguishing MCI overall, and its subgroups, from healthy controls.
Collapse
Affiliation(s)
| | - John O'Brien
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Amanda Heslegrave
- UK Dementia Research Institute, London, UK
- Department of Neurodegenerative Disease, University College London, London, UK
| | | | - Paul Donaghy
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Rory Durcan
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Sarah Lawley
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Nicola Barnett
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Gemma Roberts
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
- Nuclear Medicine Department, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Michael Firbank
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Henrik Zetterberg
- UK Dementia Research Institute, London, UK
- Department of Neurodegenerative Disease, University College London, London, UK
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Alan Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| |
Collapse
|
6
|
Schumacher J, Ray NJ, Hamilton CA, Bergamino M, Donaghy PC, Firbank M, Watson R, Roberts G, Allan L, Barnett N, O'Brien JT, Thomas AJ, Taylor JP. Free water imaging of the cholinergic system in dementia with Lewy bodies and Alzheimer's disease. Alzheimers Dement 2023; 19:4549-4563. [PMID: 36919460 DOI: 10.1002/alz.13034] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/16/2023]
Abstract
INTRODUCTION Degeneration of cortical cholinergic projections from the nucleus basalis of Meynert (NBM) is characteristic of dementia with Lewy bodies (DLB) and Alzheimer's disease (AD), whereas involvement of cholinergic projections from the pedunculopontine nucleus (PPN) to the thalamus is less clear. METHODS We studied both cholinergic projection systems using a free water-corrected diffusion tensor imaging (DTI) model in the following cases: 46 AD, 48 DLB, 35 mild cognitive impairment (MCI) with AD, 38 MCI with Lewy bodies, and 71 controls. RESULTS Free water in the NBM-cortical pathway was increased in both dementia and MCI groups compared to controls and associated with cognition. Free water along the PPN-thalamus tract was increased only in DLB and related to visual hallucinations. Results were largely replicated in an independent cohort. DISCUSSION While NBM-cortical projections degenerate early in AD and DLB, the thalamic cholinergic input from the PPN appears to be more selectively affected in DLB and might associate with visual hallucinations. HIGHLIGHTS Free water in the NBM-cortical cholinergic pathways is increased in AD and DLB. NBM-cortical pathway integrity is related to overall cognitive performance. Free water in the PPN-thalamus cholinergic pathway is only increased in DLB, not AD. PPN-thalamus pathway integrity might be related to visual hallucinations in DLB.
Collapse
Affiliation(s)
- Julia Schumacher
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, Nebraska4 5PL , UK
- Department of Neurology, University Medical Center Rostock, Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock-Greifswald, Rostock, Germany
| | - Nicola J Ray
- Health, Psychology and Communities Research Centre, Department of Psychology, Manchester Metropolitan University, Manchester, UK
| | - Calum A Hamilton
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, Nebraska4 5PL , UK
| | - Maurizio Bergamino
- Barrow Neurological Institute, Neuroimaging Research, Phoenix, Arizona, USA
| | - Paul C Donaghy
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, Nebraska4 5PL , UK
| | - Michael Firbank
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, Nebraska4 5PL , UK
| | - Rosie Watson
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Gemma Roberts
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, Nebraska4 5PL , UK
| | - Louise Allan
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, Nebraska4 5PL , UK
- University of Exeter Medical School, Exeter, UK
| | - Nicola Barnett
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, Nebraska4 5PL , UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge School of Medicine, Cambridge, UK
| | - Alan J Thomas
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, Nebraska4 5PL , UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, Nebraska4 5PL , UK
| |
Collapse
|
7
|
Donaghy PC, Carrarini C, Ferreira D, Habich A, Aarsland D, Babiloni C, Bayram E, Kane JP, Lewis SJ, Pilotto A, Thomas AJ, Bonanni L. Research diagnostic criteria for mild cognitive impairment with Lewy bodies: A systematic review and meta-analysis. Alzheimers Dement 2023; 19:3186-3202. [PMID: 37096339 PMCID: PMC10695683 DOI: 10.1002/alz.13105] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/26/2023]
Abstract
INTRODUCTION Operationalized research criteria for mild cognitive impairment with Lewy bodies (MCI-LB) were published in 2020. The aim of this systematic review and meta-analysis was to review the evidence for the diagnostic clinical features and biomarkers in MCI-LB set out in the criteria. METHODS MEDLINE, PubMed, and Embase were searched on 9/28/22 for relevant articles. Articles were included if they presented original data reporting the rates of diagnostic features in MCI-LB. RESULTS Fifty-seven articles were included. The meta-analysis supported the inclusion of the current clinical features in the diagnostic criteria. Evidence for striatal dopaminergic imaging and meta-iodobenzylguanidine cardiac scintigraphy, though limited, supports their inclusion. Quantitative electroencephalogram (EEG) and fluorodeoxyglucose positron emission tomography (PET) show promise as diagnostic biomarkers. DISCUSSION The available evidence largely supports the current diagnostic criteria for MCI-LB. Further evidence will help refine the diagnostic criteria and understand how best to apply them in clinical practice and research. HIGHLIGHTS A meta-analysis of the diagnostic features of MCI-LB was carried out. The four core clinical features were more common in MCI-LB than MCI-AD/stable MCI. Neuropsychiatric and autonomic features were also more common in MCI-LB. More evidence is needed for the proposed biomarkers. FDG-PET and quantitative EEG show promise as diagnostic biomarkers in MCI-LB.
