1
|
Kasap N, Kara A, Celik V, Bilgic Eltan S, Akay Haci I, Kose H, Aygun A, Akkelle E, Yakici N, Guner SN, Reisli I, Keles S, Cekic S, Kilic SS, Karaca NE, Gulez N, Genel F, Ozen A, Yucelten AD, Karakoc-Aydiner E, Schmitz-Abe K, Baris S. Atypical Localization of Eczema Discriminates DOCK8 or STAT3 Deficiencies from Atopic Dermatitis. J Clin Immunol 2023; 43:1882-1890. [PMID: 37507632 DOI: 10.1007/s10875-023-01554-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
PURPOSE Autosomal recessive dedicator of cytokinesis 8 (DOCK8-/-) and autosomal dominant signal transducer and activator of transcription 3 (STAT3-/+) deficiencies are inborn errors of immunity (IEI) disorders present with the classic features of eczema and create a dilemma during differentiation from atopic dermatitis (AD). Therefore, an appropriate approach is required for eczema to diagnose DOCK8-/- and STAT3-/+ early. Here, we described a set of clinical and immunological variables, including atypical AD localizations and lymphocyte subsets, to differentiate DOCK8-/- or STAT3-/+ from AD. METHODS This multicenter study involved 100 patients with DOCK8-/- and STAT3-/+ and moderate/severe AD. We recruited disease manifestations, including detailed localizations of eczema, infections, and allergy. Principle component analysis (PCA) was used to discriminate DOCK8-/- or STAT3-/+ from AD. RESULTS There were 43 patients with DOCK8-/-, 23 with STAT3-/+, and 34 with AD. Pneumonia, severe infections, mucocutaneous candidiasis, and skin abscesses were commonly observed in DOCK8 and STAT3 deficiencies. Atypical skin involvement with neonatal rash, retro auricular, axillary, sacral, and genital eczema discriminate DOCK8-/- and STAT3-/+ from AD with high specificity ranges between 73.5 and 94.1% and positive predictive index ranges between 55 and 93.1%. Together with using absolute numbers of CD3+, CD4+, and CD8+ T cells, the combined clinical and laboratory features showed perfect differentiation between DOCK8-/- or STAT3-/+ and AD via PCA. CONCLUSIONS The described features can be easily implemented by physicians providing early diagnosis of DOCK8 and STAT3 deficiencies.
Collapse
Affiliation(s)
- Nurhan Kasap
- Division of Pediatric Allergy/Immunology, Faculty of Medicine, Pediatric Allergy and Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Altan Kara
- TUBITAK Marmara Research Center, Gene Engineering and Biotechnology Institute, Gebze, Turkey
| | - Velat Celik
- Faculty of Medicine, Pediatric Allergy and Immunology, Trakya University, Edirne, Turkey
| | - Sevgi Bilgic Eltan
- Division of Pediatric Allergy/Immunology, Faculty of Medicine, Pediatric Allergy and Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Idil Akay Haci
- Department of Pediatric Allergy and Immunology, Dr Behçet Uz Children's Hospital, Izmir, Turkey
| | - Hulya Kose
- Department of Pediatric Immunology and Rheumatology, Medical Faculty, Uludag University, Bursa, Turkey
| | - Ayse Aygun
- Department of Pediatrics, Division of Immunology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Emre Akkelle
- Pediatric Allergy and Immunology Department, Sancaktepe Training and Research Hospital, Istanbul, Turkey
| | - Nalan Yakici
- Pediatric Allergy and Immunology Department, Faculty of Medicine, Karadeniz Teknik University, Trabzon, Turkey
| | - Sukru Nail Guner
- Division of Pediatric Allergy and Immunology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Ismail Reisli
- Division of Pediatric Allergy and Immunology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Sevgi Keles
- Division of Pediatric Allergy and Immunology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Sukru Cekic
- Department of Pediatric Immunology and Rheumatology, Medical Faculty, Uludag University, Bursa, Turkey
| | - Sara Sebnem Kilic
- Department of Pediatric Immunology and Rheumatology, Medical Faculty, Uludag University, Bursa, Turkey
| | - Neslihan Edeer Karaca
- Department of Pediatrics, Division of Immunology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Nesrin Gulez
- Department of Pediatric Allergy and Immunology, Dr Behçet Uz Children's Hospital, Izmir, Turkey
| | - Ferah Genel
- Department of Pediatric Allergy and Immunology, Dr Behçet Uz Children's Hospital, Izmir, Turkey
| | - Ahmet Ozen
- Division of Pediatric Allergy/Immunology, Faculty of Medicine, Pediatric Allergy and Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ayse Deniz Yucelten
- Department of Dermatology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy/Immunology, Faculty of Medicine, Pediatric Allergy and Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Klaus Schmitz-Abe
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Safa Baris
- Division of Pediatric Allergy/Immunology, Faculty of Medicine, Pediatric Allergy and Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik, Istanbul, Turkey.
