1
|
Sacchini S. Neurodegenerative Diseases: What Can Be Learned from Toothed Whales? Neurosci Bull 2025; 41:326-338. [PMID: 39485652 PMCID: PMC11794736 DOI: 10.1007/s12264-024-01310-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 09/13/2024] [Indexed: 11/03/2024] Open
Abstract
Neurodegeneration involves a wide range of neuropathological alterations affecting the integrity, physiology, and architecture of neural cells. Many studies have demonstrated neurodegeneration in different animals. In the case of Alzheimer's disease (AD), spontaneous animal models should display two neurohistopathological hallmarks: the deposition of β-amyloid and the arrangement of neurofibrillary tangles. However, no natural animal models that fulfill these conditions have been reported and most research into AD has been performed using transgenic rodents. Recent studies have also demonstrated that toothed whales - homeothermic, long-lived, top predatory marine mammals - show neuropathological signs of AD-like pathology. The neuropathological hallmarks in these cetaceans could help to better understand their endangered health as well as neurodegenerative diseases in humans. This systematic review analyzes all the literature published to date on this trending topic and the proposed causes for neurodegeneration in these iconic marine mammals are approached in the context of One Health/Planetary Health and translational medicine.
Collapse
Affiliation(s)
- Simona Sacchini
- Department of Morphology, Universidad de Las Palmas de Gran Canaria (ULPGC), Campus Universitario de San Cristóbal, c/ Blas Cabrera Felipe s/n, 35016, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
2
|
Lamichhane S, Seo JE, Jeong JH, Lee S, Lee S. Ideal animal models according to multifaceted mechanisms and peculiarities in neurological disorders: present and challenges. Arch Pharm Res 2025; 48:62-88. [PMID: 39690343 DOI: 10.1007/s12272-024-01527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Neurological disorders, encompassing conditions such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), pose a significant global health challenge, affecting millions worldwide. With an aging population and increased life expectancy, the prevalence of these disorders is escalating rapidly, leading to substantial economic burdens exceeding trillions of dollars annually. Animal models play a crucial role in understanding the underlying mechanisms of these disorders and developing effective treatments. Various species, including rodents, non-human primates, and fruit flies, are utilized to replicate specific aspects of human neurological conditions. However, selecting the ideal animal model requires careful consideration of its proximity to human disease conditions and its ability to mimic disease pathobiology and pharmacological responses. An Animal Model Quality Assessment (AMQA) tool has been developed to facilitate this selection process, focusing on assessing models based on their similarity to human conditions and disease pathobiology. Therefore, integrating intrinsic and extrinsic factors linked to the disease into the study's objectives aids in constructing a biological information matrix for comparing disease progression between the animal model and human disease. Ultimately, selecting an ideal animal disease model depends on its predictive, face, and construct validity, ensuring relevance and reliability in translational research efforts.
Collapse
Affiliation(s)
- Shrawani Lamichhane
- College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Jo-Eun Seo
- College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
3
|
Cui X, Li X, Zheng H, Su Y, Zhang S, Li M, Hao X, Zhang S, Hu Z, Xia Z, Shi C, Xu Y, Mao C. Human midbrain organoids: a powerful tool for advanced Parkinson's disease modeling and therapy exploration. NPJ Parkinsons Dis 2024; 10:189. [PMID: 39428415 PMCID: PMC11491477 DOI: 10.1038/s41531-024-00799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/02/2024] [Indexed: 10/22/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder marked by the loss of dopaminergic neurons in the substantia nigra. Despite progress, the pathogenesis remains unclear. Human midbrain organoids (hMLOs) have emerged as a promising model for studying PD, drug screening, and potential treatments. This review discusses the development of hMLOs, their application in PD research, and current challenges in organoid construction, highlighting possible optimization strategies.
Collapse
Affiliation(s)
- Xin Cui
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xinwei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yun Su
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuyu Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Neuro-Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zongping Xia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Clinical Systems Biology Laboratories, Zhengzhou University, Zhengzhou, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
4
|
McInvale JJ, Canoll P, Hargus G. Induced pluripotent stem cell models as a tool to investigate and test fluid biomarkers in Alzheimer's disease and frontotemporal dementia. Brain Pathol 2024; 34:e13231. [PMID: 38246596 PMCID: PMC11189780 DOI: 10.1111/bpa.13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/29/2023] [Indexed: 01/23/2024] Open
Abstract
Neurodegenerative diseases are increasing in prevalence and comprise a large socioeconomic burden on patients and their caretakers. The need for effective therapies and avenues for disease prevention and monitoring is of paramount importance. Fluid biomarkers for neurodegenerative diseases have gained a variety of uses, including informing participant selection for clinical trials, lending confidence to clinical diagnosis and disease staging, determining prognosis, and monitoring therapeutic response. Their role is expected to grow as disease-modifying therapies start to be available to a broader range of patients and as prevention strategies become established. Many of the underlying molecular mechanisms of currently used biomarkers are incompletely understood. Animal models and in vitro systems using cell lines have been extensively employed but face important translatability limitations. Induced pluripotent stem cell (iPSC) technology, where a theoretically unlimited range of cell types can be reprogrammed from peripheral cells sampled from patients or healthy individuals, has gained prominence over the last decade. It is a promising avenue to study physiological and pathological biomarker function and response to experimental therapeutics. Such systems are amenable to high-throughput drug screening or multiomics readouts such as transcriptomics, lipidomics, and proteomics for biomarker discovery, investigation, and validation. The present review describes the current state of biomarkers in the clinical context of neurodegenerative diseases, with a focus on Alzheimer's disease and frontotemporal dementia. We include a discussion of how iPSC models have been used to investigate and test biomarkers such as amyloid-β, phosphorylated tau, neurofilament light chain or complement proteins, and even nominate novel biomarkers. We discuss the limitations of current iPSC methods, mentioning alternatives such as coculture systems and three-dimensional organoids which address some of these concerns. Finally, we propose exciting prospects for stem cell transplantation paradigms using animal models as a preclinical tool to study biomarkers in the in vivo context.
Collapse
Affiliation(s)
- Julie J. McInvale
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia UniversityNew YorkNew YorkUSA
- Medical Scientist Training Program, Columbia UniversityNew YorkNew YorkUSA
| | - Peter Canoll
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNew YorkUSA
| | - Gunnar Hargus
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
5
|
Mesa H, Zhang EY, Wang Y, Zhang Q. Human neurons lacking amyloid precursor protein exhibit cholesterol-associated developmental and presynaptic deficits. J Cell Physiol 2024; 239:e30999. [PMID: 36966431 DOI: 10.1002/jcp.30999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/29/2023] [Accepted: 03/06/2023] [Indexed: 03/27/2023]
Abstract
Amyloid precursor protein (APP) produces aggregable β-amyloid peptides and its mutations are associated with familial Alzheimer's disease (AD), which makes it one of the most studied proteins. However, APP's role in the human brain remains unclear despite years of investigation. One problem is that most studies on APP have been carried out in cell lines or model organisms, which are physiologically different from human neurons in the brain. Recently, human-induced neurons (hiNs) derived from induced pluripotent stem cells (iPSCs) provide a practical platform for studying the human brain in vitro. Here, we generated APP-null iPSCs using CRISPR/Cas9 genome editing technology and differentiate them into matured human neurons with functional synapses using a two-step procedure. During hiN differentiation and maturation, APP-null cells exhibited less neurite growth and reduced synaptogenesis in serum-free but not serum-containing media. We have found that cholesterol (Chol) remedies those developmental defects in APP-null cells, consistent with Chol's role in neurodevelopment and synaptogenesis. The phenotypic rescue was also achieved by coculturing those cells with wild-type mouse astrocytes, suggesting that APP's developmental role is likely astrocytic. Next, we examined matured hiNs using patch-clamp recording and detected reduced synaptic transmission in APP-null cells. This change was largely due to decreased synaptic vesicle (SV) release and retrieval, which was confirmed by live-cell imaging using two SV-specific fluorescent reporters. Adding Chol shortly before stimulation mitigated the SV deficits in APP-null iNs, indicating that APP facilitates presynaptic membrane Chol turnover during the SV exo-/endocytosis cycle. Taken together, our study in hiNs supports the notion that APP contributes to neurodevelopment, synaptogenesis, and neurotransmission via maintaining brain Chol homeostasis. Given the vital role of Chol in the central nervous system, the functional connection between APP and Chol bears important implications in the pathogenesis of AD.
