1
|
Agarwal R, Sehgal IS, Muthu V, Denning DW, Chakrabarti A, Soundappan K, Garg M, Rudramurthy SM, Dhooria S, Armstrong-James D, Asano K, Gangneux JP, Chotirmall SH, Salzer HJF, Chalmers JD, Godet C, Joest M, Page I, Nair P, Arjun P, Dhar R, Jat KR, Joe G, Krishnaswamy UM, Mathew JL, Maturu VN, Mohan A, Nath A, Patel D, Savio J, Saxena P, Soman R, Thangakunam B, Baxter CG, Bongomin F, Calhoun WJ, Cornely OA, Douglass JA, Kosmidis C, Meis JF, Moss R, Pasqualotto AC, Seidel D, Sprute R, Prasad KT, Aggarwal AN. Revised ISHAM-ABPA working group clinical practice guidelines for diagnosing, classifying and treating allergic bronchopulmonary aspergillosis/mycoses. Eur Respir J 2024; 63:2400061. [PMID: 38423624 PMCID: PMC10991853 DOI: 10.1183/13993003.00061-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND The International Society for Human and Animal Mycology (ISHAM) working group proposed recommendations for managing allergic bronchopulmonary aspergillosis (ABPA) a decade ago. There is a need to update these recommendations due to advances in diagnostics and therapeutics. METHODS An international expert group was convened to develop guidelines for managing ABPA (caused by Aspergillus spp.) and allergic bronchopulmonary mycosis (ABPM; caused by fungi other than Aspergillus spp.) in adults and children using a modified Delphi method (two online rounds and one in-person meeting). We defined consensus as ≥70% agreement or disagreement. The terms "recommend" and "suggest" are used when the consensus was ≥70% and <70%, respectively. RESULTS We recommend screening for A. fumigatus sensitisation using fungus-specific IgE in all newly diagnosed asthmatic adults at tertiary care but only difficult-to-treat asthmatic children. We recommend diagnosing ABPA in those with predisposing conditions or compatible clinico-radiological presentation, with a mandatory demonstration of fungal sensitisation and serum total IgE ≥500 IU·mL-1 and two of the following: fungal-specific IgG, peripheral blood eosinophilia or suggestive imaging. ABPM is considered in those with an ABPA-like presentation but normal A. fumigatus-IgE. Additionally, diagnosing ABPM requires repeated growth of the causative fungus from sputum. We do not routinely recommend treating asymptomatic ABPA patients. We recommend oral prednisolone or itraconazole monotherapy for treating acute ABPA (newly diagnosed or exacerbation), with prednisolone and itraconazole combination only for treating recurrent ABPA exacerbations. We have devised an objective multidimensional criterion to assess treatment response. CONCLUSION We have framed consensus guidelines for diagnosing, classifying and treating ABPA/M for patient care and research.
Collapse
Affiliation(s)
- Ritesh Agarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Inderpaul Singh Sehgal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Valliappan Muthu
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | - Kathirvel Soundappan
- Department of Community Medicine and School of Public Health, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Mandeep Garg
- Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sahajal Dhooria
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Darius Armstrong-James
- Faculty of Medicine, Department of Infectious Disease, Imperial College London, London, UK
| | - Koichiro Asano
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Jean-Pierre Gangneux
- Université Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Rennes, France
- CHU Rennes, Laboratoire de Parasitologie-Mycologie, ECMM Excellence Center in Medical Mycology, Rennes, France
- National Reference Center on Mycoses and Antifungals (CNRMA LA-Asp C), Rennes, France
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU) and Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Helmut J F Salzer
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine-Pneumology, Kepler University Hospital and Medical Faculty, Johannes Kepler University, Linz, Austria
| | | | - Cendrine Godet
- Université Paris Sorbonne, AP-HP, Hôpital Tenon, Service de Pneumologie et Oncologie Thoracique, Centre Constitutif Maladies Pulmonaires Rares Paris, Paris, France
| | | | - Iain Page
- NHS Lothian, Regional Infectious Diseases Unit, Western General Hospital, Edinburgh, UK
| | - Parameswaran Nair
- McMaster University, McGill University, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - P Arjun
- KIMS Hospital, Trivandrum, India
| | - Raja Dhar
- Department of Pulmonology, CK Birla Hospitals, Kolkata, India
| | - Kana Ram Jat