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey.
| |
Collapse
|
2
|
Cagdas D, Ayasun R, Gulseren D, Sanal O, Tezcan I. Cutaneous Findings in Inborn Errors of Immunity: An Immunologist's Perspective. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:3030-3039. [PMID: 37391021 DOI: 10.1016/j.jaip.2023.06.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 07/02/2023]
Abstract
Cutaneous manifestations are common in patients with inborn errors of immunity (IEI)/primary immunodeficiency and could be due to infections, immune dysregulation, or lymphoproliferative/malign diseases. Immunologists accept some as warning signs for underlying IEI. Herein, we include noninfectious/infectious cutaneous manifestations that we come across in rare IEI cases in our clinic and provide a comprehensive literature review. For several skin diseases, the diagnosis is challenging and differential diagnosis is necessary. Detailed disease history and examination play a vital role in reaching a diagnosis, especially if there is a potential underlying IEI. A skin biopsy is sometimes necessary, especially if we need to rule out inflammatory, infectious, lymphoproliferative, and malignant conditions. Specific and immunohistochemical stainings are particularly important when diagnosing granuloma, amyloidosis, malignancies, and infections like human herpes virus-6, human herpes virus-8, human papillomavirus, and orf. Elucidation of mechanisms of IEIs has improved our understanding of their relation to cutaneous findings. In challenging cases, the immunological evaluation may lead the approach when there is a specific primary immunodeficiency diagnosis or at least help to reduce the number of differential diagnoses. Conversely, the response to therapy may provide conclusive evidence for some conditions. This review raises awareness of concomitant lesions and expands the scope of the differential diagnosis of IEI and the spectrum of skin disease therapy by highlighting frequent forms of IEI-associated cutaneous manifestations. The manifestations given here will guide clinicians to plan for alternative use of diverse therapeutics in a multidisciplinary way for skin diseases.
Collapse
Affiliation(s)
- Deniz Cagdas
- Department of Pediatrics, Ihsan Dogramaci Children's Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey; Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey; Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| | - Ruveyda Ayasun
- Depatment of Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| | - Duygu Gulseren
- Department of Dermatology, Hacettepe University Medical School, Ankara, Turkey
| | - Ozden Sanal
- Department of Pediatrics, Ihsan Dogramaci Children's Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey; Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey; Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ilhan Tezcan
- Department of Pediatrics, Ihsan Dogramaci Children's Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey; Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey; Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
3
|
Sharifinejad N, Azizi G, Rasouli SE, Chavoshzadeh Z, Mahdaviani SA, Tavakol M, Sadri H, Nabavi M, Ebrahimi SS, Shirkani A, Vosughi Motlagh A, Momen T, Sharafian S, Mesdaghi M, Eslami N, Delavari S, Bahrami S, Yazdani R, Rezaei N, Abolhassani H. Autoimmune versus Non-autoimmune Cutaneous Features in Monogenic Patients with Inborn Errors of Immunity. BIOLOGY 2023; 12:biology12050644. [PMID: 37237458 DOI: 10.3390/biology12050644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023]
Abstract
Cutaneous manifestations are one of the most common presentations among patients with inborn errors of immunity (IEI). These skin manifestations are often among the first presenting features in the majority of patients preceding the IEI diagnosis. We studied 521 available monogenic patients with IEI listed in the Iranian IEI registry up to November 2022. We extracted each patient's demographic information, detailed clinical history of cutaneous manifestations, and immunologic evaluations. The patients were then categorized and compared based on their phenotypical classifications provided by the International Union of Immunological Societies. Most patients were categorized into syndromic combined immunodeficiency (25.1%), non-syndromic combined immunodeficiency (24.4%), predominantly antibody deficiency (20.7%), and diseases of immune dysregulation (20.5%). In total, 227 patients developed skin manifestations at a median (IQR) age of 2.0 (0.5-5.2) years; a total of 66 (40.7%) of these patients initially presented with these manifestations. Patients with cutaneous involvement were generally older at the time of diagnosis [5.0 (1.6-8.0) vs. 3.0 (1.0-7.0) years; p = 0.022]. Consanguinity was more common among patients who developed skin disorders (81.4% vs. 65.2%, p < 0.001). The overall skin infection rate and the type of dominant pathogens were significantly different among the IEI patients in different phenotypical classifications (p < 0.001). Atopic presentation, including urticaria, was highly prevalent among patients with congenital defects of phagocytes (p = 0.020). The frequency of eczema was also significantly higher among cases with both syndromic and non-syndromic combined immunodeficiency (p = 0.009). In contrast, autoimmune cutaneous manifestations, including alopecia and psoriasis, were most common in patients with immune dysregulation (p = 0.001) and defects in intrinsic or innate immunity (p = 0.031), respectively. The presence of autoimmune cutaneous complications significantly improved the survival rate of IEI patients (p = 0.21). In conclusion, cutaneous manifestations were observed in nearly 44% of Iranian patients with monogenic IEI. A considerable number of patients with cutaneous involvements developed these disorders as their first manifestation of the disease, which was particularly noticeable in patients with non-syndromic combined immunodeficiency and phagocytic defects. The neglected skin disorders in IEI patients might delay diagnosis, which is generally established within a 3-year interval from the development of skin-related problems. Cutaneous disorders, especially autoimmune features, might indicate a mild prognosis in IEI patients.
