1
|
Malik P, Yadav M, Bhushan R. Design, Synthesis and Application of 1,4-disubstituted 1,2,3-triazole Based Chemosensors: A Promising Avenue. CHEM REC 2024:e202400195. [PMID: 39715732 DOI: 10.1002/tcr.202400195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/07/2024] [Indexed: 12/25/2024]
Abstract
The 1,2,3-triazole-based chemosensors, synthesized through Cu(I)-catalyzed azide-alkyne cycloaddition via 'click chemistry', offer a straightforward yet highly effective method for detecting metal cations and anions with remarkable accuracy, selectivity and sensitivity, making them invaluable across various fields such as chemistry, pharmacology, environmental science and biology. The selective recognition of these ions is crucial due to their significant roles in biological and physiological processes, where even slight concentration variations can have major consequences. The article reviews literature from 2017 to 2024, highlighting advancements in the synthesis of 1,2,3-triazole-based ligands and their application (along with sensing mechanism) for detection of various ions causing health and environmental hazards. The detection aspects have been discussed sequentially for the transition-, inner transition-, and the metals from the s or p block of the periodic table.
Collapse
Affiliation(s)
- Poonam Malik
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Mona Yadav
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Ravi Bhushan
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
2
|
Qamar Z, Aslam AA, Fatima F, Hassan SU, Nazir MS, Ali Z, Awad SA, Khan AA. Recent development towards the novel applications and future prospects for cellulose-metal organic framework hybrid materials: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63501-63523. [PMID: 39500790 DOI: 10.1007/s11356-024-35449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
The hybrid material created by combining cellulose and MOF is highly promising and possesses a wide range of useful properties. Cellulose-based metal-organic frameworks (CelloMOFs) combine the inherent biocompatibility and sustainability of cellulose with the tunable porosity and diverse metal coordination chemistry of MOFs. Cellulose-MOF hybrids have countless applications in various fields, such as energy storage, water treatment, air filtration, gas adsorption, catalysis, and biomedicine. They are particularly remarkable as adsorbents that can eliminate pollutants from wastewater, including metals, oils, dyes, antibiotics, and drugs, and act as catalysts for oxidation and reduction reactions. Furthermore, they are highly efficient air filters, able to remove carbon dioxide, particulate matter, and volatile organic compounds. When it comes to energy storage, these hybrids have demonstrated exceptional results. They are also highly versatile in the realm of biomedicine, with applications such as antibacterial and drug delivery. This article provides an in-depth look at the fabrication methods, advanced applications of cellulose-MOF hybrids, and existing and future challenges.
Collapse
Affiliation(s)
- Zeenat Qamar
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan
| | - Awais Ali Aslam
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan
- Chemistry Department, University of Education Lahore, Vehari Campus, Vehari, Punjab, Pakistan
| | - Farheen Fatima
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan
| | - Sadaf Ul Hassan
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan
| | - Muhammad Shahid Nazir
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan.
| | - Zulfiqar Ali
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan
| | - Sameer Ahmed Awad
- Department of Medical Laboratories Techniques, College of Health and Medical Technology, University of Al Maarif, Ramadi, 31001, Al-Anbar Governorate, Iraq
- Department of Chemistry, School of Science and Technology, University of New England, Armidale, 2351, NSW, Australia
| | - Aqeel Ahmad Khan
- Department of Chemical Engineering, Brunel University London, London, Uxbridge Middlesex, UB8 3PH, UK
| |
Collapse
|
3
|
El-Shahat M, Abdelhameed RM. Urea production via photocatalytic coupling of mixed gases (CO 2/NH 3) using Mo(MnO 4) 5 supported on Ce-BTC as nano-composite catalyst. Sci Rep 2024; 14:15608. [PMID: 38971874 PMCID: PMC11227513 DOI: 10.1038/s41598-024-65363-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/19/2024] [Indexed: 07/08/2024] Open
Abstract
Urea used in fertilization and feed supplement, as well as a starting material for the manufacture of plastics and drugs. Urea is most commonly produced by reacting carbon dioxide with ammonia at high temperature. Photocatalysis has gained attention as a sustainable pathway for performing urea. This work focus on designing very active photocatalysts based on cerium organic framework (Ce-BTC) doped with metal oxide nanoparticles (molybdenum permanganate, Mo(MnO4)5) for production of urea from coupling of ammonia with carbon dioxide. The prepared materials were characterized using different spectral analysis and the morphology was analysed using microscopic data. The effect of catalyst loading on the production rate of urea was investigated and the obtained results showed speed rate of urea production with high production yield at low temperature. The recyclability tests confirmed the sustainability of the prepared photocatlysts (Mo(MnO4)5@Ce-BTC) which supported the beneficial of the photocatalysis process in urea production.