- Division of Pediatric Pulmonology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | | | | | - Joseph L Mathew
- Pediatric Pulmonology Division, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Anant Mohan
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Alok Nath
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute, Lucknow, India
| | - Dharmesh Patel
- City Clinic and Bhailal Amin General Hospital, Vadodara, India
| | - Jayanthi Savio
- Department of Microbiology, St John's Medical College and Hospital, Bengaluru, India
| | - Puneet Saxena
- Pulmonary and Critical Care Medicine, Army Hospital (R&R), New Delhi, India
| | - Rajeev Soman
- Department of Infectious Diseases, Jupiter Hospital, Pune, India
| | | | - Caroline G Baxter
- Department of Respiratory Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Felix Bongomin
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Gulu University, Gulu, Uganda
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - William J Calhoun
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Oliver A Cornely
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
| | - Jo A Douglass
- University of Melbourne, Royal Melbourne Hospital, Parkville, Australia
| | - Chris Kosmidis
- Division of Evolution, Infection and Genomics, University of Manchester, Manchester University NHS Foundation Trust, Manchester, UK
| | - Jacques F Meis
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
- Center of Expertise in Mycology Radboudumc/CWZ Nijmegen, Nijmegen, The Netherlands
| | - Richard Moss
- Center of Excellence in Pulmonary Biology, Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Alessandro C Pasqualotto
- Molecular Biology Laboratory, Santa Casa de Misericordia de Porto Alegre, Porto Alegre, Brazil
- Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Danila Seidel
- Department of Internal Medicine, University Hospital, Cologne, Germany
| | - Rosanne Sprute
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
| | - Kuruswamy Thurai Prasad
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashutosh N Aggarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
2
|
Burgel PR, Southern KW, Addy C, Battezzati A, Berry C, Bouchara JP, Brokaar E, Brown W, Azevedo P, Durieu I, Ekkelenkamp M, Finlayson F, Forton J, Gardecki J, Hodkova P, Hong G, Lowdon J, Madge S, Martin C, McKone E, Munck A, Ooi CY, Perrem L, Piper A, Prayle A, Ratjen F, Rosenfeld M, Sanders DB, Schwarz C, Taccetti G, Wainwright C, West NE, Wilschanski M, Bevan A, Castellani C, Drevinek P, Gartner S, Gramegna A, Lammertyn E, Landau EEC, Plant BJ, Smyth AR, van Koningsbruggen-Rietschel S, Middleton PG. Standards for the care of people with cystic fibrosis (CF); recognising and addressing CF health issues. J Cyst Fibros 2024; 23:187-202. [PMID: 38233247 DOI: 10.1016/j.jcf.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
This is the third in a series of four papers updating the European Cystic Fibrosis Society (ECFS) standards for the care of people with CF. This paper focuses on recognising and addressing CF health issues. The guidance was produced with wide stakeholder engagement, including people from the CF community, using an evidence-based framework. Authors contributed sections, and summary statements which were reviewed by a Delphi consultation. Monitoring and treating airway infection, inflammation and pulmonary exacerbations remains important, despite the widespread availability of CFTR modulators and their accompanying health improvements. Extrapulmonary CF-specific health issues persist, such as diabetes, liver disease, bone disease, stones and other renal issues, and intestinal obstruction. These health issues require multidisciplinary care with input from the relevant specialists. Cancer is more common in people with CF compared to the general population, and requires regular screening. The CF life journey requires mental and emotional adaptation to psychosocial and physical challenges, with support from the CF team and the CF psychologist. This is particularly important when life gets challenging, with disease progression requiring increased treatments, breathing support and potentially transplantation. Planning for end of life remains a necessary aspect of care and should be discussed openly, honestly, with sensitivity and compassion for the person with CF and their family. CF teams should proactively recognise and address CF-specific health issues, and support mental and emotional wellbeing while accompanying people with CF and their families on their life journey.