Collapse
Affiliation(s)
- Haylee Mesa
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
| | - Elaine Y Zhang
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
- Brentwood High School, Brentwood, Tennessee, USA
| | - Yingcai Wang
- Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - Qi Zhang
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
6
|
Pádua MS, Guil-Guerrero JL, Prates JAM, Lopes PA. Insights on the Use of Transgenic Mice Models in Alzheimer's Disease Research. Int J Mol Sci 2024; 25:2805. [PMID: 38474051 DOI: 10.3390/ijms25052805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD), the leading cause of dementia, presents a significant global health challenge with no known cure to date. Central to our understanding of AD pathogenesis is the β-amyloid cascade hypothesis, which underlies drug research and discovery efforts. Despite extensive studies, no animal models of AD have completely validated this hypothesis. Effective AD models are essential for accurately replicating key pathological features of the disease, notably the formation of β-amyloid plaques and neurofibrillary tangles. These pathological markers are primarily driven by mutations in the amyloid precursor protein (APP) and presenilin 1 (PS1) genes in familial AD (FAD) and by tau protein mutations for the tangle pathology. Transgenic mice models have been instrumental in AD research, heavily relying on the overexpression of mutated APP genes to simulate disease conditions. However, these models do not entirely replicate the human condition of AD. This review aims to provide a comprehensive evaluation of the historical and ongoing research efforts in AD, particularly through the use of transgenic mice models. It is focused on the benefits gathered from these transgenic mice models in understanding β-amyloid toxicity and the broader biological underpinnings of AD. Additionally, the review critically assesses the application of these models in the preclinical testing of new therapeutic interventions, highlighting the gap between animal models and human clinical realities. This analysis underscores the need for refinement in AD research methodologies to bridge this gap and enhance the translational value of preclinical studies.
Collapse
Affiliation(s)
- Mafalda Soares Pádua
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| | - José L Guil-Guerrero
- Departamento de Tecnología de Alimentos, Universidad de Almería, 04120 Almería, Spain
| | - José A M Prates
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| | - Paula Alexandra Lopes
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| |
Collapse
|
7
|
Wang W, Zhao F, Torres S, Harris PL, Wang X, Peng L, Siedlak SL, Zhu X. Space-Like Irradiation Exacerbated Cognitive Deficits and Amyloid Pathology in CRND8 Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2024; 100:S327-S339. [PMID: 39058444 PMCID: PMC11875098 DOI: 10.3233/jad-240570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Background Space radiation was linked to neurological damage and behavioral deficits which raised concerns of increased degenerative risk on the brain and development of Alzheimer's disease following space travel. Objective In this study, we investigated the effects of irradiation by 56Fe and 28Si in CRND8 mice, an Alzheimer's disease mouse model. Methods Six-month-old CRND8 mice were exposed to whole body irradiation by 56Fe and 28Si at 0.5 Gy and 2 Gy doses. Behavior tests were administered 1-month to 3-months post-irradiation. Amyloid deposition and other pathological changes were analyzed 3-months and/or 6-months post-irradiation. Results The Novel Object Recognition test showed some decline in 8-month-old mice compared to non-irradiated CRND8 mice. Male mice also showed a loss of freezing behavior in the fear conditioning contextual test following irradiation. Golgi staining revealed a loss of spines in hippocampal neurons after irradiation. Total amyloid immunohistochemistry showed a robust increase in 3-months post-irradiation 56Fe groups which became normalized to non-irradiated group by 6-months post-irradiation. However, 2 Gy 28Si caused a trend towards increased plaque load at 3-months post-irradiation which became significant at 6-months post irradiation only in male CRND8 mice. While 0.5 Gy Fe did not induce obvious changes in the total number of iba-1 positive microglia, more hippocampal microglia were found to express PCNA after 0.5 Gy Fe treatment, suggesting potential involvement of microglial dysfunction. Conclusions Overall, our study provides new evidence of gender-specific and ion-dependent effects of space radiation on cognition and amyloid pathology in AD models.
Collapse
Affiliation(s)
- Wenzhang Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Fanpeng Zhao
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Sandy Torres
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Peggy L.R. Harris
- Department of Genetics, Case Western Reserve University, Cleveland, OH, USA
| | - Xinglong Wang
- Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ, USA
| | - Lihua Peng
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Sandra L. Siedlak
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
8
|
Chavan RS, Supalkar KV, Sadar SS, Vyawahare NS. Animal models of Alzheimer's disease: An originof innovativetreatments and insight to the disease's etiology. Brain Res 2023; 1814:148449. [PMID: 37302570 DOI: 10.1016/j.brainres.2023.148449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder. The main pathogenic features are the development and depositionof senile plaques and neurofibrillary tangles in brain. Recent developments in the knowledge of the pathophysiological mechanisms behind Alzheimer's disease and other cognitive disorders have suggested new approaches to treatment development. These advancements have been significantly aided by the use of animal models, which are also essential for the assessment of therapies. Various approaches as transgenic animal model, chemical models, brain injury are used. This review will presentAD pathophysiology and emphasize several Alzheimer like dementia causingchemical substances, transgenic animal model and stereotaxy in order to enhance our existing knowledge of their mechanism of AD induction, dose, and treatment duration.
Collapse
Affiliation(s)
- Ritu S Chavan
- D. Y. Patil College of Pharmacy, Akurdi, Pune 411044, Maharashtra, India.
| | - Krishna V Supalkar
- D. Y. Patil College of Pharmacy, Akurdi, Pune 411044, Maharashtra, India
| | - Smeeta S Sadar
- D. Y. Patil College of Pharmacy, Akurdi, Pune 411044, Maharashtra, India
| | - Niraj S Vyawahare
- D. Y. Patil College of Pharmacy, Akurdi, Pune 411044, Maharashtra, India
| |
Collapse
|
9
|
Morató X, Pytel V, Jofresa S, Ruiz A, Boada M. Symptomatic and Disease-Modifying Therapy Pipeline for Alzheimer's Disease: Towards a Personalized Polypharmacology Patient-Centered Approach. Int J Mol Sci 2022; 23:9305. [PMID: 36012569 PMCID: PMC9409252 DOI: 10.3390/ijms23169305] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 02/07/2023] Open
Abstract
Since 1906, when Dr. Alois Alzheimer first described in a patient "a peculiar severe disease process of the cerebral cortex", people suffering from this pathology have been waiting for a breakthrough therapy. Alzheimer's disease (AD) is an irreversible, progressive neurodegenerative brain disorder and the most common form of dementia in the elderly with a long presymptomatic phase. Worldwide, approximately 50 million people are living with dementia, with AD comprising 60-70% of cases. Pathologically, AD is characterized by the deposition of amyloid β-peptide (Aβ) in the neuropil (neuritic plaques) and blood vessels (amyloid angiopathy), and by the accumulation of hyperphosphorylated tau in neurons (neurofibrillary tangles) in the brain, with associated loss of synapses and neurons, together with glial activation, and neuroinflammation, resulting in cognitive deficits and eventually dementia. The current competitive landscape in AD consists of symptomatic treatments, of which there are currently six approved medications: three AChEIs (donepezil, rivastigmine, and galantamine), one NMDA-R antagonist (memantine), one combination therapy (memantine/donepezil), and GV-971 (sodium oligomannate, a mixture of oligosaccharides derived from algae) only approved in China. Improvements to the approved therapies, such as easier routes of administration and reduced dosing frequencies, along with the developments of new strategies and combined treatments are expected to occur within the next decade and will positively impact the way the disease is managed. Recently, Aducanumab, the first disease-modifying therapy (DMT) has been approved for AD, and several DMTs are in advanced stages of clinical development or regulatory review. Small molecules, mAbs, or multimodal strategies showing promise in animal studies have not confirmed that promise in the clinic (where small to moderate changes in clinical efficacy have been observed), and therefore, there is a significant unmet need for a better understanding of the AD pathogenesis and the exploration of alternative etiologies and therapeutic effective disease-modifying therapies strategies for AD. Therefore, a critical review of the disease-modifying therapy pipeline for Alzheimer's disease is needed.
Collapse
Affiliation(s)
- Xavier Morató
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Vanesa Pytel
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Sara Jofresa
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Agustín Ruiz
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mercè Boada
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
10
|
Ashok A, Andrabi SS, Mansoor S, Kuang Y, Kwon BK, Labhasetwar V. Antioxidant Therapy in Oxidative Stress-Induced Neurodegenerative Diseases: Role of Nanoparticle-Based Drug Delivery Systems in Clinical Translation. Antioxidants (Basel) 2022; 11:antiox11020408. [PMID: 35204290 PMCID: PMC8869281 DOI: 10.3390/antiox11020408] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
Free radicals are formed as a part of normal metabolic activities but are neutralized by the endogenous antioxidants present in cells/tissue, thus maintaining the redox balance. This redox balance is disrupted in certain neuropathophysiological conditions, causing oxidative stress, which is implicated in several progressive neurodegenerative diseases. Following neuronal injury, secondary injury progression is also caused by excessive production of free radicals. Highly reactive free radicals, mainly the reactive oxygen species (ROS) and reactive nitrogen species (RNS), damage the cell membrane, proteins, and DNA, which triggers a self-propagating inflammatory cascade of degenerative events. Dysfunctional mitochondria under oxidative stress conditions are considered a key mediator in progressive neurodegeneration. Exogenous delivery of antioxidants holds promise to alleviate oxidative stress to regain the redox balance. In this regard, natural and synthetic antioxidants have been evaluated. Despite promising results in preclinical studies, clinical translation of antioxidants as a therapy to treat neurodegenerative diseases remains elusive. The issues could be their low bioavailability, instability, limited transport to the target tissue, and/or poor antioxidant capacity, requiring repeated and high dosing, which cannot be administered to humans because of dose-limiting toxicity. Our laboratory is investigating nanoparticle-mediated delivery of antioxidant enzymes to address some of the above issues. Apart from being endogenous, the main advantage of antioxidant enzymes is their catalytic mechanism of action; hence, they are significantly more effective at lower doses in detoxifying the deleterious effects of free radicals than nonenzymatic antioxidants. This review provides a comprehensive analysis of the potential of antioxidant therapy, challenges in their clinical translation, and the role nanoparticles/drug delivery systems could play in addressing these challenges.
