1
|
Fathi N, Nirouei M, Salimian Rizi Z, Fekrvand S, Abolhassani H, Salami F, Ketabforoush AHME, Azizi G, Saghazadeh A, Esmaeili M, Almasi-Hashiani A, Rezaei N. Clinical, Immunological, and Genetic Features in Patients with NFKB1 and NFKB2 Mutations: a Systematic Review. J Clin Immunol 2024; 44:160. [PMID: 38990428 DOI: 10.1007/s10875-024-01763-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Inborn errors of immunity (IEIs) encompass various diseases with diverse clinical and immunological symptoms. Determining the genotype-phenotype of different variants in IEI entity precisely is challenging, as manifestations can be heterogeneous even in patients with the same mutated gene. OBJECTIVE In the present study, we conducted a systematic review of patients recorded with NFKB1 and NFKB2 mutations, two of the most frequent monogenic IEIs. METHODS The search for relevant literature was conducted in databases including Web of Science, PubMed, and Scopus. Information encompassing demographic, clinical, immunological, and genetic data was extracted from cases reported with mutations in NFKB1 and NFKB2. The comprehensive features of manifestations in patients were described, and a comparative analysis of primary characteristics was conducted between individuals with NFKB1 loss of function (LOF) and NFKB2 (p52-LOF/IκBδ-gain of function (GOF)) variants. RESULTS A total of 397 patients were included in this study, 257 had NFKB1 mutations and 140 had NFKB2 mutations. There were 175 LOF cases in NFKB1 and 122 p52LOF/IκBδGOF cases in NFKB2 pivotal groups with confirmed functional implications. NFKB1LOF and p52LOF/IκBδGOF predominant cases (81.8% and 62.5% respectively) initially presented with a CVID-like phenotype. Patients with NFKB1LOF variants often experienced hematologic autoimmune disorders, whereas p52LOF/IκBδGOF patients were more susceptible to other autoimmune diseases. Viral infections were markedly higher in p52LOF/IκBδGOF cases compared to NFKB1LOF (P-value < 0.001). NFKB2 (p52LOF/IκBδGOF) patients exhibited a greater prevalence of ectodermal dysplasia and pituitary gland involvement than NFKB1LOF patients. Most NFKB1LOF and p52LOF/IκBδGOF cases showed low CD19 + B cells, with p52LOF/IκBδGOF having more cases of this type. Low memory B cells were more common in p52LOF/IκBδGOF patients. CONCLUSIONS Patients with NFKB2 mutations, particularly p52LOF/IκBδGOF, are at higher risk of viral infections, pituitary gland involvement, and ectodermal dysplasia compared to patients with NFKB1LOF mutations. Genetic testing is essential to resolve the initial complexity and confusion surrounding clinical and immunological features. Emphasizing the significance of functional assays in determining the probability of correlations between mutations and immunological and clinical characteristics of patients is crucial.
Collapse
Affiliation(s)
- Nazanin Fathi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Zahra Salimian Rizi
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Fereshte Salami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Amene Saghazadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Marzie Esmaeili
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amir Almasi-Hashiani
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
2
|
Yang JH, Scanlon N, Woo W, LaBuzetta JN, Gonzalez C, Broderick L, Doherty T, Riedl M, Dunn-Pirio A. Refractory Status Epilepticus Associated With a Pathogenic Variant in TNFRSF13B. Cureus 2023; 15:e48222. [PMID: 38054159 PMCID: PMC10694393 DOI: 10.7759/cureus.48222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 12/07/2023] Open
Abstract
Febrile infection-related epilepsy syndrome (FIRES) is a rare epileptic syndrome characterized by new-onset refractory status epilepticus preceded by a febrile illness. Limited literature exists regarding the relationship between primary immunodeficiencies and immune-mediated epilepsy, and the relationship between new-onset refractory status epilepticus and common variable immunodeficiency (CVID) is not well-understood. We present a case of a 21-year-old female with a history of recurrent sinus infections, asthma, thrombocytopenia, atrioventricular nodal reentrant tachycardia, and neonatal seizures who presented with fever and new-onset status epilepticus. She was ultimately diagnosed with a heterozygous variant in TNFRSF13B c.311G>A (p.Cys104Tyr), which encodes for a tumor necrosis factor receptor implicated in CVID.