Collapse
Affiliation(s)
- Pierre-Régis Burgel
- Respiratory Medicine and Cystic Fibrosis National Reference Center, Cochin Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), Institut Cochin, Inserm U1016, Université Paris-Cité, Paris, France
| | - Kevin W Southern
- Department of Women's and Children's Health, Institute in the Park, Alder Hey Children's Hospital, University of Liverpool, Eaton Road, Liverpool L12 2AP, UK.
| | - Charlotte Addy
- All Wales Adult Cystic Fibrosis Centre, University Hospital Llandough, Cardiff and Vale University Health Board, Cardiff, UK
| | - Alberto Battezzati
- Clinical Nutrition Unit, Department of Endocrine and Metabolic Medicine, IRCCS Istituto Auxologico Italiano, and ICANS-DIS, Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Claire Berry
- Department of Nutrition and Dietetics, Alder Hey Children's NHS Trust, Liverpool, UK
| | - Jean-Philippe Bouchara
- University of Brest, Fungal Respiratory Infections Research Unit, SFR ICAT, University of Angers, Angers, France
| | - Edwin Brokaar
- Department of Pharmacy, Haga Teaching Hospital, The Hague, the Netherlands
| | - Whitney Brown
- Cystic Fibrosis Foundation, Inova Fairfax Hospital, Bethesda, Maryland, USA, Falls Church, VA, USA
| | - Pilar Azevedo
- Cystic Fibrosis Reference Centre-Centro, Hospitalar Universitário Lisboa Norte, Portugal
| | - Isabelle Durieu
- Cystic Fibrosis Reference Center (Constitutif), Service de médecine interne et de pathologie vasculaire, Hospices Civils de Lyon, Hôpital Lyon Sud, RESearch on HealthcAre PErformance (RESHAPE), INSERM U1290, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, 69373 Lyon Cedex 08, France; ERN-Lung Cystic Fibrosis Network, Frankfurt, Germany
| | - Miquel Ekkelenkamp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Felicity Finlayson
- Department of Respiratory Medicine, The Alfred Hospital, Melbourne, Australia
| | | | - Johanna Gardecki
- CF Centre at Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pavla Hodkova
- CF Center at University Hospital Motol, Prague, Czech Republic
| | - Gina Hong
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jacqueline Lowdon
- Clinical Specialist Paediatric Cystic Fibrosis Dietitian, Leeds Children's Hospital, UK
| | - Su Madge
- Royal Brompton Hospital, Part of Guys and StThomas's Hospital, London, UK
| | - Clémence Martin
- Institut Cochin, Inserm U1016, Université Paris-Cité and National Reference Center for Cystic Fibrosis, Hôpital Cochin AP-HP, ERN-Lung CF Network, Paris 75014, France
| | - Edward McKone
- St.Vincent's University Hospital and University College Dublin School of Medicine, Dublin, Ireland
| | - Anne Munck
- Hospital Necker Enfants-Malades, AP-HP, CF Centre, Université Paris Descartes, Paris, France
| | - Chee Y Ooi
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, Faculty of Medicine & Health, Department of Gastroenterology, Sydney Children's Hospital, University of New South Wales, Sydney, NSW, Australia
| | - Lucy Perrem
- Department of Respiratory Medicine, Children's Health Ireland, Dublin, Ireland
| | - Amanda Piper
- Central Clinical School, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Andrew Prayle
- Child Health, Lifespan and Population Health & Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Felix Ratjen
- Division of Respiratory Medicine, Department of Pediatrics and Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Margaret Rosenfeld
- Department of Pediatrics, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, WA, USA
| | - Don B Sanders
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carsten Schwarz
- Division Cystic Fibrosis, CF Center, Clinic Westbrandenburg, HMU-Health and Medical University, Potsdam, Germany
| | - Giovanni Taccetti
- Meyer Children's Hospital IRCCS, Cystic Fibrosis Regional Reference Centre, Italy
| | | | - Natalie E West
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Wilschanski
- Pediatric Gastroenterology Unit, CF Center, Hadassah Medical Center, Jerusalem, Israel
| | - Amanda Bevan
- University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Carlo Castellani
- IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, Genova 16147, Italy
| | - Pavel Drevinek
- Department of Medical Microbiology, Second Faculty of Medicine, Motol University Hospital, Charles University, Prague, Czech Republic
| | - Silvia Gartner
- Cystic Fibrosis Unit and Pediatric Pulmonology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Andrea Gramegna