Collapse
Affiliation(s)
- Niusha Sharifinejad
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj 3149969415, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj 3149969415, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Seyed Erfan Rasouli
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj 3149969415, Iran
| | - Zahra Chavoshzadeh
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Marzieh Tavakol
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj 3149969415, Iran
| | - Homa Sadri
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj 3149969415, Iran
| | - Mohammad Nabavi
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Sareh Sadat Ebrahimi
- Department of Immunology and Allergy, Kerman University of Medical Sciences, Kerman 7619833477, Iran
| | - Afshin Shirkani
- Allergy and Clinical Immunology Department, School of Medicine, Bushehr University of Medical Science, Moallem St., Bushehr 7514763448, Iran
| | - Ahmad Vosughi Motlagh
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd 7487794149, Iran
| | - Tooba Momen
- Department of Asthma, Allergy and Clinical Immunology, Child Growth and Development Research Center, Research Institute of Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Samin Sharafian
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Mehrnaz Mesdaghi
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Narges Eslami
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Sasan Bahrami
- Department of Digital Media, Westphal College of Media Arts and Design, Drexel University, Philadelphia, PA 19104, USA
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran 1419733141, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Huddinge, 141 86 Stockholm, Sweden
| |
Collapse
|
4
|
Oliveira M, Oliveira D, Lisboa C, Boechat JL, Delgado L. Clinical Manifestations of Human Exposure to Fungi. J Fungi (Basel) 2023; 9:jof9030381. [PMID: 36983549 PMCID: PMC10052331 DOI: 10.3390/jof9030381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Biological particles, along with inorganic gaseous and particulate pollutants, constitute an ever-present component of the atmosphere and surfaces. Among these particles are fungal species colonizing almost all ecosystems, including the human body. Although inoffensive to most people, fungi can be responsible for several health problems, such as allergic fungal diseases and fungal infections. Worldwide fungal disease incidence is increasing, with new emerging fungal diseases appearing yearly. Reasons for this increase are the expansion of life expectancy, the number of immunocompromised patients (immunosuppressive treatments for transplantation, autoimmune diseases, and immunodeficiency diseases), the number of uncontrolled underlying conditions (e.g., diabetes mellitus), and the misusage of medication (e.g., corticosteroids and broad-spectrum antibiotics). Managing fungal diseases is challenging; only four classes of antifungal drugs are available, resistance to these drugs is increasing, and no vaccines have been approved. The present work reviews the implications of fungal particles in human health from allergic diseases (i.e., allergic bronchopulmonary aspergillosis, severe asthma with fungal sensitization, thunderstorm asthma, allergic fungal rhinosinusitis, and occupational lung diseases) to infections (i.e., superficial, subcutaneous, and systemic infections). Topics such as the etiological agent, risk factors, clinical manifestations, diagnosis, and treatment will be revised to improve the knowledge of this growing health concern.
Collapse
Affiliation(s)
- Manuela Oliveira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Ipatimup-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Diana Oliveira
- CRN-Unidade de Reabilitação AVC, Centro de Reabilitação do Norte, Centro Hospitalar de Vila Nova de Gaia/Espinho, Avenida dos Sanatórios 127, 4405-565 Vila Nova de Gaia, Portugal
| | - Carmen Lisboa
- Serviço de Microbiologia, Departamento de Patologia, Faculdade de Medicina do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Serviço de Dermatologia, Centro Hospitalar Universitário de São João, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- CINTESIS@RISE-Centro de Investigação em Tecnologias e Serviços de Saúde, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - José Laerte Boechat
- CINTESIS@RISE-Centro de Investigação em Tecnologias e Serviços de Saúde, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Luís Delgado
- CINTESIS@RISE-Centro de Investigação em Tecnologias e Serviços de Saúde, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Laboratório de Imunologia, Serviço de Patologia Clínica, Centro Hospitalar e Universitário de São João, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
5
|
Pan C, Zhao A, Li M. Atopic Dermatitis-like Genodermatosis: Disease Diagnosis and Management. Diagnostics (Basel) 2022; 12:diagnostics12092177. [PMID: 36140582 PMCID: PMC9498295 DOI: 10.3390/diagnostics12092177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/23/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Eczema is a classical characteristic not only in atopic dermatitis but also in various genodermatosis. Patients suffering from primary immunodeficiency diseases such as hyper-immunoglobulin E syndromes, Wiskott-Aldrich syndrome, immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome, STAT5B deficiency, Omenn syndrome, atypical complete DiGeorge syndrome; metabolic disorders such as acrodermatitis enteropathy, multiple carboxylase deficiency, prolidase deficiency; and other rare syndromes like severe dermatitis, multiple allergies and metabolic wasting syndrome, Netherton syndrome, and peeling skin syndrome frequently perform with eczema-like lesions. These genodermatosis may be misguided in the context of eczematous phenotype. Misdiagnosis of severe disorders unavoidably affects appropriate treatment and leads to irreversible outcomes for patients, which underlines the importance of molecular diagnosis and genetic analysis. Here we conclude clinical manifestations, molecular mechanism, diagnosis and management of several eczema-related genodermatosis and provide accessible advice to physicians.