Collapse
Affiliation(s)
- Mahmoud El-Shahat
- Photochemistry Department, Chemical Industries Research Institute, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt.
| | - Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt.
| |
Collapse
|
4
|
Mortada WI, Ghaith MM, Khedr NE, Ellethy MI, Mohsen AW, Shafik AL. Mesoporous magnetic biochar derived from common reed (Phragmites australis) for rapid and efficient removal of methylene blue from aqueous media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42330-42341. [PMID: 38866933 PMCID: PMC11219389 DOI: 10.1007/s11356-024-33860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
A novel mesoporous magnetic biochar (MBC) was prepared, using a randomly growing plant, i.e., common reed, as an exporter of carbon, and applied for removal of methylene blue (MB) from aqueous solutions. The prepared sorbent was characterized by nitrogen adsorption/desorption isotherm, saturation magnetization, pH of point of zero charges (pHPZC), Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The obtained MBC has a specific surface area of 94.2 m2 g-1 and a pore radius of 4.1 nm, a pore volume of 0.252 cm3 g-1, a saturation magnetization of 0.786 emu g-1, and a pHPZC of 6.2. Batch adsorption experiments were used to study the impact of the physicochemical factors involved in the adsorption process. The findings revealed that MB removal by MBC was achieved optimally at pH 8.0, sorbent dosage of 1.0 g L-1, and contact time of 30 min. At these conditions, the maximum adsorption was 353.4 mg g-1. Furthermore, the adsorption isotherm indicated that the Langmuir pattern matched well with the experimental data, compared to the Freindlich model. The ∆G was - 6.7, - 7.1, and - 7.5 kJ mol-1, at 298, 308, and 318 K, respectively, indicating a spontaneous process. The values of ∆H and ∆S were 5.71 kJ mol-1 and 41.6 J mol-1 K-1, respectively, suggesting endothermic and the interaction between MB and MBC is van der Waals type. The absorbent was regenerated and reused for four cycles after elution with 0.1 mol L-1 of HCl. This study concluded that the magnetic biochar generated from common reed has tremendous promise in the practical use of removing MB from wastewater.