- Department of Pathophysiology and Transplantation, Respiratory Unit and Adult Cystic Fibrosis Center, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Elise Lammertyn
- Cystic Fibrosis Europe, Brussels, Belgium and the Belgian CF Association, Brussels, Belgium
| | - Eddie Edwina C Landau
- The Graub CF Center, Pulmonary Institute, Schneider Children's Medical Center, Petah Tikva, Israel
| | - Barry J Plant
- Cork Centre for Cystic Fibrosis (3CF), Cork University Hospital, University College Cork, Ireland
| | - Alan R Smyth
- School of Medicine, Dentistry and Biomedical Sciences, Belfast and NIHR Nottingham Biomedical Research Centre, Queens University Belfast, Nottingham, UK
| | | | - Peter G Middleton
- Westmead Clinical School, Department Respiratory & Sleep Medicine, Westmead Hospital, University of Sydney and CITRICA, Westmead, Australia
| |
Collapse
|
3
|
Schwarz C, Eschenhagen PN, Mainz JG, Schmidergall T, Schuette H, Romanowska E. Pulmonary Aspergillosis in People with Cystic Fibrosis. Semin Respir Crit Care Med 2024; 45:128-140. [PMID: 38286138 DOI: 10.1055/s-0043-1777267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
In the last decade, fungal respiratory diseases have been increasingly investigated for their impact on the clinical course of people with cystic fibrosis (CF), with a particular focus on infections caused by Aspergillus spp. The most common organisms from this genus detected from respiratory cultures are Aspergillus fumigatus and Aspergillus terreus, followed by Aspergillus flavus, Aspergillus niger, and Aspergillus nidulans. These species have been identified to be both chronic colonizers and sources of active infection and may negatively impact lung function in people with CF. This review article discusses definitions of aspergillosis, challenges in clinical practice, and current literature available for laboratory findings, clinical diagnosis, and treatment options for pulmonary diseases caused by Aspergillus spp. in people with CF.
Collapse
Affiliation(s)
- C Schwarz
- HMU-Health and Medical University, Potsdam, Germany
- Division Cystic Fibrosis, Clinic Westbrandenburg, Potsdam, Germany
| | - P N Eschenhagen
- HMU-Health and Medical University, Potsdam, Germany
- Division Cystic Fibrosis, Clinic Westbrandenburg, Potsdam, Germany
| | - J G Mainz
- Department of Paediatric Pneumology, Allergology, Cystic Fibrosis Center, Klinikum Westbrandenburg, Brandenburg a. d. Havel, Germany
- University Hospital of the Brandenburg Medical School, Brandenburg a. d. Havel, Germany
| | - T Schmidergall
- HMU-Health and Medical University, Potsdam, Germany
- Division Cystic Fibrosis, Clinic Westbrandenburg, Potsdam, Germany
| | - H Schuette
- Pneumology and Respiratory Medicine, Ernst von Bergmann Klinikum, Potsdam, Germany
| | - E Romanowska
- HMU-Health and Medical University, Potsdam, Germany
- Division Cystic Fibrosis, Clinic Westbrandenburg, Potsdam, Germany
| |
Collapse
|
4
|
Bourgoin P, Busnel JM. Promises and Remaining Challenges for Further Integration of Basophil Activation Test in Allergy-Related Research and Clinical Practice. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:3000-3007. [PMID: 37634807 DOI: 10.1016/j.jaip.2023.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023]
Abstract
More than 20 years after having been initially proposed, the relevance and usefulness of basophil activation test (BAT) for the field of allergy research and testing were demonstrated on many occasions. Leveraging the fully open format of a flexible, whole blood-based functional assay, BAT has been shown to be equally important for fundamental research, clinical research, and diagnosis. Regardless of whether the focus of a study is on the characterization of the allergenic moiety, on the patient side, or on the study of the fundamental processes involved in the allergic disease or its treatment, BAT enables the gathering of very important insights. In spite of this, its full capabilities have yet to be leveraged. Various bottlenecks, including but not limited to assay logistics, robustness, flow cytometry access, and/or expertise, have indeed been limiting its development beyond experts and long-term users. Now, various initiatives, aiming at resolving these bottlenecks, have been launched. If successful, a broader use of BAT could then be contemplated. In such a situation, its more thorough integration in clinical practice has the potential to significantly change the allergic patient's journey.