Collapse
Affiliation(s)
- Anushruti Ashok
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
| | - Syed Suhail Andrabi
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
| | - Saffar Mansoor
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
| | - Youzhi Kuang
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
| | - Brian K. Kwon
- Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada;
| | - Vinod Labhasetwar
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
- Correspondence:
| |
Collapse
|
11
|
Bassil R, Shields K, Granger K, Zein I, Ng S, Chih B. Improved modeling of human AD with an automated culturing platform for iPSC neurons, astrocytes and microglia. Nat Commun 2021; 12:5220. [PMID: 34471104 PMCID: PMC8410795 DOI: 10.1038/s41467-021-25344-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
Advancement in human induced pluripotent stem cell (iPSC) neuron and microglial differentiation protocols allow for disease modeling using physiologically relevant cells. However, iPSC differentiation and culturing protocols have posed challenges to maintaining consistency. Here, we generated an automated, consistent, and long-term culturing platform of human iPSC neurons, astrocytes, and microglia. Using this platform we generated a iPSC AD model using human derived cells, which showed signs of Aβ plaques, dystrophic neurites around plaques, synapse loss, dendrite retraction, axon fragmentation, phospho-Tau induction, and neuronal cell death in one model. We showed that the human iPSC microglia internalized and compacted Aβ to generate and surround the plaques, thereby conferring some neuroprotection. We investigated the mechanism of action of anti-Aβ antibodies protection and found that they protected neurons from these pathologies and were most effective before pTau induction. Taken together, these results suggest that this model can facilitate target discovery and drug development efforts. Human induced pluripotent stem cell (iPSC) cells have been used to model disease in specific cell types. Here, the authors develop an automated long-term culturing platform of human iPSC neurons, astrocytes, and microglia and use it to model some cellular aspects of Alzheimer’s disease.
Collapse
Affiliation(s)
- Reina Bassil
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA.,Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA, USA
| | - Kenneth Shields
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA
| | - Kevin Granger
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA
| | - Ivan Zein
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA
| | - Shirley Ng
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA
| | - Ben Chih
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA. .,Department of Neuroscience, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
12
|
Tok S, Ahnaou A, Drinkenburg W. Functional Neurophysiological Biomarkers of Early-Stage Alzheimer's Disease: A Perspective of Network Hyperexcitability in Disease Progression. J Alzheimers Dis 2021; 88:809-836. [PMID: 34420957 PMCID: PMC9484128 DOI: 10.3233/jad-210397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Network hyperexcitability (NH) has recently been suggested as a potential neurophysiological indicator of Alzheimer’s disease (AD), as new, more accurate biomarkers of AD are sought. NH has generated interest as a potential indicator of certain stages in the disease trajectory and even as a disease mechanism by which network dysfunction could be modulated. NH has been demonstrated in several animal models of AD pathology and multiple lines of evidence point to the existence of NH in patients with AD, strongly supporting the physiological and clinical relevance of this readout. Several hypotheses have been put forward to explain the prevalence of NH in animal models through neurophysiological, biochemical, and imaging techniques. However, some of these hypotheses have been built on animal models with limitations and caveats that may have derived NH through other mechanisms or mechanisms without translational validity to sporadic AD patients, potentially leading to an erroneous conclusion of the underlying cause of NH occurring in patients with AD. In this review, we discuss the substantiation for NH in animal models of AD pathology and in human patients, as well as some of the hypotheses considering recently developed animal models that challenge existing hypotheses and mechanisms of NH. In addition, we provide a preclinical perspective on how the development of animal models incorporating AD-specific NH could provide physiologically relevant translational experimental data that may potentially aid the discovery and development of novel therapies for AD.
Collapse
Affiliation(s)
- Sean Tok
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium.,Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, The Netherlands
| | - Abdallah Ahnaou
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Wilhelmus Drinkenburg
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium.,Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, The Netherlands
| |
Collapse
|
13
|
Scheffer S, Hermkens DMA, van der Weerd L, de Vries HE, Daemen MJAP. Vascular Hypothesis of Alzheimer Disease: Topical Review of Mouse Models. Arterioscler Thromb Vasc Biol 2021; 41:1265-1283. [PMID: 33626911 DOI: 10.1161/atvbaha.120.311911] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Sanny Scheffer
- Department of Pathology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands (S.S., D.M.A.H., M.J.A.P.D.)
| | - Dorien M A Hermkens
- Department of Pathology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands (S.S., D.M.A.H., M.J.A.P.D.)
| | - Louise van der Weerd
- Departments of Radiology & Human Genetics, Leiden University Medical Center, the Netherlands (L.v.d.W.)
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije University of Amsterdam, the Netherlands (H.E.d.V.)
| | - Mat J A P Daemen
- Department of Pathology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands (S.S., D.M.A.H., M.J.A.P.D.)
| |
Collapse
|
14
|
Honarpisheh P, Lee J, Banerjee A, Blasco-Conesa MP, Honarpisheh P, d'Aigle J, Mamun AA, Ritzel RM, Chauhan A, Ganesh BP, McCullough LD. Potential caveats of putative microglia-specific markers for assessment of age-related cerebrovascular neuroinflammation. J Neuroinflammation 2020; 17:366. [PMID: 33261619 PMCID: PMC7709276 DOI: 10.1186/s12974-020-02019-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/29/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The ability to distinguish resident microglia from infiltrating myeloid cells by flow cytometry-based surface phenotyping is an important technique for examining age-related neuroinflammation. The most commonly used surface markers for the identification of microglia include CD45 (low-intermediate expression), CD11b, Tmem119, and P2RY12. METHODS In this study, we examined changes in expression levels of these putative microglia markers in in vivo animal models of stroke, cerebral amyloid angiopathy (CAA), and aging as well as in an ex vivo LPS-induced inflammation model. RESULTS We demonstrate that Tmem119 and P2RY12 expression is evident within both CD45int and CD45high myeloid populations in models of stroke, CAA, and aging. Interestingly, LPS stimulation of FACS-sorted adult microglia suggested that these brain-resident myeloid cells can upregulate CD45 and downregulate Tmem119 and P2RY12, making them indistinguishable from peripherally derived myeloid populations. Importantly, our findings show that these changes in the molecular signatures of microglia can occur without a contribution from the other brain-resident or peripherally sourced immune cells. CONCLUSION We recommend future studies approach microglia identification by flow cytometry with caution, particularly in the absence of the use of a combination of markers validated for the specific neuroinflammation model of interest. The subpopulation of resident microglia residing within the "infiltrating myeloid" population, albeit small, may be functionally important in maintaining immune vigilance in the brain thus should not be overlooked in neuroimmunological studies.
Collapse
Affiliation(s)
- Pedram Honarpisheh
- Department of Neurology, University of Texas John P. and Kathrine G. McGovern Medical School, Houston, TX, USA.,UTHealth Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Juneyoung Lee
- Department of Neurology, University of Texas John P. and Kathrine G. McGovern Medical School, Houston, TX, USA
| | - Anik Banerjee
- Department of Neurology, University of Texas John P. and Kathrine G. McGovern Medical School, Houston, TX, USA.,UTHealth Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Maria P Blasco-Conesa
- Department of Neurology, University of Texas John P. and Kathrine G. McGovern Medical School, Houston, TX, USA
| | - Parisa Honarpisheh
- Department of Neurology, University of Texas John P. and Kathrine G. McGovern Medical School, Houston, TX, USA
| | - John d'Aigle
- Department of Neurology, University of Texas John P. and Kathrine G. McGovern Medical School, Houston, TX, USA
| | - Abdullah A Mamun
- Department of Neurology, University of Texas John P. and Kathrine G. McGovern Medical School, Houston, TX, USA
| | - Rodney M Ritzel
- Department of Anesthesiology, Center for Shock, Trauma, and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anjali Chauhan
- Department of Neurology, University of Texas John P. and Kathrine G. McGovern Medical School, Houston, TX, USA
| | - Bhanu P Ganesh
- Department of Neurology, University of Texas John P. and Kathrine G. McGovern Medical School, Houston, TX, USA
| | - Louise D McCullough
- Department of Neurology, University of Texas John P. and Kathrine G. McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
15
|
Chang Y, Kim J, Park H, Choi H, Kim J. Modelling neurodegenerative diseases with 3D brain organoids. Biol Rev Camb Philos Soc 2020; 95:1497-1509. [PMID: 32568450 DOI: 10.1111/brv.12626] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Abstract
Neurodegenerative diseases are incurable and debilitating conditions characterized by the deterioration of brain function. Most brain disease models rely on human post-mortem brain tissue, non-human primate tissue, or in vitro two-dimensional (2D) experiments. Resource limitations and the complexity of the human brain are some of the reasons that make suitable human neurodegenerative disease models inaccessible. However, recently developed three-dimensional (3D) brain organoids derived from pluripotent stem cells (PSCs), including embryonic stem cells and induced PSCs, may provide suitable models for the study of the pathological features of neurodegenerative diseases. In this review, we provide an overview of existing 3D brain organoid models and discuss recent advances in organoid technology that have increased our understanding of brain development. Moreover, we explain how 3D organoid models recapitulate aspects of specific neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease, and explore the utility of these models, for therapeutic applications.