Collapse
Affiliation(s)
- Chaolan Pan
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Anqi Zhao
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Ming Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Department of Dermatology, The Children’s Hospital of Fudan University, Shanghai 200092, China
- Correspondence: ; Tel.: +86-2125078571
| |
Collapse
|
6
|
Iwasawa MT, Miyachi H, Wakabayashi S, Sugihira T, Aoyama R, Nakagawa S, Katayama Y, Yoneyama M, Hara H, Iwakura Y, Matsumoto M, Inohara N, Koguchi-Yoshioka H, Fujimoto M, Núñez G, Matsue H, Nakamura Y, Saijo S. Epidermal clearance of Candida albicans is mediated by IL-17 but independent of fungal innate immune receptors. Int Immunol 2022; 34:409-420. [PMID: 35641096 PMCID: PMC9317997 DOI: 10.1093/intimm/dxac019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 05/27/2022] [Indexed: 11/12/2022] Open
Abstract
IL-17 plays important roles in host defense against Candida albicans at barrier surfaces and during invasive infection. However, the role of IL-17 in host defense after colonization of the epidermis, a main site of C. albicans infection, remains poorly understood. Using a murine model of epicutaneous candidiasis without skin abrasion, we found that skin inflammation triggered by epidermal C. albicans colonization was self-limiting with fungal clearance completed by day 7 after inoculation in wild-type mice or animals deficient in IL-17A or IL-17F. In contrast, marked neutrophilic inflammation in the epidermis and impaired fungal clearance were observed in mice lacking both IL-17A and IL-17F. Clearance of C. albicans was independent of Dectin-1, Dectin-2, CARD9 (caspase-recruitment domain family, member 9), TLR2 (Toll-like receptor 2) and MyD88 in the epidermal colonization model. We found that group 3 innate lymphoid cells (ILC3s) and γδT cells were the major IL-17 producers in the epicutaneous candidiasis model. Analyses of Rag2-/- mice and Rag2-/-Il2rg-/- mice revealed that production of IL-17A and IL-17F by ILC3s was sufficient for C. albicans clearance. Finally, we found that depletion of neutrophils impaired C. albicans clearance in the epidermal colonization model. Taken together, these findings indicate a critical and redundant function of IL-17A and IL-17F produced by ILC3s in host defense against C. albicans in the epidermis. The results also suggest that epidermal C. albicans clearance is independent of innate immune receptors or that these receptors act redundantly in fungal recognition and clearance.
Collapse
Affiliation(s)
- Mari T Iwasawa
- Department of Dermatology, Graduate School of Medicine, Chiba University, Chiba-shi, Chiba 260-8670, Japan
| | - Hideaki Miyachi
- Department of Dermatology, Graduate School of Medicine, Chiba University, Chiba-shi, Chiba 260-8670, Japan
| | - Seiichiro Wakabayashi
- Department of Dermatology, Graduate School of Medicine, Chiba University, Chiba-shi, Chiba 260-8670, Japan
| | - Takashi Sugihira
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Suita-shi, Osaka 565-0871, Japan
| | - Reika Aoyama
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Suita-shi, Osaka 565-0871, Japan
| | - Seitaro Nakagawa
- Department of Dermatology, Graduate School of Medicine, Chiba University, Chiba-shi, Chiba 260-8670, Japan
| | - Yuki Katayama
- Department of Dermatology, Graduate School of Medicine, Chiba University, Chiba-shi, Chiba 260-8670, Japan
| | - Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University , Chiba-shi, Chiba 260-8673, Japan
| | - Hiromitsu Hara
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima-shi, Kagoshima 890-8544, Japan
| | - Yoichiro Iwakura
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University , Chiba-shi, Chiba 260-8673, Japan.,Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.,Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda-shi, Chiba 278-0022, Japan
| | - Masanori Matsumoto
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Naohiro Inohara
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hanako Koguchi-Yoshioka
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Suita-shi, Osaka 565-0871, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Suita-shi, Osaka 565-0871, Japan.,Cutaneous Immunology, Immunology Frontier Research Center, Osaka University, Suita-shi, Osaka 565-0871, Japan
| | - Gabriel Núñez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hiroyuki Matsue
- Department of Dermatology, Graduate School of Medicine, Chiba University, Chiba-shi, Chiba 260-8670, Japan
| | - Yuumi Nakamura
- Department of Dermatology, Graduate School of Medicine, Chiba University, Chiba-shi, Chiba 260-8670, Japan.,Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Suita-shi, Osaka 565-0871, Japan.,Cutaneous Immunology, Immunology Frontier Research Center, Osaka University, Suita-shi, Osaka 565-0871, Japan
| | - Shinobu Saijo
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University , Chiba-shi, Chiba 260-8673, Japan
| |