Collapse
Affiliation(s)
- Pénélope Bourgoin
- Global Research Organization, Beckman Coulter Life Sciences, Marseille, France
| | - Jean-Marc Busnel
- Global Research Organization, Beckman Coulter Life Sciences, Marseille, France.
| |
Collapse
|
5
|
Abstract
In cystic fibrosis, a new era has started with the approval and use of highly effective cystic fibrosis transport regulator (CFTR) modulator therapy. As pulmonary function is increasing and exacerbation rate significantly decreases, the current meaning of fungal pulmonary diseases is questioned. During the past couple of decades, several studies have been conducted regarding fungal colonization and infection of the airways in people with cystic fibrosis. Although Aspergillus fumigatus for filamentous fungi and Candida albicans for yeasts remain by far the most common fungal species in patients with cystic fibrosis, the pattern of fungal species associated with cystic fibrosis has considerably diversified recently. Fungi such as Scedosporium apiospermum or Exophiala dermatitidis are recognized as pathogenic in cystic fibrosis and therefore need attention in clinical settings. In this article, current definitions are stated. Important diagnostic steps are described, and their usefulness discussed. Furthermore, clinical treatment strategies and recommendations are named and evaluated. In cystic fibrosis, fungal entities can be divided into different subgroups. Besides colonization, allergic bronchopulmonary aspergillosis, bronchitis, sensitization, pneumonia, and aspergilloma can occur as a fungal disease entity. For allergic bronchopulmonary aspergillosis, bronchitis, pneumonia, and aspergilloma, clear indications for therapy exist but this is not the case for sensitization or colonization. Different pulmonary fungal disease entities in people with cystic fibrosis will continue to occur also in an era of highly effective CFTR modulator therapy. Whether the percentage will decrease or not will be the task of future evaluations in studies and registry analysis. Using the established definition for different categories of fungal diseases is recommended and should be taken into account if patients are deteriorating without responding to antibiotic treatment. Drug-drug interactions, in particular when using azoles, should be recognized and therapies need to be adjusted accordingly.
Collapse
Affiliation(s)
- Carsten Schwarz
- Department of Education and Research, Health and Medical University-Health and Medical University Potsdam, Potsdam, Germany.,Division of Cystic Fibrosis, Cystic Fibrosis Center West Brandenburg, Postdam, Germany
| |
Collapse
|
6
|
Of Mycelium and Men: Inherent Human Susceptibility to Fungal Diseases. Pathogens 2023; 12:pathogens12030456. [PMID: 36986378 PMCID: PMC10058615 DOI: 10.3390/pathogens12030456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
In medical mycology, the main context of disease is iatrogenic-based disease. However, historically, and occasionally, even today, fungal diseases affect humans with no obvious risk factors, sometimes in a spectacular fashion. The field of “inborn errors of immunity” (IEI) has deduced at least some of these previously enigmatic cases; accordingly, the discovery of single-gene disorders with penetrant clinical effects and their immunologic dissection have provided a framework with which to understand some of the key pathways mediating human susceptibility to mycoses. By extension, they have also enabled the identification of naturally occurring auto-antibodies to cytokines that phenocopy such susceptibility. This review provides a comprehensive update of IEI and autoantibodies that inherently predispose humans to various fungal diseases.
Collapse
|
7
|
Steels S, Proesmans M, Bossuyt X, Dupont L, Frans G. Laboratory biomarkers in the diagnosis and follow-up of treatment of allergic bronchopulmonary aspergillosis in cystic fibrosis. Crit Rev Clin Lab Sci 2023; 60:1-24. [PMID: 35968577 DOI: 10.1080/10408363.2022.2101612] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Allergic bronchopulmonary aspergillosis (ABPA), a severe inflammatory respiratory disease, is caused by a hypersensitivity reaction to the colonization of the airways with Aspergillus fumigatus. It is most often described in patients with asthma or cystic fibrosis. The diagnosis of ABPA is based on a combination of clinical, radiological, and immunological findings that have been included in different diagnostic criteria over the years. In this paper, we review the biomarkers included in these diagnostic criteria and novel research biomarkers that may be used in the diagnosis and treatment follow-up of ABPA in cystic fibrosis.