Collapse
Affiliation(s)
- Yujung Chang
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Junyeop Kim
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Hanseul Park
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Hwan Choi
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Jongpil Kim
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea.,Department of Chemistry, Dongguk University, Seoul, 04620, Republic of Korea
| |
Collapse
|
16
|
Ihara M, Saito S. Drug Repositioning for Alzheimer’s Disease: Finding Hidden Clues in Old Drugs. J Alzheimers Dis 2020; 74:1013-1028. [DOI: 10.3233/jad-200049] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Japan
| | - Satoshi Saito
- Department of Neurology, National Cerebral and Cardiovascular Center, Japan
| |
Collapse
|
17
|
Honarpisheh P, Reynolds CR, Blasco Conesa MP, Moruno Manchon JF, Putluri N, Bhattacharjee MB, Urayama A, McCullough LD, Ganesh BP. Dysregulated Gut Homeostasis Observed Prior to the Accumulation of the Brain Amyloid-β in Tg2576 Mice. Int J Mol Sci 2020; 21:E1711. [PMID: 32138161 PMCID: PMC7084806 DOI: 10.3390/ijms21051711] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Amyloid plaques in Alzheimer's disease (AD) are associated with inflammation. Recent studies demonstrated the involvement of the gut in cerebral amyloid-beta (Aβ) pathogenesis; however, the mechanisms are still not well understood. We hypothesize that the gut bears the Aβ burden prior to brain, highlighting gut-brain axis (GBA) interaction in neurodegenerative disorders. We used pre-symptomatic (6-months) and symptomatic (15-months) Tg2576 mouse model of AD compared to their age-matched littermate WT control. We identified that dysfunction of intestinal epithelial barrier (IEB), dysregulation of absorption, and vascular Aβ deposition in the IEB occur before cerebral Aβ aggregation is detectible. These changes in the GBA were associated with elevated inflammatory plasma cytokines including IL-9, VEGF and IP-10. In association with reduced cerebral myelin tight junction proteins, we identified reduced levels of systemic vitamin B12 and decrease cubilin, an intestinal B12 transporter, after the development of cerebral Aβ pathology. Lastly, we report Aβ deposition in the intestinal autopsy from AD patients with confirmed cerebral Aβ pathology that is not present in intestine from non-AD controls. Our data provide evidence that gut dysfunction occurs in AD and may contribute to its etiology. Future therapeutic strategies to reverse AD pathology may involve the early manipulation of gut physiology and its microbiota.
Collapse
Affiliation(s)
- Pedram Honarpisheh
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX 77030, USA; (P.H.); (C.R.R.); (M.P.B.C.); (J.F.M.M.); (A.U.); (L.D.M.)
| | - Caroline R. Reynolds
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX 77030, USA; (P.H.); (C.R.R.); (M.P.B.C.); (J.F.M.M.); (A.U.); (L.D.M.)
| | - Maria P. Blasco Conesa
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX 77030, USA; (P.H.); (C.R.R.); (M.P.B.C.); (J.F.M.M.); (A.U.); (L.D.M.)
| | - Jose F. Moruno Manchon
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX 77030, USA; (P.H.); (C.R.R.); (M.P.B.C.); (J.F.M.M.); (A.U.); (L.D.M.)
| | - Nagireddy Putluri
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | | | - Akihiko Urayama
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX 77030, USA; (P.H.); (C.R.R.); (M.P.B.C.); (J.F.M.M.); (A.U.); (L.D.M.)
| | - Louise D. McCullough
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX 77030, USA; (P.H.); (C.R.R.); (M.P.B.C.); (J.F.M.M.); (A.U.); (L.D.M.)
| | - Bhanu P. Ganesh
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX 77030, USA; (P.H.); (C.R.R.); (M.P.B.C.); (J.F.M.M.); (A.U.); (L.D.M.)
| |
Collapse
|
18
|
Yan T, Liang J, Gao J, Wang L, Fujioka H, Zhu X, Wang X. FAM222A encodes a protein which accumulates in plaques in Alzheimer's disease. Nat Commun 2020; 11:411. [PMID: 31964863 PMCID: PMC6972869 DOI: 10.1038/s41467-019-13962-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/10/2019] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by amyloid plaques and progressive cerebral atrophy. Here, we report FAM222A as a putative brain atrophy susceptibility gene. Our cross-phenotype association analysis of imaging genetics indicates a potential link between FAM222A and AD-related regional brain atrophy. The protein encoded by FAM222A is predominantly expressed in the CNS and is increased in brains of patients with AD and in an AD mouse model. It accumulates within amyloid deposits, physically interacts with amyloid-β (Aβ) via its N-terminal Aβ binding domain, and facilitates Aβ aggregation. Intracerebroventricular infusion or forced expression of this protein exacerbates neuroinflammation and cognitive dysfunction in an AD mouse model whereas ablation of this protein suppresses the formation of amyloid deposits, neuroinflammation and cognitive deficits in the AD mouse model. Our data support the pathological relevance of protein encoded by FAM222A in AD.
Collapse
Affiliation(s)
- Tingxiang Yan
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Jingjing Liang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA.
| | - Ju Gao
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Luwen Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Hisashi Fujioka
- Electron Microscopy Core Facility, Case Western Reserve University, Cleveland, OH, USA
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA.
| | - Xinglong Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
19
|
Kosenko E, Tikhonova L, Alilova G, Urios A, Montoliu C. The Erythrocytic Hypothesis of Brain Energy Crisis in Sporadic Alzheimer Disease: Possible Consequences and Supporting Evidence. J Clin Med 2020; 9:jcm9010206. [PMID: 31940879 PMCID: PMC7019250 DOI: 10.3390/jcm9010206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
Alzheimer’s disease (AD) is a fatal form of dementia of unknown etiology. Although amyloid plaque accumulation in the brain has been the subject of intensive research in disease pathogenesis and anti-amyloid drug development; the continued failures of the clinical trials suggest that amyloids are not a key cause of AD and new approaches to AD investigation and treatment are needed. We propose a new hypothesis of AD development based on metabolic abnormalities in circulating red blood cells (RBCs) that slow down oxygen release from RBCs into brain tissue which in turn leads to hypoxia-induced brain energy crisis; loss of neurons; and progressive atrophy preceding cognitive dysfunction. This review summarizes current evidence for the erythrocytic hypothesis of AD development and provides new insights into the causes of neurodegeneration offering an innovative way to diagnose and treat this systemic disease.
Collapse
Affiliation(s)
- Elena Kosenko
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino 142290, Russia; (L.T.); (G.A.)
- Correspondence: or ; Tel.: +7-4967-73-91-68
| | - Lyudmila Tikhonova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino 142290, Russia; (L.T.); (G.A.)
| | - Gubidat Alilova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino 142290, Russia; (L.T.); (G.A.)
| | - Amparo Urios
- Hospital Clinico Research Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain; (A.U.); (C.M.)
| | - Carmina Montoliu
- Hospital Clinico Research Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain; (A.U.); (C.M.)
- Pathology Department, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
20
|
Amin N, Tan X, Ren Q, Zhu N, Botchway BOA, Hu Z, Fang M. Recent advances of induced pluripotent stem cells application in neurodegenerative diseases. Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109674. [PMID: 31255650 DOI: 10.1016/j.pnpbp.2019.109674] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/03/2019] [Accepted: 06/17/2019] [Indexed: 01/30/2023]
Abstract
Stem cell is defined by its ability to self-renewal and generates differentiated functional cell types, which are derived from the embryo and various sources of postnatal animal. These cells can be divided according to their potential development into totipotent, unipotent, multipotent andpluripotent. Pluripotent is considered as the most important type due to its advantageous capability to create different cell types of the body in a similar behavior as embryonic stem cell. Induced pluripotent stem cells (iPSCs) are adult cells that maintain the characteristics of embryonic stem cells because it can be genetically reprogrammed to an embryonic stem cell-like state via express genes and transcription factors. Such cells provide an efficient pathway to explorehuman diseases and their corresponding therapy, particularly, neurodevelopmental disorders. Consequently, iPSCs can be investigated to check the specific mutations of neurodegenerative disease due to their unique ability to differentiate into neural cell types and/or neural organoids. The current review addresses the different neurodegenerative diseases model by using iPSCs approach such as Alzheimer's diseases (AD), Parkinson diseases (PD),multiplesclerosis(MS) and psychiatric disorders. We also highlight the importance of autophagy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Nashwa Amin
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China; Department of Zoology, Faculty of Science, Aswan University, Egypt
| | - Xiaoning Tan
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiannan Ren
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Ning Zhu
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China; Hebei North University,Zhangjiakou, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiying Hu
- Obstetrics & Gynecology Department, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, China.
| | - Marong Fang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
21
|
Ohlemiller KK. Mouse methods and models for studies in hearing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3668. [PMID: 31795658 DOI: 10.1121/1.5132550] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Laboratory mice have become the dominant animal model for hearing research. The mouse cochlea operates according to standard "mammalian" principles, uses the same cochlear cell types, and exhibits the same types of injury as found in other mammals. The typical mouse lifespan is less than 3 years, yet the age-associated pathologies that may be found are quite similar to longer-lived mammals. All Schuknecht's types of presbycusis have been identified in existing mouse lines, some favoring hair cell loss while others favor strial degeneration. Although noise exposure generally affects the mouse cochlea in a manner similar to other mammals, mice appear more prone to permanent alterations to hair cells or the organ of Corti than to hair cell loss. Therapeutic compounds may be applied systemically or locally through the tympanic membrane or onto (or through) the round window membrane. The thinness of the mouse cochlear capsule and annular ligament may promote drug entry from the middle ear, although an extremely active middle ear lining may quickly remove most drugs. Preclinical testing of any therapeutic will always require tests in multiple animal models. Mice constitute one model providing supporting evidence for any therapeutic, while genetically engineered mice can test hypotheses about mechanisms.