Collapse
Affiliation(s)
- Paul C Donaghy
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Claudia Carrarini
- Department of Neuroscience, Catholic University of Sacred Heart, Rome, Italy
- IRCCS San Raffaele Pisana, Rome, Italy
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Annegret Habich
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Centre for Age-Related Diseases, Stavanger University Hospital, Stavanger, Norway
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
- Hospital San Raffaele of Cassino, Cassino, Italy
| | - Ece Bayram
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego, California, USA
| | - Joseph Pm Kane
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Simon Jg Lewis
- Brain and Mind Centre, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Andrea Pilotto
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Alan J Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Laura Bonanni
- Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
8
|
Liampas I, Folia V, Morfakidou R, Siokas V, Yannakoulia M, Sakka P, Scarmeas N, Hadjigeorgiou G, Dardiotis E, Kosmidis MH. Language Differences Among Individuals with Normal Cognition, Amnestic and Non-Amnestic MCI, and Alzheimer's Disease. Arch Clin Neuropsychol 2023; 38:525-536. [PMID: 36244060 PMCID: PMC10202551 DOI: 10.1093/arclin/acac080] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 10/29/2023] Open
Abstract
OBJECTIVE To investigate differences in language performance among older adults with normal cognition (CN), mild cognitive impairment (MCI), and Alzheimer's disease (ad). Owing to the conflicting literature concerning MCI, discrepancies between amnestic (aMCI) and non-amnestic MCI (naMCI) were explored in greater detail. METHOD The study sample was drawn from the older (>64 years) HELIAD cohort. Language performance was assessed via semantic and phonemic fluency, confrontation naming, verbal comprehension, verbal repetition as well as a composite language index. Age, sex, and education adjusted general linear models were used to quantify potential pairwise differences in language performance. RESULTS The present analysis involved 1607 participants with CN, 146 with aMCI [46 single and 100 multi-domain aMCI], 92 with naMCI [41 single and 51 multi-domain naMCI], and 79 with ad. The mean age and education of our predominantly female (60%) participants were 73.82 (±5.43) and 7.98 (±4.93) years, respectively. MCI individuals performed between those with CN and ad, whereas participants with aMCI performed worse compared to those with naMCI, especially in the semantic fluency and verbal comprehension tasks. Discrepancies between the aMCI and naMCI groups were driven by the exquisitely poor performance of multi-domain aMCI subgroup. CONCLUSIONS Overall, individuals could be hierarchically arranged in a continuum of language impairment with the CN individuals constituting the healthy reference and naMCI, aMCI, ad patients representing gradually declining classes in terms of language performance. Exploration of language performance via separation of single from multi-domain naMCI provided a potential explanation for the conflicting evidence of previous research.