Collapse
Affiliation(s)
- Sophie Steels
- Department of Laboratory Medicine, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Marijke Proesmans
- Department of Pediatrics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Xavier Bossuyt
- Department of Laboratory Medicine, University Hospitals Leuven, KU Leuven, Leuven, Belgium.,Clinical and Diagnostic Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Lieven Dupont
- Department of Respiratory Medicine, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Glynis Frans
- Department of Laboratory Medicine, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Hong G. Progress and challenges in fungal lung disease in cystic fibrosis. Curr Opin Pulm Med 2022; 28:584-590. [PMID: 36101907 PMCID: PMC9547960 DOI: 10.1097/mcp.0000000000000921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review is an overview of the recent progress made for the diagnosis and understanding of fungal lung disease in people with cystic fibrosis (CF), with a focus on Aspergillus fumigatus , the most common filamentous fungus in the CF airway. Currently, the longstanding question of the clinical significance of Aspergillus fumigatus and other fungi in CF respiratory cultures, in the absence of allergy, remains. Clinical criteria and biomarkers are needed to classify fungal lung disease and determine who may warrant therapy. RECENT FINDINGS Several retrospective and prospective studies have described the prevalence of A. fumigatus and other fungi in the CF lung and factors contributing to the changes in fungal epidemiology. Selective fungus culture testing for the detection of fungi in CF sputa has been well studied, yet a standardized fungus culture protocol has yet to be defined. Culture-independent molecular studies and other fungal diagnostic testing have been conducted in the CF population, leading to efforts to better understand the clinical role of these tests. Recent works have aimed to determine whether chronic A. fumigatus colonization is associated with lung disease progression measured by FEV 1 percentage predicted, structural lung disease, lung clearance index and respiratory quality-of-life. However, the existing knowledge gaps remain: definition of a fungal respiratory infection, the association between fungal infection and clinical outcomes, and indications for antifungal therapy. SUMMARY Significant progress has been made for the detection and diagnosis of fungal lung disease. Yet, the role and impact of A. fumigatus and other fungal infections on respiratory health in people with CF remains to be determined.
Collapse
Affiliation(s)
- Gina Hong
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Agarwal R, Muthu V, Sehgal IS, Dhooria S, Prasad KT, Aggarwal AN. Allergic Bronchopulmonary Aspergillosis. Clin Chest Med 2022; 43:99-125. [DOI: 10.1016/j.ccm.2021.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Mercatelli D, Formaggio F, Caprini M, Holding A, Giorgi F. Detection of subtype-specific breast cancer surface protein biomarkers via a novel transcriptomics approach. Biosci Rep 2021; 41:BSR20212218. [PMID: 34750607 PMCID: PMC8655506 DOI: 10.1042/bsr20212218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Cell-surface proteins have been widely used as diagnostic and prognostic markers in cancer research and as targets for the development of anticancer agents. So far, very few attempts have been made to characterize the surfaceome of patients with breast cancer, particularly in relation with the current molecular breast cancer (BRCA) classification. In this view, we developed a new computational method to infer cell-surface protein activities from transcriptomics data, termed 'SURFACER'. METHODS Gene expression data from GTEx were used to build a normal breast network model as input to infer differential cell-surface proteins activity in BRCA tissue samples retrieved from TCGA versus normal samples. Data were stratified according to the PAM50 transcriptional subtypes (Luminal A, Luminal B, HER2 and Basal), while unsupervised clustering techniques were applied to define BRCA subtypes according to cell-surface proteins activity. RESULTS Our approach led to the identification of 213 PAM50 subtypes-specific deregulated surface genes and the definition of five BRCA subtypes, whose prognostic value was assessed by survival analysis, identifying a cell-surface activity configuration at increased risk. The value of the SURFACER method in BRCA genotyping was tested by evaluating the performance of 11 different machine learning classification algorithms. CONCLUSIONS BRCA patients can be stratified into five surface activity-specific groups having the potential to identify subtype-specific actionable targets to design tailored targeted therapies or for diagnostic purposes. SURFACER-defined subtypes show also a prognostic value, identifying surface-activity profiles at higher risk.
Collapse
Affiliation(s)
- Daniele Mercatelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Francesco Formaggio
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Marco Caprini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Andrew Holding
- York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, U.K
| | - Federico M. Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
11
|
Hong G, Desai S, Moss RB, Eschenhagen P, Quon BS, Schwarz C. Clinician variability in the diagnosis and treatment of aspergillus fumigatus-related conditions in cystic fibrosis: An international survey. J Cyst Fibros 2021; 21:136-142. [PMID: 34332906 DOI: 10.1016/j.jcf.2021.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/07/2021] [Accepted: 07/14/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND The diagnosis and treatment of Aspergillus fumigatus (Af)-related conditions remain a challenge in cystic fibrosis (CF) due to overlapping features of disease and absence of clinical guidelines for Af-related conditions outside of ABPA. OBJECTIVE To investigate the differences of clinical practice in the diagnosis and management of Af-related conditions in CF. METHODS We conducted an international survey to CF clinicians to ascertain the screening, diagnostic, and treatment practices for Af-related conditions in CF. Respondents were grouped into geographical regions and regional comparisons using chi-square tests of independence or Fisher's tests were performed. RESULTS A total of 319 survey responses from 35 countries were analyzed. We observed differences in use and frequency of fungus culture, Aspergillus-specific IgE and IgG, skin prick testing, and pulmonary function testing as screening for Af-related conditions between the geographical regions. ABPA and Aspergillus bronchitis diagnostic criteria selection differed by region; significantly greater proportion of United States (US) and Canadian clinicians were unable to define Aspergillus bronchitis compared to Europe and other regions. Decision to treat ABPA was uniform across regions, but the consideration of Aspergillus bronchitis as a clinical disease warranting therapy differed between regions. The use of glucocorticoid and itraconazole was the first-line treatment of ABPA among clinicians; however, prednisone monotherapy was more common in US and Canada. CONCLUSIONS Significant variability in the diagnosis and management of Aspergillus-related conditions in CF was observed. Future studies are necessary to better harmonize the approach to Af-related disease in CF.