Collapse
Affiliation(s)
- Kevin K Ohlemiller
- Department of Otolaryngology, Central Institute for the Deaf at Washington University School of Medicine, Washington University School of Medicine, Fay and Carl Simons Center for Hearing and Deafness, Saint Louis, Missouri 63110, USA
| |
Collapse
|
22
|
Metaxas A, Thygesen C, Kempf SJ, Anzalone M, Vaitheeswaran R, Petersen S, Landau AM, Audrain H, Teeling JL, Darvesh S, Brooks DJ, Larsen MR, Finsen B. Ageing and amyloidosis underlie the molecular and pathological alterations of tau in a mouse model of familial Alzheimer's disease. Sci Rep 2019; 9:15758. [PMID: 31673052 PMCID: PMC6823454 DOI: 10.1038/s41598-019-52357-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 10/13/2019] [Indexed: 02/07/2023] Open
Abstract
Despite compelling evidence that the accumulation of amyloid-beta (Aβ) promotes neocortical MAPT (tau) aggregation in familial and idiopathic Alzheimer's disease (AD), murine models of cerebral amyloidosis are not considered to develop tau-associated pathology. In the present study, we show that tau can accumulate spontaneously in aged transgenic APPswe/PS1ΔE9 mice. Tau pathology is abundant around Aβ deposits, and further characterized by accumulation of Gallyas and thioflavin-S-positive inclusions, which were detected in the APPswe/PS1ΔE9 brain at 18 months of age. Age-dependent increases in argyrophilia correlated positively with binding levels of the paired helical filament (PHF) tracer [18F]Flortaucipir, in all brain areas examined. Sarkosyl-insoluble PHFs were visualized by electron microscopy. Quantitative proteomics identified sequences of hyperphosphorylated and three-repeat tau in transgenic mice, along with signs of RNA missplicing, ribosomal dysregulation and disturbed energy metabolism. Tissue from the frontal gyrus of human subjects was used to validate these findings, revealing primarily quantitative differences between the tau pathology observed in AD patient vs. transgenic mouse tissue. As physiological levels of endogenous, 'wild-type' tau aggregate secondarily to Aβ in APPswe/PS1ΔE9 mice, this study suggests that amyloidosis is both necessary and sufficient to drive tauopathy in experimental models of familial AD.
Collapse
Affiliation(s)
- Athanasios Metaxas
- Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark.
| | - Camilla Thygesen
- Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Stefan J Kempf
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Marco Anzalone
- Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | | | - Sussanne Petersen
- Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Anne M Landau
- Department of Nuclear Medicine and PET-Centre, Aarhus University, Aarhus, Denmark.,Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Hélène Audrain
- Department of Nuclear Medicine and PET-Centre, Aarhus University, Aarhus, Denmark
| | - Jessica L Teeling
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Sultan Darvesh
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada.,Department of Medicine (Neurology and Geriatric Medicine), Dalhousie University, Halifax, NS, Canada
| | - David J Brooks
- Department of Nuclear Medicine and PET-Centre, Aarhus University, Aarhus, Denmark.,Division of Neuroscience, Faculty of Medical Science, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Bente Finsen
- Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
23
|
Chen Y, Xu J, Zhou X, Liu S, Zhang Y, Ma S, Fu AKY, Ip NY, Chen Y. Changes of Protein Phosphorylation Are Associated with Synaptic Functions during the Early Stage of Alzheimer's Disease. ACS Chem Neurosci 2019; 10:3986-3996. [PMID: 31424205 DOI: 10.1021/acschemneuro.9b00190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease is an irreversible neurodegenerative disorder for which we have limited knowledge of the mechanisms underlying its pathogenesis, especially the molecular events that trigger the deterioration of neuronal functions in the early stage. Protein phosphorylation and dephosphorylation are highly dynamic and reversible post-translational modifications that control protein signaling and hence neuronal functions, aberrations of which are implicated in various neurodegenerative diseases including Alzheimer's disease. We conducted a quantitative phosphoproteomic analysis in the brains of APP/PS1 mice, an Aβ-deposition transgenic mouse model, at 3 months old, the stage at which amyloid pathology just initiates. Compared to the wild-type mouse brains, we found that changes in serine phosphorylation were predominant in the APP/PS1 mouse brains, and that the occurrence of proline-directed phosphorylation was most common among the overrepresented phosphopeptides. Further analysis of the 167 phosphoproteins that were significantly up- or downregulated in APP/PS1 mouse brains revealed the enrichment of these proteins in synapse-related pathways. In particular, Western blot analysis validated the increased phosphorylation of chromogranin B, a protein enriched in large dense-core vesicles, in APP/PS1 mouse brains. These findings collectively suggest that changes in the phosphoprotein network may be associated with the deregulation of synaptic functions during the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Yuewen Chen
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Jinying Xu
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, China
| | - Xiaopu Zhou
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Saijuan Liu
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Yulin Zhang
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Shuangshuang Ma
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Amy K. Y. Fu
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Nancy Y. Ip
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Yu Chen
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
24
|
Mouse induced pluripotent stem cells-derived Alzheimer's disease cerebral organoid culture and neural differentiation disorders. Neurosci Lett 2019; 711:134433. [PMID: 31421155 DOI: 10.1016/j.neulet.2019.134433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 11/20/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, characterized by cognitive impairment. However, the pathogenesis of AD are very complicated, and the theories of Aβ and neurofibrillary tangles cannot explain all pathological alterations and clinical symptoms. Here, we used three-dimensional (3D) neural organoids culture derived from mouse induced pluripotent stem cells (iPSCs) to investigate the pathological mechanisms of AD. In this study, AD cerebral organoids were generated by overexpressing familial AD mutations (APP and PS1 genes) in mouse induced pluripotent stem cells, so that the early pathogenesis of AD could be investigated well with protein and cellular phenotype analyses. The results showed that AD cerebral organoids appeared some AD pathological alterations, and high levels of Aβ and p-Tau were induced as well. Furthermore, the number of GFAP-positive astrocytes and glutamatergic excitatory neurons increased significantly, but the number of GABAergic interneurons decreased. In conclusion, we suggest that cerebral organoids are a suitable AD model for scientific study, and that will provide us a novel insight into the understanding of the pathogenesis of AD.
Collapse
|
25
|
Functional and morphological changes of the retinal vessels in Alzheimer's disease and mild cognitive impairment. Sci Rep 2019; 9:63. [PMID: 30635610 PMCID: PMC6329813 DOI: 10.1038/s41598-018-37271-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022] Open
Abstract
Imaging and histopathological studies have demonstrated that structural changes of the retina affect subjects with Alzheimer’s disease (AD) or mild cognitive impairment (MCI). The aim of this study was to quantitatively investigate the retinal vessels in these disorders, using dynamic vessel analyzer (DVA) and optical coherence tomography angiography (OCTA) analysis. Twelve subjects with AD, 12 subjects with MCI, and 32 gender- and age-matched controls were prospectively enrolled. Mean ± SD age was 72.9 ± 7.2 years in the AD group, 76.3 ± 6.9 years in the MCI group, and 71.6 ± 5.9 years in the control group (p = 0.104). In the DVA dynamic analysis, the arterial dilation was decreased in the AD group (0.77 ± 2.06%), in the comparison with the control group (3.53 ± 1.25%, p = 0.002). The reaction amplitude was decreased both in AD (0.21 ± 1.80%, <0.0001) and MCI (2.29 ± 1.81%, p = 0.048) subjects, compared with controls (3.86 ± 1.94%). OCTA variables did not differ among groups. In the Pearson correlation analysis, amyloid β level in the cerebrospinal fluid was directly correlated with the arterial dilation (R = 0.441, p = 0.040) and reaction amplitude (R = 0.580, p = 0.005). This study demonstrate that Alzheimer’s and MCI subjects are characterized by a significant impairment of the retinal neurovascular coupling. This impairment is inversely correlated with the level of amyloid β in the cerebrospinal fluid.