Collapse
Affiliation(s)
| | - Mahmoud Mohsen Ghaith
- Petrochemical Program, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Nada Elsayed Khedr
- Petrochemical Program, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mostafa Ibrahim Ellethy
- Petrochemical Program, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Alaa Waleed Mohsen
- Petrochemical Program, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Amira Labib Shafik
- Petrochemical Program, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
Rehan M, Montaser AS, El-Shahat M, Abdelhameed RM. Decoration of viscose fibers with silver nanoparticle-based titanium-organic framework for use in environmental applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13185-13206. [PMID: 38240971 PMCID: PMC10881727 DOI: 10.1007/s11356-024-31858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/01/2024] [Indexed: 02/23/2024]
Abstract
To effectively remove pharmaceuticals, nitroaromatic compounds, and dyes from wastewater, an efficient multifunctional material was created based on silver nanoparticles (Ag) and MIL-125-NH2 (MOF) immobilized on viscose fibers (VF) as a support substrate. Firstly, silver nanoparticles (Ag) were immobilized on the surface of viscose fibers (VF) via in situ synthesis using trisodium citrate (TSC) as a reducing agent to create (VF-Ag). Then, VF and VF-Ag were decorated with the titanium metal-organic framework MIL-125-NH2 (MOF) to create VF-MOF and VF-Ag-MOF. The influence of VF-Ag, VF-MOF, and VF-Ag-MOF on the sonocatalytic or sonophotocatalytic degradation of sulfa drugs was investigated. The results show that VF-Ag-MOF showed excellent sonocatalytic and sonophotocatalytic activity towards the degradation of sulfa drugs compared to VF-Ag and VF-MOF. Furthermore, sonophotodegradation showed a dramatic enhancement in the efficiency of degradation of sulfa drugs compared to sonodegradation. The sonophotodegradation degradation percentage of sulfanilamide, sulfadiazine, and sulfamethazine drugs in the presence of VF-Ag-MOF was 65, 90, and 95 after 45 min of ultrasonic and visible light irradiation. The catalytic activity of VF-Ag, VF-MOF, and VF-Ag-MOF was evaluated through the conversion of p-nitrophenol (4-NP) to p-aminophenol (4-AP). The results demonstrate that VF-Ag-MOF had the highest catalytic activity, followed by VF-Ag and VF-MOF. The conversion percentage of 4-NP to 4-AP was 69%. The catalytic or photocatalytic effects of VF-Ag, VF-MOF, and VF-Ag-MOF on the elimination of methylene blue (MB) dye were investigated. The results demonstrate that VF-Ag-MOF showed high efficiency in removing the MB dye through the reduction (65%) or photodegradation (71%) after 60 min. VF-Ag-MOF composites structure-activity relationships represent that doping within silver NPs enhanced the photocatalytic activity of MIL-125-NH2, which could be explained as follows: (i) Due to the formation of a Schottky barrier at the junction between MIL-125-NH2 and Ag NPs, the photogenerated electrons in the conduction band of MIL-125-NH2 were supposed to be quickly transferred to the valence band of the Ag NPs, and subsequently, the electrons were transferred to the conduction band of Ag NPs. This considerable electron transferring process, which is reported as Z scheme heterojunction, can efficiently suppress the recombination of electron/hole pairs in VF-Ag-MIL-125-NH2 composites. (ii) Sufficient separation between the photogenerated charge carriers (holes and electrons) and avoiding their recombination enhanced the photocatalytic activity of composites.
Collapse
Affiliation(s)
- Mohamed Rehan
- Department of Pretreatment and Finishing of Cellulosic-Based Textiles, Textile Research and Technology Institute, National Research Centre, 33 Bohoth Street, Dokki, P.O. Box 12622, Giza, Egypt.
| | - Ahmed S Montaser
- Department of Pretreatment and Finishing of Cellulosic-Based Textiles, Textile Research and Technology Institute, National Research Centre, 33 Bohoth Street, Dokki, P.O. Box 12622, Giza, Egypt
| | - Mahmoud El-Shahat
- Photochemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt
| | - Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt
| |
Collapse
|
6
|
Ramu S, Kainthla I, Chandrappa L, Shivanna JM, Kumaran B, Balakrishna RG. Recent advances in metal organic frameworks-based magnetic nanomaterials for waste water treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:167-190. [PMID: 38044404 DOI: 10.1007/s11356-023-31162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/17/2023] [Indexed: 12/05/2023]
Abstract
Magnetic nanoparticle-incorporated metal organic frameworks (MOF) are potential composites for various applications such as catalysis, water treatment, drug delivery, gas storage, chemical sensing, and heavy metal ion removal. MOFs exhibits high porosity and flexibility enabling guest species like heavy metal ions to diffuse into bulk structure. Additionally, shape and size of the pores contribute to selectivity of the guest materials. Incorporation of magnetic materials allows easy collection of adsorbent materials from solution system making the process simple and cost-effective. In view of the above advantages in the present review article, we are discussing recent advances of different magnetic material-incorporated MOF (Mg-MOF) composite for application in photocatalytic degradation of dyes and toxic chemicals, adsorption of organic compounds, adsorption of heavy metal ions, and adsorption of dyes. The review initially discusses on properties of Mg-MOF, different synthesis techniques such as mechanochemical, sonochemical (ultrasound) synthesis, slow evaporation and diffusion methods, solvo(hydro)-thermal and iono-thermal method, microwave-assisted method, microemulsion method post-synthetic modification template strategies and followed by application in waste water treatment.