Collapse
Affiliation(s)
- Ioannis Liampas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Vasiliki Folia
- Lab of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Greece
| | - Renia Morfakidou
- Lab of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Greece
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Mary Yannakoulia
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Paraskevi Sakka
- Association of Alzheimer's Disease and Related Disorders, Marousi, Athens, Greece
| | - Nikolaos Scarmeas
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Taub Institute for Research in Alzheimer's Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Department of Neurology, Columbia University, New York, USA
| | - Georgios Hadjigeorgiou
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
- Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Mary H Kosmidis
- Lab of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
9
|
Neuropsychological Impairments and Their Cognitive Architecture in Mild Cognitive Impairment (MCI) with Lewy Bodies and MCI-Alzheimer's Disease. J Int Neuropsychol Soc 2022; 28:963-973. [PMID: 34666864 DOI: 10.1017/s1355617721001181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The present study aimed to clarify the neuropsychological profile of the emergent diagnostic category of Mild Cognitive Impairment with Lewy bodies (MCI-LB) and determine whether domain-specific impairments such as in memory were related to deficits in domain-general cognitive processes (executive function or processing speed). METHOD Patients (n = 83) and healthy age- and sex-matched controls (n = 34) underwent clinical and imaging assessments. Probable MCI-LB (n = 44) and MCI-Alzheimer's disease (AD) (n = 39) were diagnosed following National Institute on Aging-Alzheimer's Association (NIA-AA) and dementia with Lewy bodies (DLB) consortium criteria. Neuropsychological measures included cognitive and psychomotor speed, executive function, working memory, and verbal and visuospatial recall. RESULTS MCI-LB scored significantly lower than MCI-AD on processing speed [Trail Making Test B: p = .03, g = .45; Digit Symbol Substitution Test (DSST): p = .04, g = .47; DSST Error Check: p < .001, g = .68] and executive function [Trail Making Test Ratio (A/B): p = .04, g = .52] tasks. MCI-AD performed worse than MCI-LB on memory tasks, specifically visuospatial (Modified Taylor Complex Figure: p = .01, g = .46) and verbal (Rey Auditory Verbal Learning Test: p = .04, g = .42) delayed recall measures. Stepwise discriminant analysis correctly classified the subtype in 65.1% of MCI patients (72.7% specificity, 56.4% sensitivity). Processing speed accounted for more group-associated variance in visuospatial and verbal memory in both MCI subtypes than executive function, while no significant relationships between measures were observed in controls (all ps > .05). CONCLUSIONS MCI-LB was characterized by executive dysfunction and slowed processing speed but did not show the visuospatial dysfunction expected, while MCI-AD displayed an amnestic profile. However, there was considerable neuropsychological profile overlap and processing speed mediated performance in both MCI subtypes.
Collapse
|
10
|
Li X, Shen M, Han Z, Jiao J, Tong X. The gesture imitation test in dementia with Lewy bodies and Alzheimer's disease dementia. Front Neurol 2022; 13:950730. [PMID: 35968306 PMCID: PMC9372402 DOI: 10.3389/fneur.2022.950730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/08/2022] [Indexed: 12/03/2022] Open
Abstract
Objectives Dementia with Lewy bodies (DLB) is the second most common type of neurodegenerative dementia following Alzheimer's disease dementia (ADD). This study investigated the diagnostic role of the gesture imitation test in detecting DLB and differentiating DLB from ADD. Methods A total of 63 patients with DLB, 93 patients with ADD, and 88 healthy controls were included in this study. All participants were administered the gesture imitation test, the Mini-Mental State Examination (MMSE), the Montreal Cognitive Assessment (MoCA), the clock drawing test (CDT), and other neuropsychological tests. Results The patients with DLB performed worse than the healthy controls in the global scores and on every item of the gesture imitation test (p < 0.001). The area under the curve (AUC) for the global scores was 0.889 (p < 0.001) in differentiating the DLB and control groups. Item 4 was a better discriminator, with a sensitivity of 79.37% and a specificity of 79.55%. The AUC for the global scores decreased to 0.593 and the difference was marginal (p = 0.079) in differentiating the DLB and ADD groups. The patients with DLB performed worse on Items 1 and 4 compared with the patients with ADD (p = 0.040, 0.004). The gesture imitation test was positively correlated with the scores of the MMSE (r = 0.355, p = 0.017), the MoCA (r = 0.382, p = 0.010), and the CDT (r = 0.407, p = 0.005) in patients with DLB. Conclusion The gesture imitation test is an easy, rapid tool for detecting DLB and has a role in differentiating DLB from ADD, especially in Items 1 and 4.