Collapse
Affiliation(s)
- Jennifer H Yang
- Neurosciences, University of California San Diego, San Diego, USA
- Pediatric Neurology, Rady Children's Hospital San Diego, San Diego, USA
| | - Nicholas Scanlon
- Allergy and Immunology, University of California San Diego, San Diego, USA
| | - Wonhee Woo
- Allergy and Immunology, Kaiser Permanente San Jose Medical Center, San Jose, USA
| | | | - Cynthia Gonzalez
- Neurosciences, University of California San Diego, San Diego, USA
| | - Lori Broderick
- Allergy and Immunology, University of California San Diego, San Diego, USA
| | - Taylor Doherty
- Allergy and Immunology, University of California San Diego, San Diego, USA
| | - Marc Riedl
- Allergy and Immunology, University of California San Diego, San Diego, USA
| | | |
Collapse
|
3
|
Oster C, Stolte B, Asan L, Pul R, Klebe S, Köhrmann M, Breuckmann K, Rischpler C, Deuschl C, Dolff S, Kleinschnitz C, Hagenacker T. Brainstem Infarction in Immunodeficiency Identified as Adenosine Deaminase 2 Deficiency: Case Report. J Clin Immunol 2023; 43:1597-1602. [PMID: 37306896 PMCID: PMC10258773 DOI: 10.1007/s10875-023-01526-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023]
Abstract
PURPOSE We present the case of a 24-year-old male with CNS granulomatosis due to an immunodeficiency syndrome which was identified as deficiency of adenosine deaminase 2 (DADA2) as a cause of brainstem infarction. METHODS Case report and detailed description of the clinical course of diagnosis and treatment. CASE The patient's medical history consisted of an unknown immunodeficiency syndrome. Based on former findings, common variable immunodeficiency (CVID) was diagnosed. The patient suffered from three consecutive brainstem strokes of unknown etiology within 3 years. An MRI scan detected gadolinium-enhancing, granulomatous-suspect lesions in the interpeduncular cistern, temporal lobe, and tegmentum. Laboratory analysis was compatible with CVID, with leukopenia and immunoglobulin deficiency. Because granulomatous CNS inflammation was suspected, the patient received methylprednisolone immunosuppressive therapy, which led to partially regressive MRI lesions. However, in contrast to imaging, the patient showed a progressive cerebellar syndrome, indicating plasma exchange therapy and immunoglobulin treatment, which led to rapid symptom amelioration. After a relapse and a further stroke, expanded analysis confirmed DADA2 (and not CVID) as the inflammatory cause for recurrent stroke. After starting the therapy with immunoglobulins and adalimumab, no further strokes occurred. CONCLUSION We present the case of a young adult with diagnosis of DADA2 as a cause for recurrent strokes due to vasculitis. This stroke etiology is rare but should be considered as a cause of recurrent stroke of unknown origin in young patients to avoid a disabling disease course by disease-specific treatment options.
Collapse
Affiliation(s)
- Christoph Oster
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Benjamin Stolte
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Livia Asan
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Refik Pul
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stephan Klebe
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Köhrmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Katharina Breuckmann
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christoph Rischpler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Cornelius Deuschl
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sebastian Dolff
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tim Hagenacker
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
4
|
Maccora I, Maniscalco V, Campani S, Carrera S, Abbati G, Marrani E, Mastrolia MV, Simonini G. A wide spectrum of phenotype of deficiency of deaminase 2 (DADA2): a systematic literature review. Orphanet J Rare Dis 2023; 18:117. [PMID: 37179309 PMCID: PMC10183141 DOI: 10.1186/s13023-023-02721-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
INTRODUCTION Deficiency of adenosine deaminase 2 (DADA2) is a rare monogenic autoinflammatory disease, whose clinical phenotype was expanded since the first cases, originally described as mimicker of polyarteritis nodosa, with immunodeficiency and early-onset stroke. METHODS A systematic review according to PRISMA approach, including all articles published before the 31st of August 2021 in Pubmed and EMBASE database was performed. RESULTS The search identified 90 publications describing 378 unique patients (55.8% male). To date 95unique mutations have been reported. The mean age at disease onset was 92.15 months (range 0-720 months), 32 (8.5%) showed an onset of the first signs/symptoms after 18 years old and 96 (25.4%) after 10 years old. The most frequent clinical characteristics described were cutaneous (67.9%), haematological manifestations (56.3%), recurrent fever (51.3%), neurological as stroke and polyneuropathy (51%), immunological abnormalities (42.3%), arthralgia/arthritis (35.4%), splenomegaly (30.6%), abdominal involvement (29.8%), hepatomegaly (23.5%), recurrent infections (18.5%), myalgia (17.9%), kidney involvement (17.7%) etc. Patients with skin manifestations were older than the others (101.1 months SD ± 116.5, vs. 75.3 SD ± 88.2, p 0.041), while those with a haematological involvement (64.1 months SD ± 75.6 vs. 133.1 SD ± 133.1, p < 0.001) and immunological involvement (73.03 months SD ± 96.9 vs. 103.2 SD ± 112.9, p 0.05) are younger than the others. We observed different correlations among the different clinical manifestations. The use of anti-TNFα and hematopoietic cell stems transplantation (HCST) has improved the current history of the disease. CONCLUSION Due to this highly variable phenotype and age of presentation, patients with DADA2 may present to several type of specialists. Given the important morbidity and mortality, early diagnosis and treatment are mandatory.
Collapse
Affiliation(s)
- Ilaria Maccora
- Rheumatology Unit, ERN ReConnet Center, Meyer Children's Hospital IRCCS, Florence, Italy.