Collapse
Affiliation(s)
- Shwetharani Ramu
- Centre for Nano and Material Sciences, Jain (Deemed-to-Be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India
| | - Itika Kainthla
- School of Physics and Material Sciences, Shoolini University, Bajhol, Solan, Himachal Pradesh, 173229, India
| | - Lavanya Chandrappa
- Centre for Nano and Material Sciences, Jain (Deemed-to-Be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India
| | - Jyothi Mannekote Shivanna
- Department of Chemistry, AMC Engineering College, Bannerughatta Road, Bengaluru, Karnataka, 560083, India
| | - Brijesh Kumaran
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh, 208016, India
| | - R Geetha Balakrishna
- Centre for Nano and Material Sciences, Jain (Deemed-to-Be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India.
| |
Collapse
|
7
|
Abdelhameed RM, El-Shahat M, Abdel-Gawad H, Hegazi B. Efficient phenolic compounds adsorption by immobilization of copper-based metal-organic framework anchored polyacrylonitrile/chitosan beads. Int J Biol Macromol 2023; 240:124498. [PMID: 37076079 DOI: 10.1016/j.ijbiomac.2023.124498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
The application of newly formulated beads from copper-benzenetricarboxylate (Cu-BTC), polyacrylonitrile (PAN), and chitosan (C), Cu-BTC@C-PAN, C-PAN, and PAN, for the removal of phenolic chemicals from water, is described in the current paper. Phenolic compounds (4-chlorophenol (4-CP) and 4-nitrophenol (4-NP)) were adsorbed using beads and the adsorption optimization looked at the effects of several experimental factors. The Langmuir and Freundlich models were used to explain the adsorption isotherms in the system. A pseudo-first and second-order equation is performed for describing the kinetics of adsorption. The obtained data fit (R2 = 0.999) supports the suitability of the Langmuir model and pseudo-second-order kinetic equation for the adsorption mechanism. Cu-BTC@C-PAN, C-PAN, and PAN beads' morphology and structure were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transforms infrared spectroscopy (FT-IR). According to the findings, Cu-BTC@C-PAN has very high adsorption capacities of 277.02, and 324.74 mg g-1, for 4-CP and 4-NP, respectively. The Cu-BTC@C-PAN beads showed 2.55 times higher adsorption capacity than PAN in the case of 4-NP, but in the case of 4-CP, it was higher by 2.64 times.
Collapse
Affiliation(s)
- Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt.
| | - Mahmoud El-Shahat
- Photochemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt.