Collapse
|
26
|
Llorens-Martín M. Exercising New Neurons to Vanquish Alzheimer Disease. Brain Plast 2018; 4:111-126. [PMID: 30564550 PMCID: PMC6296267 DOI: 10.3233/bpl-180065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Alzheimer disease (AD) is the most common type of dementia in individuals over 65 years of age. The neuropathological hallmarks of the condition are Tau neurofibrillary tangles and Amyloid-β senile plaques. Moreover, certain susceptible regions of the brain experience a generalized lack of neural plasticity and marked synaptic alterations during the progression of this as yet incurable disease. One of these regions, the hippocampus, is characterized by the continuous addition of new neurons throughout life. This phenomenon, named adult hippocampal neurogenesis (AHN), provides a potentially endless source of new synaptic elements that increase the complexity and plasticity of the hippocampal circuitry. Numerous lines of evidence show that physical activity and environmental enrichment (EE) are among the most potent positive regulators of AHN. Given that neural plasticity is markedly decreased in many neurodegenerative diseases, the therapeutic potential of making certain lifestyle changes, such as increasing physical activity, is being recognised in several non-pharmacologic strategies seeking to slow down or prevent the progression of these diseases. This review article summarizes current evidence supporting the putative therapeutic potential of EE and physical exercise to increase AHN and hippocampal plasticity both under physiological and pathological circumstances, with a special emphasis on neurodegenerative diseases and AD.
Collapse
Affiliation(s)
- María Llorens-Martín
- Department of Molecular Neuropathology, Centro de Biología Molecular “Severo Ochoa”, CBMSO, CSIC-UAM, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases CIBERNED, Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
27
|
Zilberzwige-Tal S, Gazit E. Go with the Flow-Microfluidics Approaches for Amyloid Research. Chem Asian J 2018; 13:3437-3447. [PMID: 30117682 DOI: 10.1002/asia.201801007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Indexed: 12/19/2022]
Abstract
The rapid development of cost-efficient microfluidic devices has received tremendous attention from scientists of diverse fields. The growing potential of utilizing microfluidic platforms has further advanced the ability to integrate existing technology into microfluidic devices. Thus, allowing scientists to approach questions in fundamental fields, such as amyloid research, using new and otherwise unachievable conditions. Amyloids are associated with neurodegeneration and are in the forefront of many research efforts worldwide. The newly emerged microfluidic technology can serve as a novel research tool providing a platform for developing new methods in this field. In this review, we summarize the recent progress in amyloid research using microfluidic approaches. These approaches are driven from various fields, including physical chemistry, electrochemistry, biochemistry, and cell biology. Moreover, the new insights into novel microfluidic approaches for amyloid research reviewed here can be easily modified for other research interests.
Collapse
Affiliation(s)
- Shai Zilberzwige-Tal
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology,George S. Wise Faculty of Life Sciences, Tel Aviv University⋅, Tel Aviv, 69978, Israel
| | - Ehud Gazit
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel.,Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology,George S. Wise Faculty of Life Sciences, Tel Aviv University⋅, Tel Aviv, 69978, Israel
| |
Collapse
|
28
|
Ismail R, Hansen AK, Parbo P, Brændgaard H, Gottrup H, Brooks DJ, Borghammer P. The Effect of 40-Hz Light Therapy on Amyloid Load in Patients with Prodromal and Clinical Alzheimer's Disease. Int J Alzheimers Dis 2018; 2018:6852303. [PMID: 30155285 PMCID: PMC6091362 DOI: 10.1155/2018/6852303] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/25/2018] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder. AD pathology is characterized by abnormal aggregation of the proteins amyloid-β (Aβ) and hyperphosphorylated tau. No effective disease modifying therapies are currently available. A short-duration intervention with 40 Hz light flicker has been shown to reduce brain Aβ load in transgenic mice. We aimed to test the effect of a similar short-duration 40 Hz light flicker regime in human AD patients. We utilized a Light Emitting Diode (LED) light bulb with a 40 Hz flicker. Six Aβ positive patients received 10 days of light therapy, had 2 hours of daily exposure, and underwent a postintervention PiB PET on day 11. After 10 days of light therapy, no significant decrease of PiB SUVR values was detected in any volumes of interest tested (primary visual cortex, visual association cortex, lateral parietal cortex, precuneus, and posterior cingulate) or in the total motor cortex, and longer treatments may be necessary to induce amyloid removal in humans.
Collapse
Affiliation(s)
- Rola Ismail
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Allan K. Hansen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Parbo
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Hans Brændgaard
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Hanne Gottrup
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - David J. Brooks
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
- Division of Neuroscience, Newcastle University, Newcastle, UK
| | - Per Borghammer
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
29
|
Abstract
Amyloid β (Aβ) is the major constituent of the brain deposits found in parenchymal plaques and cerebral blood vessels of patients with Alzheimer's disease (AD). Besides classic full-length peptides, biochemical analyses of brain deposits have revealed high degree of Aβ heterogeneity likely resulting from the action of multiple proteolytic enzymes. This chapter describes a sequential extraction protocol allowing the differential fractionation of soluble and deposited Aβ species taking advantage of their differential solubility properties. Soluble Aβ is extracted by water-based buffers like phosphate-buffered saline-PBS-whereas pre-fibrillar and fibrillar deposits, usually poorly soluble in PBS, are extractable in detergent containing solutions or more stringent conditions as formic acid. The extraction procedure is followed by the biochemical identification of the extracted Aβ species using Western blot and a targeted proteomic analysis which combines immunoprecipitation with MALDI-ToF mass spectrometry. This approach revealed the presence of numerous C- and N-terminal truncated Aβ species in addition to Aβ1-40/42. Notably, the more soluble C-terminal cleaved fragments constitute a main part of PBS homogenates. On the contrary, N-terminal truncated species typically require more stringent conditions for the extraction in agreement with their lower solubility and enhanced aggregability. Detailed assessment of the molecular diversity of Aβ species composing interstitial fluid and amyloid deposits at different disease stages, as well as the evaluation of the truncation profile during various pharmacologic approaches will provide a comprehensive understanding of the still undefined contribution of Aβ truncations to AD pathogenesis and their potential as novel therapeutic targets.
Collapse
Affiliation(s)
- Agueda Rostagno
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Thomas A Neubert
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY, USA
| | - Jorge Ghiso
- Department of Pathology, New York University School of Medicine, New York, NY, USA.
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
30
|
Tong G, Izquierdo P, Raashid RA. Human Induced Pluripotent Stem Cells and the Modelling of Alzheimer's Disease: The Human Brain Outside the Dish. Open Neurol J 2017; 11:27-38. [PMID: 29151989 PMCID: PMC5678240 DOI: 10.2174/1874205x01711010027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 08/18/2017] [Accepted: 08/20/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neurodegenerative diseases like Alzheimer's Disease (AD) are a global health issue primarily in the elderly. Although AD has been investigated using primary cultures, animal models and post-mortem human brain tissues, there are currently no effective treatments. SUMMARY With the advent of induced pluripotent stem cells (iPSCs) reprogrammed from fully differentiated adult cells such as skin fibroblasts, newer opportunities have arisen to study the pathophysiology of many diseases in more depth. It is envisioned that iPSCs could be used as a powerful tool for neurodegenerative disease modelling and eventually be an unlimited source for cell replacement therapy. This paper provides an overview of; the contribution of iPSCs towards modeling and understanding AD pathogenesis, the novel human/mouse chimeric models in elucidating current AD pathogenesis hypotheses, the possible use of iPSCs in drug screening, and perspectives on possible future directions. KEY MESSAGES Human/mouse chimeric models using iPSCs to study AD offer much promise in better replicating AD pathology and can be further exploited to elucidate disease pathogenesis with regards to the neuroinflammation hypothesis of AD.
Collapse
Affiliation(s)
- Godwin Tong
- College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Pablo Izquierdo
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Rana Arham Raashid
- College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
31
|
Jago RC, Scholes S, Mair TS, Pearson GR, Pirie RS, Handel I, Milne EM, Coyle F, Mcgorum BC. Histological assessment of β-amyloid precursor protein immunolabelled rectal biopsies aids diagnosis of equine grass sickness. Equine Vet J 2017. [PMID: 28621903 DOI: 10.1111/evj.12710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND An accurate, minimally invasive, ante-mortem diagnostic test for equine grass sickness (EGS) is currently lacking. Although histological examination of haematoxylin and eosin-stained rectal biopsies for chromatolytic neurons is insensitive as a diagnostic test for EGS, we hypothesised that its diagnostic accuracy could be improved by immunolabelling for β-amyloid precursor protein (β-APP), which has increased expression in cranial cervical ganglia (CCG) neuronal perikarya in EGS. OBJECTIVES To develop a grading scheme for assessing the distribution and intensity of β-APP immunoreactivity within individual rectal submucosal neurons and subsequently to determine the value of the distribution of different grades of neurons in EGS diagnosis. STUDY DESIGN Retrospective case-control diagnostic accuracy study. METHODS Initially, a standardised grading scheme was developed and β-APP immunoreactivity in individual neuronal perikarya and axons was compared in sections of CCG and ileum from EGS and control horses. The grading scheme was then refined before being blindly applied to submucosal neurons in rectal biopsies derived from 21 EGS and 23 control horses. RESULTS β-APP immunoreactivity was increased in neuronal perikarya and axons in sections of CCG, ileum and rectum from EGS horses compared with controls. For rectal biopsies, a mean immunoreactivity grade exceeding 1.1 was 100% specific and sensitive for EGS, and the presence of at least one neuron with diffuse labelling of the entire cytoplasm (grade 3) was 95% sensitive and 100% specific for EGS. MAIN LIMITATIONS Although the diagnostic criteria facilitated the discrimination of the EGS and control biopsies evaluated in this study, further prospective validation using a larger sample set is required. CONCLUSIONS Histological assessment of β-APP immunolabelled rectal biopsies is more sensitive than conventional histological examination in EGS diagnosis. Further validation is required before this technique can be advocated for use in clinical decision making.