- NeuroFARBA Department, University of Florence, Florence, Italy.
| | | | - Silvia Campani
- School of Health Science, University of Florence, Florence, Italy
| | - Simona Carrera
- School of Health Science, University of Florence, Florence, Italy
| | - Giulia Abbati
- School of Health Science, University of Florence, Florence, Italy
| | - Edoardo Marrani
- Rheumatology Unit, ERN ReConnet Center, Meyer Children's Hospital IRCCS, Florence, Italy
| | | | - Gabriele Simonini
- Rheumatology Unit, ERN ReConnet Center, Meyer Children's Hospital IRCCS, Florence, Italy
- NeuroFARBA Department, University of Florence, Florence, Italy
| |
Collapse
|
5
|
Fevang B. Treatment of inflammatory complications in common variable immunodeficiency (CVID): current concepts and future perspectives. Expert Rev Clin Immunol 2023; 19:627-638. [PMID: 36996348 DOI: 10.1080/1744666x.2023.2198208] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
INTRODUCTION Patients with Common variable immunodeficiency (CVID) have a high frequency of inflammatory complications like autoimmune cytopenias, interstitial lung disease and enteropathy. These patients have poor prognosis and effective, timely and safe treatment of inflammatory complications in CVID are essential, but guidelines and consensus on therapy are often lacking. AREAS COVERED This review will focus on current medical treatment of inflammatory complications in CVID and point out some future perspectives based on literature indexed in PubMed. There are a number of good observational studies and case reports on treatment of specific complications but randomized controlled trials are scarce. EXPERT OPINION In clinical practice, the most urgent issues that need to be addressed are the preferred treatment of GLILD, enteropathy and liver disease. Treating the underlying immune dysregulation and immune exhaustion in CVID is an alternative approach that potentially could alleviate these and other organ-specific inflammatory complications. Therapies of potential interest and wider use in CVID include mTOR-inhibitors like sirolimus, JAK-inhibitors like tofacitinib, the monoclonal IL-12/23 antibody ustekinumab, the anti-BAFF antibody belimumab and abatacept. For all inflammatory complications, there is a need for prospective therapeutic trials, preferably randomized controlled trials, and multi-center collaborations with larger cohorts of patients will be essential.
Collapse
Affiliation(s)
- Børre Fevang
- Centre for Rare Disorders, Oslo University Hospital, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Research Institute for Internal Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Common variable immunodeficiency and its inflammatory neurological manifestations: a case report and literature review. Mult Scler Relat Disord 2022; 67:104086. [DOI: 10.1016/j.msard.2022.104086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/26/2022] [Accepted: 07/31/2022] [Indexed: 11/19/2022]
|
7
|
Valencia-Sanchez C, Flanagan EP. Uncommon inflammatory/immune-related myelopathies. J Neuroimmunol 2021; 361:577750. [PMID: 34715593 DOI: 10.1016/j.jneuroim.2021.577750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/16/2021] [Accepted: 10/10/2021] [Indexed: 01/03/2023]
Abstract
The differential diagnosis for immune-mediated myelopathies is broad. Although clinical manifestations overlap, certain presentations are suggestive of a particular myelopathy etiology. Spine MRI lesion characteristics including the length and location, and the pattern of gadolinium enhancement, help narrow the differential diagnosis and exclude an extrinsic compressive cause. The discovery of specific antibodies that serve as biomarkers of myelitis such as aquaporin-4-IgG and myelin-oligodendrocyte -glycoprotein-IgG (MOG-IgG), has improved our understanding of myelitis pathophysiology and facilitated diagnosis. In this review we will focus on the pathophysiology, clinical presentation, imaging findings and treatment and outcomes of uncommon immune-mediated myelopathies.
Collapse
|
8
|
Strunz PP, Fröhlich M, Gernert M, Schwaneck EC, Nagler LK, Kroiss A, Tony HP, Schmalzing M. Rituximab for the Treatment of Common Variable Immunodeficiency (CVID) with Pulmonary and Central Nervous System Involvement. Open Rheumatol J 2021. [DOI: 10.2174/1874312902115010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background:
Granulomatous and lymphocytic interstitial lung disease (GLILD) represents a typical form of pulmonary manifestation of CVID. Except for glucocorticoid- and immunoglobulin-administration, no standardized treatment recommendations exist.
Objective:
To investigate our CVID-patients with GLILD for the applied immunosuppressive regimen, with a focus on rituximab.
Methods:
A retrospective analysis of all CVID-patients for the manifestation and treatment of GLILD at a single German center was performed in this study. For the evaluation of treatment-response, CT-imaging and pulmonary function testing were used.
Results:
50 patients were identified for the diagnosis of a CVID. 12% (n = 6) have radiological and/or histological confirmed diagnosis of a GLILD. Three patients received rituximab in a dose of 2 x 1000mg, separated by 2 weeks repeatedly. All patients showed radiological response and stabilization or improvement of the pulmonary function. Rituximab was used in one patient over 13 years with repeated treatment-response. Furthermore, the synchronic central nervous system-involvement of a GLILD-patient also responded to rituximab-treatment. With sufficient immunoglobulin-replacement-therapy, the occurring infections were manageable without the necessity of intensive care treatment.
Conclusion:
Rituximab might be considered as an effective and relatively safe treatment for CVID-patients with GLILD.
Collapse
|