Collapse
Affiliation(s)
- Xudong Li
- Department of Cognitive Disorder, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- *Correspondence: Xudong Li
| | - Miaoxin Shen
- Department of Cognitive Disorder, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ziling Han
- Department of Cognitive Disorder, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinsong Jiao
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Xiaopeng Tong
- Department of Microbiology and Immunology, Medical School, Xizang Minzu University, Xianyang, China
| |
Collapse
|
11
|
Schumacher J, Ray NJ, Hamilton CA, Donaghy PC, Firbank M, Roberts G, Allan L, Durcan R, Barnett N, O’Brien JT, Taylor JP, Thomas AJ. Cholinergic white matter pathways in dementia with Lewy bodies and Alzheimer's disease. Brain 2022; 145:1773-1784. [PMID: 34605858 PMCID: PMC9166545 DOI: 10.1093/brain/awab372] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/23/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022] Open
Abstract
Patients who have dementia with Lewy bodies and Alzheimer's disease show early degeneration of the cholinergic nucleus basalis of Meynert. However, how white matter projections between the nucleus basalis of Meynert and the cortex are altered in neurodegenerative disease is unknown. Tractography of white matter pathways originating from the nucleus basalis of Meynert was performed using diffusion-weighted imaging in 46 patients with Alzheimer's disease dementia, 48 with dementia with Lewy bodies, 35 with mild cognitive impairment with Alzheimer's disease, 38 with mild cognitive impairment with Lewy bodies and 71 control participants. Mean diffusivity of the resulting pathways was compared between groups and related to cognition, attention, functional EEG changes and dementia conversion in the mild cognitive impairment groups. We successfully tracked a medial and a lateral pathway from the nucleus basalis of Meynert. Mean diffusivity of the lateral pathway was higher in both dementia and mild cognitive impairment groups than controls (all P < 0.03). In the patient groups, increased mean diffusivity of this pathway was related to more impaired global cognition (β = -0.22, P = 0.06) and worse performance on an attention task (β = 0.30, P = 0.03). In patients with mild cognitive impairment, loss of integrity of both nucleus basalis of Meynert pathways was associated with increased risk of dementia progression [hazard ratio (95% confidence interval), medial pathway: 2.51 (1.24-5.09); lateral pathway: 2.54 (1.24-5.19)]. Nucleus basalis of Meynert volume was reduced in all clinical groups compared to controls (all P < 0.001), but contributed less strongly to cognitive impairment and was not associated with attention or dementia conversion. EEG slowing in the patient groups as assessed by a decrease in dominant frequency was associated with smaller nucleus basalis of Meynert volumes (β = 0.22, P = 0.02) and increased mean diffusivity of the lateral pathway (β = -0.47, P = 0.003). We show that degeneration of the cholinergic nucleus basalis of Meynert in Alzheimer's disease and dementia with Lewy bodies is accompanied by an early reduction in integrity of white matter projections that originate from this structure. This is more strongly associated with cognition and attention than the volume of the nucleus basalis of Meynert itself and might be an early indicator of increased risk of dementia conversion in people with mild cognitive impairment.
Collapse
Affiliation(s)
- Julia Schumacher
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Nicola J Ray
- Health, Psychology and Communities Research Centre, Department of Psychology, Manchester Metropolitan University, Manchester, UK
| | - Calum A Hamilton
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Paul C Donaghy
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Michael Firbank
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Gemma Roberts
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Louise Allan
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
- Institute of Health Research, University of Exeter, Exeter, UK
| | - Rory Durcan
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Nicola Barnett
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - John T O’Brien
- Department of Psychiatry, University of Cambridge School of Medicine, Cambridge CB2 0SP, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Alan J Thomas
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
12
|
Galvin JE, Chrisphonte S, Cohen I, Greenfield KK, Kleiman MJ, Moore C, Riccio ML, Rosenfeld A, Shkolnik N, Walker M, Chang LC, Tolea MI. Characterization of dementia with Lewy bodies (DLB) and mild cognitive impairment using the Lewy body dementia module (LBD-MOD). Alzheimers Dement 2021; 17:1675-1686. [PMID: 33793069 PMCID: PMC8484363 DOI: 10.1002/alz.12334] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 01/12/2023]
Abstract
INTRODUCTION The National Institute on Aging Alzheimer's Disease Research Center program added the Lewy body dementia module (LBD-MOD) to the Uniform Data Set to facilitate LBD characterization and distinguish dementia with Lewy bodies (DLB) from Alzheimer's disease (AD). We tested the performance of the LBD-MOD. METHODS The LBD-MOD was completed in a single-site study in 342 participants: 53 controls, 78 AD, and 110 DLB; 79 mild cognitive impairment due to AD (MCI-AD); and 22 MCI-DLB. RESULTS DLB differed from AD in extrapyramidal symptoms, hallucinations, apathy, autonomic features, REM sleep behaviors, daytime sleepiness, cognitive fluctuations, timed attention tasks, and visual perception. MCI-DLB differed from MCI-AD in extrapyramidal features, mood, autonomic features, fluctuations, timed attention tasks, and visual perception. Descriptive data on LBD-MOD measures are provided for reference. DISCUSSION The LBD-MOD provided excellent characterization of core and supportive features to differentiate DLB from AD and healthy controls while also characterizing features of MCI-DLB.