Collapse
|
7
|
Liquidano-Pérez E, Maza-Ramos G, Yamazaki-Nakashimada MA, Barragán-Arévalo T, Lugo-Reyes SO, Scheffler-Mendoza S, Espinosa-Padilla SE, González-Serrano ME. [Combined immunodeficiency due to DOCK8 deficiency. State of the art]. REVISTA ALERGIA MÉXICO 2022; 69:31-47. [PMID: 36927749 DOI: 10.29262/ram.v69i1.1104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Abstract
Combinedimmunodeficiency (CID) due to DOCK8 deficiency is an inborn error of immunity (IBD) characterized by dysfunctional T and B lymphocytes; The spectrum of manifestations includes allergy, autoimmunity, inflammation, predisposition to cancer, and recurrent infections. DOCK8 deficiency can be distinguished from other CIDs or within the spectrum of hyper-IgE syndromes by exhibiting profound susceptibility to viral skin infections, associated skin cancers, and severe food allergies. The 9p24.3 subtelomeric locus where DOCK8 is located includes numerous repetitive sequence elements that predispose to the generation of large germline deletions and recombination-mediated somatic DNA repair. Residual production DOCK8 protein contributes to the variable phenotype of the disease. Severe viral skin infections and varicella-zoster virus (VZV)-associated vasculopathy, reflect an essential role of the DOCK8 protein, which is required to maintain lymphocyte integrity as cells migrate through the tissues. Loss of DOCK8 causes immune deficiencies through other mechanisms, including a cell survival defect. In addition, there are alterations in the response of dendritic cells, which explains susceptibility to virus infection and regulatory T lymphocytes that could help explain autoimmunity in patients. Hematopoietic stem cell transplantation (HSCT) is the only curative treatment; it improves eczema, allergies, and susceptibility to infections.
Collapse
Affiliation(s)
- Eduardo Liquidano-Pérez
- Instituto Nacional de Pediatría, Unidad de Investigación en Inmunodeficiencias, Ciudad de México, México
| | | | | | - Tania Barragán-Arévalo
- Fundación de Asistencia Privada, Instituto de Oftalmología Conde de Valenciana, Departamento de Genética, Ciudad de México, México
| | - Saúl Oswaldo Lugo-Reyes
- Instituto Nacional de Pediatría, Unidad de Investigación en Inmunodeficiencias, Ciudad de México, México
| | | | - Sara Elva Espinosa-Padilla
- Instituto Nacional de Pediatría, Unidad de Investigación en Inmunodeficiencias, Ciudad de México, México
| | | |
Collapse
|
8
|
Recent Progress in Traditional Chinese Medicines and Their Mechanism in the Treatment of Allergic Rhinitis. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:3594210. [PMID: 35444784 PMCID: PMC9015857 DOI: 10.1155/2022/3594210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023]
Abstract
Objective To conduct a systematic review on the mechanism of action and use of traditional Chinese medicines (TCM) in allergic rhinitis treatment. Background Allergic rhinitis (AR) is a type I allergic disease of the immune system induced by immunoglobulin E mediated inflammation and is characterized by sneezing, nasal itching, paroxysmal nasal obstruction, mucosal edema, cough, and rhinorrhea. More than 500 million people have been affected by rhinitis worldwide in the past 20 years, leading to negative effects on health, quality of life, and social relationships. Currently, the trending medicines used in the case of AR include intranasal corticosteroids and oral H1 antihistamines, which are given as combinatorial medicines supplemented with immune therapy. These medications have been found to be very effective in either the short term or long term; however, they have been found to possess some serious side effects. Search Methodology. The information in this article on classical and traditional Chinese medications used to treat AR was derived from original papers and reviews published in Chinese and English language journals. Two Chinese databases (Wanfang and CNKI) and three English databases (Cochrane Library, PubMed, and Embase) were utilized for data gathering. Results Traditional Chinese remedies have been identified to influence the production of cytokines such as IL-5 and IL-6, which are key mediators of eosinophilic inflammation, TNF-α, which stimulates TH2 cells at the site of inflammation, and NF-кB, which is required for cytokine and IgE antibody production. TCM has also been shown to be successful in lowering histamine levels, preserving histological changes by decreasing the thickness of the lamina propria, and downregulating the expression of Orai1, STIM1, and TRYC1, showing low expression of Ca+2 channel proteins. Conclusion In this review, we discussed a series of classical, traditional Chinese medications, including Centipeda minima, Scutellaria baicalensis, licorice root (Glycyrrhiza uralensis), and others, as potential antiallergic agents and investigate their in vivo effect upon the production of cytokines and release of histamines for allergic rhinitis treatment.