Collapse
Affiliation(s)
- Gina Hong
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Sameer Desai
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Richard B Moss
- Center of Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Patience Eschenhagen
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, CF Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bradley S Quon
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, CF Center, Charité-Universitätsmedizin Berlin, Berlin, Germany; Centre for Heart Lung Innovation, University of British Columbia and St. Paul's Hospital; Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Carsten Schwarz
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, CF Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
12
|
Pashley CH, Wardlaw AJ. Allergic fungal airways disease (AFAD): an under-recognised asthma endotype. Mycopathologia 2021; 186:609-622. [PMID: 34043134 PMCID: PMC8536613 DOI: 10.1007/s11046-021-00562-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022]
Abstract
The term allergic fungal airways disease has a liberal definition based on IgE sensitisation to thermotolerant fungi and evidence of fungal-related lung damage. It arose from a body of work looking into the role of fungi in asthma. Historically fungi were considered a rare complication of asthma, exemplified by allergic bronchopulmonary aspergillosis; however, there is a significant proportion of individuals with Aspergillus fumigatus sensitisation who do not meet these criteria, who are at high risk for the development of lung damage. The fungi that play a role in asthma can be divided into two groups; those that can grow at body temperature referred to as thermotolerant, which are capable of both infection and allergy, and those that cannot but can still act as allergens in IgE sensitised individuals. Sensitisation to thermotolerant filamentous fungi (Aspergillus and Penicillium), and not non-thermotolerant fungi (Alternaria and Cladosporium) is associated with lower lung function and radiological abnormalities (bronchiectasis, tree-in-bud, fleeting shadows, collapse/consolidation and fibrosis). For antifungals to play a role in treatment, the focus should be on fungi capable of growing in the airways thereby causing a persistent chronic allergenic stimulus and releasing tissue damaging proteases and other enzymes which may disrupt the airway epithelial barrier and cause mucosal damage and airway remodelling. All patients with IgE sensitisation to thermotolerant fungi in the context of asthma and other airway disease are at risk of progressive lung damage, and as such should be monitored closely.
Collapse
Affiliation(s)
- Catherine H Pashley
- Department of Respiratory Sciences, Institute for Lung Health, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | - Andrew J Wardlaw
- Department of Respiratory Sciences, Institute for Lung Health, University of Leicester, University Road, Leicester, LE1 7RH, UK
| |
Collapse
|
13
|
Wardlaw AJ, Rick EM, Pur Ozyigit L, Scadding A, Gaillard EA, Pashley CH. New Perspectives in the Diagnosis and Management of Allergic Fungal Airway Disease. J Asthma Allergy 2021; 14:557-573. [PMID: 34079294 PMCID: PMC8164695 DOI: 10.2147/jaa.s251709] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/04/2021] [Indexed: 12/23/2022] Open
Abstract
Allergy to airway-colonising, thermotolerant, filamentous fungi represents a distinct eosinophilic endotype of often severe lung disease. This endotype, which particularly affects adult asthma, but also complicates other airway diseases and sometimes occurs de novo, has a heterogeneous presentation ranging from severe eosinophilic asthma to lobar collapse. Its hallmark is lung damage, characterised by fixed airflow obstruction (FAO), bronchiectasis and lung fibrosis. It has a number of monikers including severe asthma with fungal sensitisation (SAFS) and allergic bronchopulmonary aspergillosis/mycosis (ABPA/M), but these exclusive terms constitute only sub-sets of the condition. In order to capture the full extent of the syndrome we prefer the inclusive term allergic fungal airway disease (AFAD), the criteria for which are IgE sensitisation to relevant fungi in association with airway disease. The primary fungus involved is Aspergillus fumigatus, but a number of other thermotolerant species from several genera have been implicated. The unifying mechanism involves germination of inhaled fungal spores in the lung in the context of IgE sensitisation, leading to a persistent and vigorous eosinophilic inflammatory response in association with release of fungal proteases. Most allergenic fungi, including Alternaria and Cladosporium species, are not thermotolerant and cannot germinate in the airways so only act as aeroallergens and do not cause AFAD. Studies of the airway mycobiome have shown that A. fumigatus colonises the normal as much as the asthmatic airway, suggesting it is the tendency to become IgE-sensitised that is the critical triggering factor for AFAD rather than colonisation per se. Treatment is aimed at preventing exacerbations with glucocorticoids and increasingly by the use of anti-T2 biological therapies. Anti-fungal therapy has a limited place in management, but is an effective treatment for fungal bronchitis which complicates AFAD in about 10% of cases.