Collapse
Affiliation(s)
- James E. Galvin
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine
| | - Stephanie Chrisphonte
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine
| | - Iris Cohen
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine
| | - Keri K. Greenfield
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine
| | - Michael J. Kleiman
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine
| | - Claudia Moore
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine
| | - Mary Lou Riccio
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine
| | - Amie Rosenfeld
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine
| | - Niurka Shkolnik
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine
| | - Marcia Walker
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine
| | - Lun-Ching Chang
- Department of Mathematical Sciences, Florida Atlantic University
| | - Magdalena I. Tolea
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine
| |
Collapse
|
13
|
Hamilton CA, Matthews FE, Allan LM, Barker S, Ciafone J, Donaghy PC, Durcan R, Firbank MJ, Lawley S, O'Brien JT, Roberts G, Taylor JP, Thomas AJ. Utility of the pareidolia test in mild cognitive impairment with Lewy bodies and Alzheimer's disease. Int J Geriatr Psychiatry 2021; 36:1407-1414. [PMID: 33772864 DOI: 10.1002/gps.5546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/09/2021] [Accepted: 03/21/2021] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Previous research has identified that dementia with Lewy bodies (DLB) has abnormal pareidolic responses which are associated with severity of visual hallucinations (VH), and the pareidolia test accurately classifies DLB with VH. We aimed to assess whether these findings would also be evident at the earlier stage of mild cognitive impairment (MCI) with Lewy bodies (MCI-LB) in comparison to MCI due to AD (MCI-AD) and cognitively healthy comparators. METHODS One-hundred and thirty-seven subjects were assessed prospectively in a longitudinal study with a mean follow-up of 1.2 years (max = 3.7): 63 MCI-LB (22% with VH) and 40 MCI-AD according to current research diagnostic criteria, and 34 healthy comparators. The pareidolia test was administered annually as a repeated measure. RESULTS Probable MCI-LB had an estimated pareidolia rate 1.2-6.7 times higher than MCI-AD. Pareidolia rates were not associated with concurrent VH, but had a weak association with total score on the North East Visual Hallucinations Inventory. The pareidolia test was not an accurate classifier of either MCI-LB (Area under curve (AUC) = 0.61), or VH (AUC = 0.56). There was poor sensitivity when differentiating MCI-LB from controls (41%) or MCI-AD (27%), though specificity was better (91% and 89%, respectively). CONCLUSIONS Whilst pareidolic responses are specifically more frequent in MCI-LB than MCI-AD, sensitivity of the pareidolia test is poorer than in DLB, with fewer patients manifesting VH at the earlier MCI stage. However, the high specificity and ease of use may make it useful in specialist clinics where imaging biomarkers are not available.