Collapse
|
9
|
Inborn errors of immunity manifesting as atopic disorders. J Allergy Clin Immunol 2021; 148:1130-1139. [PMID: 34428518 DOI: 10.1016/j.jaci.2021.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/23/2021] [Accepted: 08/02/2021] [Indexed: 01/29/2023]
Abstract
Inborn errors of immunity are traditionally best known for enhancing susceptibility to infections. However, allergic inflammation, among other types of immune dysregulation, occurs frequently in patients with inborn errors of immunity. As such, the term primary atopic disorders (PADs) was recently coined to describe the group of heritable monogenic allergic disorders. It is becoming increasingly important for clinicians to recognize that allergic diseases such as food allergy, atopic dermatitis, and allergic asthma are expressions of misdirected immunity, and in patients who present with severe, early-onset, or coexisting allergic conditions, these can be indications of an underlying PAD. Identifying monogenic allergic disease through next-generation sequencing can dramatically improve outcomes by allowing the use of precision-based therapy targeting the patient's underlying molecular defect. It is therefore imperative that clinicians recognize PADs to be able to provide informed therapeutic options and improve patient outcomes. Here, we summarize the clinical features commonly seen with each of the currently known PADs, identify clinical warning signs that warrant assessment for PADs, and lastly, discuss the benefits of timely diagnosis and management of these conditions.
Collapse
|
10
|
Miyachi H, Wakabayashi S, Sugihira T, Aoyama R, Saijo S, Koguchi-Yoshioka H, Fujimoto M, Núñez G, Matsue H, Nakamura Y. Keratinocyte IL-36 Receptor/MyD88 Signaling Mediates Malassezia-Induced IL-17-Dependent Skin Inflammation. J Infect Dis 2021; 223:1753-1765. [PMID: 33837391 DOI: 10.1093/infdis/jiab194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/06/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Among skin commensal fungi, lipophilic Malassezia species exist on nearly all human skin surfaces. The pathophysiology of Malassezia-associated skin diseases remains poorly understood due in part to the lack of appropriate animal models. Our objective was to investigate the mechanisms underlying Malassezia-induced skin inflammation using a novel murine model that physiologically recapitulates Malassezia skin infection. METHODS Mice were inoculated epicutaneously with Malassezia yeasts without barrier disruption and in the absence of external lipid supplementation. Skin inflammation, lesional fungal loads, and expression of cytokines and antimicrobial peptides were evaluated in wild-type and mutant mouse strains. RESULTS Malassezia-induced skin inflammation and epidermal thickening were observed on day 4 after inoculation in wild-type mice. High fungal burdens were detected in the cornified layer on day 2 and decreased thereafter with near complete clearance by day 7 after inoculation. Malassezia-induced skin inflammation and fungal clearance by the host were interleukin-17 (IL-17) dependent with contribution of group 3 innate lymphoid cells. Moreover, IL-17-dependent skin inflammation was mediated through IL-36 receptor and keratinocyte MyD88 signaling. CONCLUSION Using a new skin infection model, it is shown that Malassezia-induced IL-17- dependent skin inflammation and control of fungal infection are mediated via keratinocyte IL-36 receptor/MyD88 signaling.