Collapse
Affiliation(s)
- R C Jago
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - S Scholes
- SAC Consulting Veterinary Services, Penicuik, UK
| | - T S Mair
- Bell Equine Veterinary Clinic, Maidstone, UK
| | - G R Pearson
- School of Clinical Veterinary Science, University of Bristol, Bristol, UK
| | - R S Pirie
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - I Handel
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - E M Milne
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - F Coyle
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - B C Mcgorum
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
32
|
Hallmarks of Alzheimer's Disease in Stem-Cell-Derived Human Neurons Transplanted into Mouse Brain. Neuron 2017; 93:1066-1081.e8. [PMID: 28238547 DOI: 10.1016/j.neuron.2017.02.001] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 12/12/2016] [Accepted: 01/31/2017] [Indexed: 01/11/2023]
Abstract
Human pluripotent stem cells (PSCs) provide a unique entry to study species-specific aspects of human disorders such as Alzheimer's disease (AD). However, in vitro culture of neurons deprives them of their natural environment. Here we transplanted human PSC-derived cortical neuronal precursors into the brain of a murine AD model. Human neurons differentiate and integrate into the brain, express 3R/4R Tau splice forms, show abnormal phosphorylation and conformational Tau changes, and undergo neurodegeneration. Remarkably, cell death was dissociated from tangle formation in this natural 3D model of AD. Using genome-wide expression analysis, we observed upregulation of genes involved in myelination and downregulation of genes related to memory and cognition, synaptic transmission, and neuron projection. This novel chimeric model for AD displays human-specific pathological features and allows the analysis of different genetic backgrounds and mutations during the course of the disease.
Collapse
|
33
|
OKAZAWA H. Ultra-Early Phase pathologies of Alzheimer's disease and other neurodegenerative diseases. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:361-377. [PMID: 28603208 PMCID: PMC5709537 DOI: 10.2183/pjab.93.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/21/2017] [Indexed: 06/07/2023]
Abstract
The concept of neurodegenerative diseases and the therapeutics targeting these intractable diseases are changing rapidly. Protein aggregation as the top of pathological cascade is now challenged, and many alternative ideas are proposed. Early molecular pathologies before microscopic detection of diseases protein aggregates, which I propose to call "Ultra-Early Phase pathologies or phase 0 pathologies", are the focus of research that might explain the failures of clinical trials with anti-Aβ antibodies against Alzheimer's disease. In this review article, I summarize the critical issues that should be successfully and consistently answered by a new concept of neurodegeneration. For reevaluating old concepts and reconstructing a new concept of neurodegeneration that will replace the old ones, non-biased comprehensive approaches including proteome combined with systems biology analyses will be a powerful tool. I introduce our recent efforts in this orientation that have reached to the stage of non-clinical proof of concept applicable to clinical trials.
Collapse
Affiliation(s)
- Hitoshi OKAZAWA
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
34
|
Ohlemiller KK, Jones SM, Johnson KR. Application of Mouse Models to Research in Hearing and Balance. J Assoc Res Otolaryngol 2016; 17:493-523. [PMID: 27752925 PMCID: PMC5112220 DOI: 10.1007/s10162-016-0589-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/15/2016] [Indexed: 01/10/2023] Open
Abstract
Laboratory mice (Mus musculus) have become the major model species for inner ear research. The major uses of mice include gene discovery, characterization, and confirmation. Every application of mice is founded on assumptions about what mice represent and how the information gained may be generalized. A host of successes support the continued use of mice to understand hearing and balance. Depending on the research question, however, some mouse models and research designs will be more appropriate than others. Here, we recount some of the history and successes of the use of mice in hearing and vestibular studies and offer guidelines to those considering how to apply mouse models.
Collapse
Affiliation(s)
- Kevin K Ohlemiller
- Department of Otolaryngology, Central Institute for the Deaf, Fay and Carl Simons Center for Hearing and Deafness, Washington University School of Medicine, 660 S. Euclid, Saint Louis, MO, 63110, USA.
| | - Sherri M Jones
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | | |
Collapse
|
35
|
De Lucia C, Rinchon A, Olmos-Alonso A, Riecken K, Fehse B, Boche D, Perry VH, Gomez-Nicola D. Microglia regulate hippocampal neurogenesis during chronic neurodegeneration. Brain Behav Immun 2016; 55:179-190. [PMID: 26541819 PMCID: PMC4907582 DOI: 10.1016/j.bbi.2015.11.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 10/22/2015] [Accepted: 11/01/2015] [Indexed: 12/22/2022] Open
Abstract
Neurogenesis is altered in neurodegenerative disorders, partly regulated by inflammatory factors. We have investigated whether microglia, the innate immune brain cells, regulate hippocampal neurogenesis in neurodegeneration. Using the ME7 model of prion disease we applied gain- or loss-of CSF1R function, as means to stimulate or inhibit microglial proliferation, respectively, to dissect the contribution of these cells to neurogenesis. We found that increased hippocampal neurogenesis correlates with the expansion of the microglia population. The selective inhibition of microglial proliferation caused a reduction in neurogenesis and a restoration of normal neuronal differentiation, supporting a pro-neurogenic role for microglia. Using a gene screening strategy, we identified TGFβ as a molecule controlling the microglial pro-neurogenic response in chronic neurodegeneration, supported by loss-of-function mechanistic experiments. By the selective targeting of microglial proliferation we have been able to uncover a pro-neurogenic role for microglia in chronic neurodegeneration, suggesting promising therapeutic targets to normalise the neurogenic niche during neurodegeneration.
Collapse
Affiliation(s)
- Chiara De Lucia
- Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Adeline Rinchon
- Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Adrian Olmos-Alonso
- Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Clinic for Stem Cell Transplantation, University Medical Centre (UMC) Hamburg-Eppendorf, Hamburg, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Clinic for Stem Cell Transplantation, University Medical Centre (UMC) Hamburg-Eppendorf, Hamburg, Germany
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom
| | - V. Hugh Perry
- Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Diego Gomez-Nicola
- Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
36
|
Fiala M, Terrando N, Dalli J. Specialized Pro-Resolving Mediators from Omega-3 Fatty Acids Improve Amyloid-β Phagocytosis and Regulate Inflammation in Patients with Minor Cognitive Impairment. J Alzheimers Dis 2016; 48:293-301. [PMID: 26401996 DOI: 10.3233/jad-150367] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review we discuss the immunopathology of Alzheimer's disease (AD) and recent advances in the prevention of minor cognitive impairment (MCI) by nutritional supplementation with omega-3 fatty acids. Defective phagocytosis of amyloid-β (Aβ) and abnormal inflammatory activation of peripheral blood mononuclear cells (PBMCs) are the two key immune pathologies of MCI and AD patients. The phagocytosis of Aβ by PBMCs of MCI and AD patients is universally defective and the inflammatory gene transcription is heterogeneously deregulated in comparison to normal subjects. Recent studies have discovered a cornucopia of beneficial anti-inflammatory and pro-resolving effects of the specialized proresolving mediators (SPMs) resolvins, protectins, maresins, and their metabolic precursors. Resolvin D1 and other mediators switch macrophages from an inflammatory to a tissue protective/pro-resolving phenotype and increase phagocytosis of Aβ. In a recent study of AD and MCI patients, nutritional supplementation by omega-3 fatty acids individually increased resolvin D1, improved Aβ phagocytosis, and regulated inflammatory genes toward a physiological state, but only in MCI patients. Our studies are beginning to dissect positive factors (adherence to Mediterranean diet with omega-3 and exercise) and negative factors (high fat diet, infections, cancer, and surgeries) in each patient. The in vitro and in vivo effects of omega-3 fatty acids and SPMs suggest that defective phagocytosis and chronic inflammation are related to defective production and/or defective signaling by SPMs in immune cells.