Collapse
Affiliation(s)
- Andrew J Wardlaw
- Institute for Lung Health, Department of Respiratory Sciences, College of Life Sciences, University of Leicester, and Allergy and Respiratory Medicine Service, NIHR Biomedical Research Centre: Respiratory, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Eva-Maria Rick
- Institute for Lung Health, Department of Respiratory Sciences, College of Life Sciences, University of Leicester, and Allergy and Respiratory Medicine Service, NIHR Biomedical Research Centre: Respiratory, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Leyla Pur Ozyigit
- Allergy and Respiratory Services University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Alys Scadding
- Allergy and Respiratory Services University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Erol A Gaillard
- Institute for Lung Health, Department of Respiratory Sciences, College of Life Sciences, Department of Paediatrics, NIHR Biomedical Research Centre: Respiratory, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Catherine H Pashley
- Institute for Lung Health, Department of Respiratory Sciences, College of Life Sciences, University of Leicester, and Allergy and Respiratory Medicine Service, NIHR Biomedical Research Centre: Respiratory, University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
14
|
Wang S, Zhang J, Zhang C, Shao C. Clinical characteristics of allergic bronchopulmonary aspergillosis in patients with and without bronchiectasis. J Asthma 2021; 59:1162-1168. [PMID: 33730986 DOI: 10.1080/02770903.2021.1904979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Allergic bronchopulmonary aspergillosis (ABPA) is classified radiologically as serologic ABPA (ABPA-S) or ABPA with central bronchiectasis (ABPA-CB). This retrospective case series study aimed to describe and compare the clinical characteristics of both forms of ABPA. METHODS Patients with ABPA treated in the hospital between February 2011 and June 2019 were enrolled and were divided into ABPA-S and ABPA-CB groups based on whether their cases were complicated with central bronchiectasis. Demographic data, symptoms, laboratory values, comorbidities, and image findings were collected. ABPA-S patients were followed up retrospectively through medical records. RESULTS Ninety-three (93) patients were enrolled, including 74 ABPA-CB patients and 19 ABPA-S patients. The most common predisposing condition was asthma (36.6%), with a median course of 30 years (IQR 13-42.5) prior to ABPA diagnosis. Patients of 54.8% had been misdiagnosed, with ABPA-S more likely than ABPA-CB to have been misdiagnosed as asthma (p < 0.01). Obstructive ventilation dysfunction and mixed ventilation dysfunction were found in 21 patients (22.6%) and 16 patients (17.2%), respectively. Compared with ABPA-S, ABPA-CB had a higher median blood eosinophil count (880 vs. 700 cells/μl), serum IgE (2957 vs. 2616 IU/ml), and Aspergillus fumigatus specific-IgE (20.6 vs. 7.31 kUA/L), although these findings were not statistically significant. Three ABPA-S patients developed bronchiectasis during follow-up and experienced relapses more than twice. CONCLUSIONS Our findings suggested that the clinical characteristics between ABPA-CB and ABPA-S were mostly similar. ABPA-S had a relatively lower immunological activity level than ABPA-CB but was still immunologically active and could develop bronchiectasis.
Collapse
Affiliation(s)
- Sijiao Wang
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Zhang
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cuiping Zhang
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Changzhou Shao
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Pulmonary Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| |
Collapse
|