Collapse
Affiliation(s)
- Hideaki Miyachi
- Department of Dermatology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Seiichiro Wakabayashi
- Department of Dermatology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takashi Sugihira
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Reika Aoyama
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shinobu Saijo
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Hanako Koguchi-Yoshioka
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan.,Cutaneous Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Hiroyuki Matsue
- Department of Dermatology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Yuumi Nakamura
- Department of Dermatology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan.,Cutaneous Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
11
|
Schwartz DM, Kitakule MM, Dizon BL, Gutierrez-Huerta C, Blackstone SA, Burma AM, Son A, Deuitch N, Rosenzweig S, Komarow H, Stone DL, Jones A, Nehrebecky M, Hoffmann P, Romeo T, de Jesus AA, Alehashemi S, Garg M, Torreggiani S, Montealegre Sanchez GA, Honer K, Souto Adeva G, Barron KS, Aksentijevich I, Ombrello AK, Goldbach-Mansky R, Kastner DL, Milner JD, Frischmeyer-Guerrerio P. Systematic evaluation of nine monogenic autoinflammatory diseases reveals common and disease-specific correlations with allergy-associated features. Ann Rheum Dis 2021; 80:788-795. [PMID: 33619160 DOI: 10.1136/annrheumdis-2020-219137] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/13/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Monogenic autoinflammatory diseases (AID) are caused by mutations in innate immune genes. The effects of these mutations on allergic inflammation are unknown. OBJECTIVES We investigated allergic, immunological and clinical phenotypes in FMF (familial Mediterranean fever), CAPS (cryopyrin-associated periodic syndrome), TRAPS (tumour necrosis factor receptor-associated periodic syndrome), HIDS (hyper-IgD syndrome), PAPA (pyogenic arthritis, pyoderma gangrenosum and acne), DADA2 (deficiency of adenosine deaminase 2), HA20 (haploinsufficiency of A20), CANDLE (chronic atypical neutrophilic dermatosis, lipodystrophy, elevated temperature) and SAVI (STING-associated vasculopathy of infancy). METHODS In this cross-sectional study, clinical data were assessed in 425 patients with AID using questionnaires and chart reviews. Comparator data were obtained from public databases. Peripheral blood mononuclear cells obtained from 55 patients were stimulated and CD4+ cytokine production assessed. RESULTS Clinical laboratory features of Type 2 immunity were elevated in CAPS but reduced in most AID, particularly DADA2. Physician-diagnosed allergic diseases were prevalent in multiple AID, including CAPS and DADA2. T helper 2 (Th2) cells were expanded in CAPS, TRAPS and HIDS; Th9 cells were expanded in HA20. CONCLUSIONS CAPS is characterised by an enhanced Type 2 signature, whereas FMF and CANDLE are associated with reduced Type 2 responses. DADA2 is associated with reduced Type 2 responses but a high rate of physician-diagnosed allergy. Therefore, NLRP3-driven autoinflammation may promote Type 2 immunity, whereas AID like DADA2 may manifest clinical phenotypes that masquerade as allergic disorders. Further investigations are needed to determine the contribution of autoinflammation to allergic clinical and immunological phenotypes, to improve the treatment of patients with AID.
Collapse
Affiliation(s)
- Daniella Muallem Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Moses M Kitakule
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Brian Lp Dizon
- NIAMS, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Sarah A Blackstone
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Aarohan M Burma
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Aran Son
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Natalie Deuitch
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Sofia Rosenzweig
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Hirsh Komarow
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Deborah L Stone
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Anne Jones
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Michele Nehrebecky
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Patrycja Hoffmann
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Tina Romeo
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Adriana Almeida de Jesus
- Translational Autoinflammatory Diseases Section, LCIM, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Sara Alehashemi
- Translational Autoinflammatory Diseases Section, LCIM, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Megha Garg
- Rheumatology, Rochester Regional Health System, Rochester, New York, USA
| | - Sofia Torreggiani
- Translational Autoinflammatory Diseases Section, LCIM, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Gina A Montealegre Sanchez
- Translational Autoinflammatory Diseases Section, LCIM, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Katelin Honer
- Translational Autoinflammatory Diseases Section, LCIM, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Gema Souto Adeva
- Translational Autoinflammatory Diseases Section, LCIM, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Karyl S Barron
- NIAID, National Institutes of Health, Bethesda, Maryland, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Amanda K Ombrello
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section, LCIM, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Daniel L Kastner
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Joshua D Milner
- Division of Pediatric Allergy, Immunology and Rheumatology, Columbia University, New York, New York, USA
| | | |
Collapse
|
12
|
Inborn errors of immunity with atopic phenotypes: A practical guide for allergists. World Allergy Organ J 2021; 14:100513. [PMID: 33717395 PMCID: PMC7907539 DOI: 10.1016/j.waojou.2021.100513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
Inborn errors of immunity (IEI) are a heterogeneous group of disorders, mainly resulting from mutations in genes associated with immunoregulation and immune host defense. These disorders are characterized by different combinations of recurrent infections, autoimmunity, inflammatory manifestations, lymphoproliferation, and malignancy. Interestingly, it has been increasingly observed that common allergic symptoms also can represent the expression of an underlying immunodeficiency and/or immune dysregulation. Very high IgE levels, peripheral or organ-specific hypereosinophilia, usually combined with a variety of atopic symptoms, may sometimes be the epiphenomenon of a monogenic disease. Therefore, allergists should be aware that severe and/or therapy-resistant atopic disorders might be the main clinical phenotype of some IEI. This could pave the way to target therapies, leading to better quality of life and improved survival in affected patients.