Collapse
Affiliation(s)
- Calum A Hamilton
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Fiona E Matthews
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Louise M Allan
- College of Medicine and Health, Exeter University, Exeter, UK
| | - Sally Barker
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Joanna Ciafone
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Paul C Donaghy
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Rory Durcan
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Michael J Firbank
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sarah Lawley
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Gemma Roberts
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Nuclear Medicine Department, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Alan J Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
14
|
Hamilton CA, Matthews FE, Donaghy PC, Taylor JP, O'Brien JT, Barnett N, Olsen K, Durcan R, Roberts G, Ciafone J, Barker SAH, Firbank M, McKeith IG, Thomas AJ. Progression to Dementia in Mild Cognitive Impairment With Lewy Bodies or Alzheimer Disease. Neurology 2021; 96:e2685-e2693. [PMID: 33875556 PMCID: PMC8205466 DOI: 10.1212/wnl.0000000000012024] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/02/2021] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE To determine whether mild cognitive impairment with Lewy bodies or mild cognitive impairment with Alzheimer disease differ in their rates of clinical progression to dementia, we undertook longitudinal observation of mild cognitive impairment cases with detailed clinical assessment of Lewy body diagnostic characteristics. METHODS Two prospective longitudinal cohorts including 111 individuals ≥60 years of age with mild cognitive impairment were assessed annually to track cognitive and clinical progression, including the presence or absence of core clinical features and proposed biomarkers of dementia with Lewy bodies. Multistate modeling was used to assess the associations of diagnostic characteristics of dementia with Lewy bodies with clinical progression from mild cognitive impairment to dementia, with death as a competing outcome. RESULTS After a mean follow-up of 2.2 years (range 1-6.7 years), 38 of the 111 (34%) participants progressed to dementia: 10 with AD, 3 with possible dementia with Lewy bodies, and 25 with probable dementia with Lewy bodies. The presence of any Lewy body disease characteristic was associated with an increased hazard of transition to dementia; this risk further increased as more diagnostic characteristics were observed (hazard ratio 1.33 per characteristic, 95% confidence interval [CI] 1.11-1.60) and was especially high for those experiencing complex visual hallucinations (hazard ratio 1.98, 95% CI 0.92-4.29) or cognitive fluctuations (hazard ratio 3.99, 95% CI 2.03-7.84). CONCLUSIONS Diagnostic characteristics of Lewy body disease are associated with an increased risk of transition from mild cognitive impairment to dementia.
Collapse
Affiliation(s)
- Calum A Hamilton
- From the Translational and Clinical Research Institute (C.A.H., P.C.D., J.-P.T., N.B., K.O., R.D., G.R., J.C., S.A.H.B., M.F., I.G.M., A.J.T.) and Population Health Sciences Institute (F.E.M.), Newcastle University; and Department of Psychiatry (J.T.O.), University of Cambridge School of Clinical Medicine, UK.
| | - Fiona E Matthews
- From the Translational and Clinical Research Institute (C.A.H., P.C.D., J.-P.T., N.B., K.O., R.D., G.R., J.C., S.A.H.B., M.F., I.G.M., A.J.T.) and Population Health Sciences Institute (F.E.M.), Newcastle University; and Department of Psychiatry (J.T.O.), University of Cambridge School of Clinical Medicine, UK
| | - Paul C Donaghy
- From the Translational and Clinical Research Institute (C.A.H., P.C.D., J.-P.T., N.B., K.O., R.D., G.R., J.C., S.A.H.B., M.F., I.G.M., A.J.T.) and Population Health Sciences Institute (F.E.M.), Newcastle University; and Department of Psychiatry (J.T.O.), University of Cambridge School of Clinical Medicine, UK
| | - John-Paul Taylor
- From the Translational and Clinical Research Institute (C.A.H., P.C.D., J.-P.T., N.B., K.O., R.D., G.R., J.C., S.A.H.B., M.F., I.G.M., A.J.T.) and Population Health Sciences Institute (F.E.M.), Newcastle University; and Department of Psychiatry (J.T.O.), University of Cambridge School of Clinical Medicine, UK
| | - John T O'Brien
- From the Translational and Clinical Research Institute (C.A.H., P.C.D., J.-P.T., N.B., K.O., R.D., G.R., J.C., S.A.H.B., M.F., I.G.M., A.J.T.) and Population Health Sciences Institute (F.E.M.), Newcastle University; and Department of Psychiatry (J.T.O.), University of Cambridge School of Clinical Medicine, UK
| | - Nicola Barnett
- From the Translational and Clinical Research Institute (C.A.H., P.C.D., J.-P.T., N.B., K.O., R.D., G.R., J.C., S.A.H.B., M.F., I.G.M., A.J.T.) and Population Health Sciences Institute (F.E.M.), Newcastle University; and Department of Psychiatry (J.T.O.), University of Cambridge School of Clinical Medicine, UK
| | - Kirsty Olsen