| | - Hassan Abdel-Gawad
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt
| | - Bahira Hegazi
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
8
|
Kitchamsetti N, Chakra CS, De Barros ALF, Kim D. Development of MOF Based Recyclable Photocatalyst for the Removal of Different Organic Dye Pollutants. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:336. [PMID: 36678089 PMCID: PMC9861624 DOI: 10.3390/nano13020336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The preparation of metal organic frameworks (MOFs) has come to the forefront in recent years because of their outstanding physical and chemical properties. Many MOFs such as Zn, Co, Ni, Fe, and Ag, etc., have been successfully synthesized. In this work, we followed the solvothermal assisted route to synthesize Ag-MOF (abbreviated as AMOF) nanosheets and then applied them as a photocatalyst to remove different organic pollutants, namely methyl orange (MO), crystal violet (CV), and methylene blue (MB). Chemical composition, optical properties, morphology, and microstructural analysis were analyzed using XPS, UV-visible spectrophotometer, FESEM, TEM, and EDS, respectively. The structural properties of AMOF nanosheets were studied by X-ray diffraction (XRD). Nitrogen adsorption and desorption isotherm analysis were utilized to evaluate the specific surface area and pore size of the AMOF nanosheets. Further, AMOF nanosheets showed notable photocatalytic performance for various dye pollutants degradation. The results confirmed 74.5, 85.5, and 90.7% of MO, CV, and MB dye pollutants removal after 120 min of irradiation with the rate constants (k) of 0.0123, 0.0153, and 0.0158 min-1, respectively. The effect of superoxide radicals (O2-) and photogenerated holes (h+) on the organic dye pollutants removal was investigated using radical scavenger trapping studies. Moreover, the stability study also confirmed the recyclability of the photocatalyst. Therefore, the findings of this research present a realizable method to grow AMOF photocatalyst for successful degradation of various dye pollutants.
Collapse
Affiliation(s)
- Narasimharao Kitchamsetti
- Department of Electronic Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea
- Center for Nano Science and Technology, Institute of Science and Technology, JNTU Hyderabad, Hyderabad 500090, India
| | - Chidurala Shilpa Chakra
- Center for Nano Science and Technology, Institute of Science and Technology, JNTU Hyderabad, Hyderabad 500090, India
| | - Ana Lucia Ferreira De Barros
- Laboratory of Experimental and Applied Physics, Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Av. Maracanã Campus 229, Rio de Janeiro 20271-110, Brazil
| | - Daewon Kim
- Department of Electronic Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea
| |
Collapse
|
9
|
Wu SX, Gao ZC, Li LY, Gao WJ, Huang YQ, Yang J. High-efficient visible light photocatalytic degradation by nano-Ag-doped NH2-MIL-125(Ti) composites. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Figueira F, Tomé JPC, Paz FAA. Porphyrin NanoMetal-Organic Frameworks as Cancer Theranostic Agents. Molecules 2022; 27:3111. [PMID: 35630585 PMCID: PMC9147750 DOI: 10.3390/molecules27103111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 02/06/2023] Open
Abstract
Metal-Organic Frameworks (MOFs) are hybrid multifunctional platforms that have found remarkable applications in cancer treatment and diagnostics. Independently, these materials can be employed in cancer treatment as intelligent drug carriers in chemotherapy, photothermal therapy, and photodynamic therapy; conversely, MOFs can further be used as diagnostic tools in fluorescence imaging, magnetic resonance imaging, computed tomography imaging, and photoacoustic imaging. One essential property of these materials is their great ability to fine-tune their composition toward a specific application by way of a judicious choice of the starting building materials (metal nodes and organic ligands). Moreover, many advancements were made concerning the preparation of these materials, including the ability to downsize the crystallites yielding nanoporous porphyrin MOFs (NMOFs) which are of great interest for clinical treatment and diagnostic theranostic tools. The usage of porphyrins as ligands allows a high degree of multifunctionality. Historically these molecules are well known for their reactive oxygen species formation and strong fluorescence characteristics, and both have proved helpful in cancer treatment and diagnostic tools. The anticipation that porphyrins in MOFs could prompt the resulting materials to multifunctional theranostic platforms is a reality nowadays with a series of remarkable and ground-breaking reports available in the literature. This is particularly remarkable in the last five years, when the scientific community witnessed rapid development in porphyrin MOFs theranostic agents through the development of imaging technologies and treatment strategies for cancer. This manuscript reviews the most relevant recent results and achievements in this particular area of interest in MOF chemistry and application.
Collapse
Affiliation(s)
- Flávio Figueira
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - João P. C. Tomé
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, n° 1, 1049-001 Lisboa, Portugal;
| | - Filipe A. Almeida Paz
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|