Collapse
|
13
|
Consonni F, Favre C, Gambineri E. IL-2 Signaling Axis Defects: How Many Faces? Front Pediatr 2021; 9:669298. [PMID: 34277517 PMCID: PMC8282996 DOI: 10.3389/fped.2021.669298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
CD25, Signal transducer and activator of transcription 5B (STAT5B) and Forkhead box P3 (FOXP3) are critical mediators of Interleukin-2 (IL-2) signaling pathway in regulatory T cells (Tregs). CD25 (i.e., IL-2 Receptor α) binds with high affinity to IL-2, activating STAT5B-mediated signaling that eventually results in transcription of FOXP3, a master regulator of Treg function. Consequently, loss-of-function mutations in these proteins give rise to Treg disorders (i.e., Tregopathies) that clinically result in multiorgan autoimmunity. Immunodysregulation, Polyendocrinopathy Enteropathy X-linked (IPEX), due to mutations in FOXP3, has historically been the prototype of Tregopathies. This review describes current knowledge about defects in CD25, STAT5B, and FOXP3, highlighting that these disorders both share a common biological background and display comparable clinical features. However, specific phenotypes are associated with each of these syndromes, while certain laboratory findings could be helpful tools for clinicians, in order to achieve a prompt genetic diagnosis. Current treatment strategies will be outlined, keeping an eye on gene editing, an interesting therapeutic perspective that could definitely change the natural history of these disorders.
Collapse
Affiliation(s)
- Filippo Consonni
- Anna Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Claudio Favre
- Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| | - Eleonora Gambineri
- Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy.,Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
14
|
Farmer JR, Uzel G. Mapping Out Autoimmunity Control in Primary Immune Regulatory Disorders. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 9:653-659. [PMID: 33358993 DOI: 10.1016/j.jaip.2020.12.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022]
Abstract
There is a growing understanding of the clinical overlap between primary immune deficiency and autoimmunity. An atypical or treatment-refractory clinical presentation of autoimmunity may in fact signal an underlying congenital condition of primary immune dysregulation (an inborn error of immunity). Detailed profiling of the family history is critical in the diagnostic process and must not be limited to the occurrence of frequent or atypical infections, but additionally should include inquiries into chronic forms of autoimmunity, hyperinflammation, and malignancy. A genetic and a functional diagnostic approach are complementary and nonoverlapping methods of identifying and validating an inborn error of immunity. Extended immune phenotyping of both affected and unaffected family members may provide insight into disease mode of inheritance, penetrance, and secondary inherited or environmentally acquired modifiers. Clinical care of a family with an inborn error of immunity may require local and national expertise in addition to cross-disciplinary care from the disciplines of pediatrics and internal medicine. Physician communication across subspecialties as well as distinct medical institutes can facilitate the appropriate disclosure of genetic testing results toward their prompt incorporation into patient care. Targeted immunomodulation based directly on genetic and functional immune phenotyping has the potential to reduce unnecessary immunosuppression and provide more exacting therapeutic benefit to our patients.
Collapse
Affiliation(s)
- Jocelyn R Farmer
- Division of Rheumatology, Allergy & Immunology, Department of Medicine, Massachusetts General Hospital, Boston, Mass; Ragon Institute of MGH, MIT and Harvard, Boston, Mass.
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| |
Collapse
|
15
|
Araujo VHS, Delello Di Filippo L, Duarte JL, Spósito L, Camargo BAFD, da Silva PB, Chorilli M. Exploiting solid lipid nanoparticles and nanostructured lipid carriers for drug delivery against cutaneous fungal infections. Crit Rev Microbiol 2020; 47:79-90. [PMID: 33156736 DOI: 10.1080/1040841x.2020.1843399] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Several types of cutaneous fungal infections can affect the population worldwide, such as dermatophytosis, cutaneous candidiasis, onychomycosis, and sporotrichosis. However, oral treatments have pronounced adverse effects, making the topical route an alternative to avoid this disadvantage. On the other hand, currently available pharmaceutical forms designed for topical application, such as gels and creams, do not demonstrate effective retention of biomolecules in the upper layers of the skin. An interesting approach to optimise biomolecules' activity in the skin is the use of nanosystems for drug delivery, especially solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), which in the past decade has shown advantages like increased adhesiveness, great occlusive properties and higher biomolecule deposition in stratum corneum when designed for topical application. Considering the demand for more effective therapeutic alternatives and the promising characteristics of SLN and NLC for topical application, the present study sought to gather studies that investigated the potential of using SLN and NLC for the treatment of cutaneous fungal infections. Studies demonstrated that these nanosystems showed optimisation, mostly, of the effectiveness of biomolecules besides other biopharmaceutical properties, in addition to offering potential occlusion and hydration of the applied region.
Collapse
Affiliation(s)
| | | | | | - Larissa Spósito
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| | | | - Patricia Bento da Silva
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| |
Collapse
|
16
|
Primary Immunodeficiency: New Approaches in Genetic Diagnosis, and Constructing Targeted Therapies. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 7:839-841. [PMID: 30832894 DOI: 10.1016/j.jaip.2018.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 12/26/2018] [Indexed: 02/07/2023]
|