- From the Translational and Clinical Research Institute (C.A.H., P.C.D., J.-P.T., N.B., K.O., R.D., G.R., J.C., S.A.H.B., M.F., I.G.M., A.J.T.) and Population Health Sciences Institute (F.E.M.), Newcastle University; and Department of Psychiatry (J.T.O.), University of Cambridge School of Clinical Medicine, UK
| | - Rory Durcan
- From the Translational and Clinical Research Institute (C.A.H., P.C.D., J.-P.T., N.B., K.O., R.D., G.R., J.C., S.A.H.B., M.F., I.G.M., A.J.T.) and Population Health Sciences Institute (F.E.M.), Newcastle University; and Department of Psychiatry (J.T.O.), University of Cambridge School of Clinical Medicine, UK
| | - Gemma Roberts
- From the Translational and Clinical Research Institute (C.A.H., P.C.D., J.-P.T., N.B., K.O., R.D., G.R., J.C., S.A.H.B., M.F., I.G.M., A.J.T.) and Population Health Sciences Institute (F.E.M.), Newcastle University; and Department of Psychiatry (J.T.O.), University of Cambridge School of Clinical Medicine, UK
| | - Joanna Ciafone
- From the Translational and Clinical Research Institute (C.A.H., P.C.D., J.-P.T., N.B., K.O., R.D., G.R., J.C., S.A.H.B., M.F., I.G.M., A.J.T.) and Population Health Sciences Institute (F.E.M.), Newcastle University; and Department of Psychiatry (J.T.O.), University of Cambridge School of Clinical Medicine, UK
| | - Sally A H Barker
- From the Translational and Clinical Research Institute (C.A.H., P.C.D., J.-P.T., N.B., K.O., R.D., G.R., J.C., S.A.H.B., M.F., I.G.M., A.J.T.) and Population Health Sciences Institute (F.E.M.), Newcastle University; and Department of Psychiatry (J.T.O.), University of Cambridge School of Clinical Medicine, UK
| | - Michael Firbank
- From the Translational and Clinical Research Institute (C.A.H., P.C.D., J.-P.T., N.B., K.O., R.D., G.R., J.C., S.A.H.B., M.F., I.G.M., A.J.T.) and Population Health Sciences Institute (F.E.M.), Newcastle University; and Department of Psychiatry (J.T.O.), University of Cambridge School of Clinical Medicine, UK
| | - Ian G McKeith
- From the Translational and Clinical Research Institute (C.A.H., P.C.D., J.-P.T., N.B., K.O., R.D., G.R., J.C., S.A.H.B., M.F., I.G.M., A.J.T.) and Population Health Sciences Institute (F.E.M.), Newcastle University; and Department of Psychiatry (J.T.O.), University of Cambridge School of Clinical Medicine, UK
| | - Alan J Thomas
- From the Translational and Clinical Research Institute (C.A.H., P.C.D., J.-P.T., N.B., K.O., R.D., G.R., J.C., S.A.H.B., M.F., I.G.M., A.J.T.) and Population Health Sciences Institute (F.E.M.), Newcastle University; and Department of Psychiatry (J.T.O.), University of Cambridge School of Clinical Medicine, UK
| |
Collapse
|
15
|
Schumacher J, Taylor JP, Hamilton CA, Firbank M, Donaghy PC, Roberts G, Allan L, Durcan R, Barnett N, O'Brien JT, Thomas AJ. Functional connectivity in mild cognitive impairment with Lewy bodies. J Neurol 2021; 268:4707-4720. [PMID: 33928432 PMCID: PMC8563567 DOI: 10.1007/s00415-021-10580-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 12/13/2022]
Abstract
Previous resting-state fMRI studies in dementia with Lewy bodies have described changes in functional connectivity in networks related to cognition, motor function, and attention as well as alterations in connectivity dynamics. However, whether these changes occur early in the course of the disease and are already evident at the stage of mild cognitive impairment is not clear. We studied resting-state fMRI data from 31 patients with mild cognitive impairment with Lewy bodies compared to 28 patients with mild cognitive impairment due to Alzheimer’s disease and 24 age-matched controls. We compared the groups with respect to within- and between-network functional connectivity. Additionally, we applied two different approaches to study dynamic functional connectivity (sliding-window analysis and leading eigenvector dynamic analysis). We did not find any significant changes in the mild cognitive impairment groups compared to controls and no differences between the two mild cognitive impairment groups, using static as well as dynamic connectivity measures. While patients with mild cognitive impairment with Lewy bodies already show clear functional abnormalities on EEG measures, the fMRI analyses presented here do not appear to be sensitive enough to detect such early and subtle changes in brain function in these patients.
Collapse
Affiliation(s)
- Julia Schumacher
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK.
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Calum A Hamilton
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Michael Firbank
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Paul C Donaghy
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Gemma Roberts
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Louise Allan
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK.,Institute of Health Research, University of Exeter, Exeter, UK
| | - Rory Durcan
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Nicola Barnett
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge School of Medicine, Cambridge, CB2 0SP, UK
| | - Alan J Thomas
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| |
Collapse
|