Collapse
Affiliation(s)
- Milan Fiala
- Department of Surgery, UCLA School of Medicine, Los Angeles, California, USA
| | - Niccolo Terrando
- Departments of Anesthesiology, Basic Science Division, Duke University Medical Center, Durham, North Carolina, USA
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Du Y, Qu J, Zhang W, Bai M, Zhou Q, Zhang Z, Li Z, Miao J. Morin reverses neuropathological and cognitive impairments in APPswe/PS1dE9 mice by targeting multiple pathogenic mechanisms. Neuropharmacology 2016; 108:1-13. [PMID: 27067919 DOI: 10.1016/j.neuropharm.2016.04.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 04/02/2016] [Accepted: 04/07/2016] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia worldwide, characterized by progressive cognitive impairment and multiple distinct neuropathological features. Currently, there are no available therapies to delay or block the disease progression. Thus, the disease-modifying therapies are urgent for this devastating disorder by simultaneously targeting multiple distinct pathological processes. Morin, a natural bioflavonoid, have been shown to be strongly neuroprotective in vitro and in vivo. In this study, we first investigated the disease-modifying effects of chronic morin administration on the neuropathological and cognitive impairments in APPswe/PS1dE9 double transgenic mice. Our results showed that chronic morin administration prevented spatial learning and memory deficits in the APPswe/PS1dE9 mice. Morin treatment in the APPswe/PS1dE9 mice markedly reduced cerebral Aβ production and Aβ plaque burden via promoting non-amyloidogenic APP processing pathway by increasing ADAM10 expression, inhibiting amyloidogenic APP processing pathway by decreased BACE1 and PS1 expression, and facilitating Aβ degradation by enhancing Aβ-degrading enzyme expression. In addition, we also found that morin treatment in the APPswe/PS1dE9 mice markedly decreased tau hyperphosphorylation via its inhibitory effect on CDK5 signal pathway. Furthermore, morin treatment in the APPswe/PS1dE9 mice markedly reduced the activated glial cells and increased the expression of synaptic markers. Collectively, our findings demonstrate that chronic morin treatment restores cognitive functions and reverses multiple distinct neuropathological AD-like hallmarks in the APPswe/PS1dE9 mice. This study provides novel insights into the neuroprotective actions and neurobiological mechanisms of morin against AD, suggesting that morin is a potently promising disease-modifying agent for treatment of AD.
Collapse
Affiliation(s)
- Ying Du
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, Shaanxi Province 710038, China
| | - Jie Qu
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, Shaanxi Province 710038, China; Institute of Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an City, Shaanxi Province 710038, China
| | - Wei Zhang
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, Shaanxi Province 710038, China; Institute of Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an City, Shaanxi Province 710038, China
| | - Miao Bai
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, Shaanxi Province 710038, China
| | - Qiong Zhou
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, Shaanxi Province 710038, China
| | - Zhuo Zhang
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, Shaanxi Province 710038, China; Institute of Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an City, Shaanxi Province 710038, China
| | - Zhuyi Li
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, Shaanxi Province 710038, China; Institute of Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an City, Shaanxi Province 710038, China.
| | - Jianting Miao
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, Shaanxi Province 710038, China.
| |
Collapse
|
38
|
Hunter S, Martin S, Brayne C. The APP Proteolytic System and Its Interactions with Dynamic Networks in Alzheimer's Disease. Methods Mol Biol 2016; 1303:71-99. [PMID: 26235060 DOI: 10.1007/978-1-4939-2627-5_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Diseases of aging are often complex and multifactorial, involving many genetic and life course modifiers. Systems biology is becoming an essential tool to investigate disease initiation and disease progression. Alzheimer's disease (AD) can be used as a case study to investigate the application of systems biology to complex disease. Here we describe approaches to capturing biological data, representing data in terms of networks and interpreting their meaning in relation to the human population. We highlight issues that remain to be addressed both in terms of modeling disease progression and in relating findings to the current understanding of human disease.
Collapse
Affiliation(s)
- Sally Hunter
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge School of Clinical Medicine, Forvie Site, Cambridge Biomedical Campus, Box 113, Cambridge, CB2 0SP, UK,
| | | | | |
Collapse
|
39
|
Lim S, Choi JG, Moon M, Kim HG, Lee W, Bak HR, Sung H, Park CH, Kim SY, Oh MS. An Optimized Combination of Ginger and Peony Root Effectively Inhibits Amyloid-β Accumulation and Amyloid-β-Mediated Pathology in AβPP/PS1 Double-Transgenic Mice. J Alzheimers Dis 2016; 50:189-200. [PMID: 26639976 DOI: 10.3233/jad-150839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The progressive aggregation of amyloid-β protein (Aβ) into senile plaques is a major pathological factor of Alzheimer's disease (AD) and is believed to result in memory impairment. We aimed to investigate the effect of an optimized combination of ginger and peony root (OCGP), a standardized herbal mixture of ginger and peony root, on Aβ accumulation and memory impairment in amyloid-β protein precursor (AβPP)/presenilin 1 (PS1) double-transgenic mice. In an in vitro thioflavin T fluorescence assay, 100 μg/ml OCGP inhibited Aβ accumulation to the same extent as did 10 μM curcumin. Furthermore, AβPP/PS1 double-transgenic mice treated with OCGP (50 or 100 mg/kg/day given orally for 14 weeks) exhibited reduced Aβ plaque accumulation in the hippocampus and lower levels of glial fibrillary acid protein and cyclooxygease-2 expression compared with vehicle-treated controls. These results suggest that OCGP may prevent memory impairment in AD by inhibiting Aβ accumulation and inflammation in the brain.
Collapse
Affiliation(s)
- Soonmin Lim
- Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| | - Jin Gyu Choi
- Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Hyo Geun Kim
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| | - Wonil Lee
- Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| | - Hyoung-Rok Bak
- CJ Healthcare R&D center, Majang-myeon, Icheon, Gyeonggi, Republic of Korea
| | - Hachang Sung
- CJ Healthcare R&D center, Majang-myeon, Icheon, Gyeonggi, Republic of Korea
| | - Chi Hye Park
- CJ Healthcare R&D center, Majang-myeon, Icheon, Gyeonggi, Republic of Korea
| | - Sun Yeou Kim
- Gachon Institute of Pharmaceutical Science, Gachon University, Yeonsu-gu, Incheon, Republic of Korea
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| |
Collapse
|
40
|
Choong XY, Tosh JL, Pulford LJ, Fisher EMC. Dissecting Alzheimer disease in Down syndrome using mouse models. Front Behav Neurosci 2015; 9:268. [PMID: 26528151 PMCID: PMC4602094 DOI: 10.3389/fnbeh.2015.00268] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/21/2015] [Indexed: 11/13/2022] Open
Abstract
Down syndrome (DS) is a common genetic condition caused by the presence of three copies of chromosome 21 (trisomy 21). This greatly increases the risk of Alzheimer disease (AD), but although virtually all people with DS have AD neuropathology by 40 years of age, not all develop dementia. To dissect the genetic contribution of trisomy 21 to DS phenotypes including those relevant to AD, a range of DS mouse models has been generated which are trisomic for chromosome segments syntenic to human chromosome 21. Here, we consider key characteristics of human AD in DS (AD-DS), and our current state of knowledge on related phenotypes in AD and DS mouse models. We go on to review important features needed in future models of AD-DS, to understand this type of dementia and so highlight pathogenic mechanisms relevant to all populations at risk of AD.
Collapse
Affiliation(s)
- Xun Yu Choong
- Department of Neurodegenerative Disease, Institute of Neurology, University College London London, UK ; The LonDownS Consortium London, UK
| | - Justin L Tosh
- Department of Neurodegenerative Disease, Institute of Neurology, University College London London, UK ; The LonDownS Consortium London, UK
| | - Laura J Pulford
- Department of Neurodegenerative Disease, Institute of Neurology, University College London London, UK ; The LonDownS Consortium London, UK
| | - Elizabeth M C Fisher
- Department of Neurodegenerative Disease, Institute of Neurology, University College London London, UK ; The LonDownS Consortium London, UK
| |
Collapse
|
41
|
Ritter A, Cummings J. Fluid Biomarkers in Clinical Trials of Alzheimer's Disease Therapeutics. Front Neurol 2015; 6:186. [PMID: 26379620 PMCID: PMC4553391 DOI: 10.3389/fneur.2015.00186] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/10/2015] [Indexed: 02/02/2023] Open
Abstract
With the demographic shift of the global population toward longer life expectancy, the number of people living with Alzheimer’s disease (AD) has rapidly expanded and is projected to triple by the year 2050. Current treatments provide symptomatic relief but do not affect the underlying pathology of the disease. Therapies that prevent or slow the progression of the disease are urgently needed to avoid this growing public health emergency. Insights gained from decades of research have begun to unlock the pathophysiology of this complex disease and have provided targets for disease-modifying therapies. In the last decade, few therapeutic agents designed to modify the underlying disease process have progressed to clinical trials and none have been brought to market. With the focus on disease modification, biomarkers promise to play an increasingly important role in clinical trials. Six biomarkers have now been included in diagnostic criteria for AD and are regularly incorporated into clinical trials. Three biomarkers are neuroimaging measures – hippocampal atrophy measured by magnetic resonance imaging (MRI), amyloid uptake as measured by Pittsburg compound B positron emission tomography (PiB-PET), and decreased fluorodeoxyglucose (18F) uptake as measured by PET (FDG-PET) – and three are sampled from fluid sources – cerebrospinal fluid levels of amyloid β42 (Aβ42), total tau, and phosphorylated tau. Fluid biomarkers are important because they can provide information regarding the underlying biochemical processes that are occurring in the brain. The purpose of this paper is to review the literature regarding the existing and emerging fluid biomarkers and to examine how fluid biomarkers have been incorporated into clinical trials.
Collapse
Affiliation(s)
- Aaron Ritter
- Cleveland Clinic Lou Ruvo Center for Brain Health , Las Vegas, NV , USA
| | - Jeffrey Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health , Las Vegas, NV , USA
| |
Collapse
|
42
|
Opportunities for Conformation-Selective Antibodies in Amyloid-Related Diseases. Antibodies (Basel) 2015. [DOI: 10.3390/antib4030170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
43
|
Fiala M, Halder RC, Sagong B, Ross O, Sayre J, Porter V, Bredesen DE. ω-3 Supplementation increases amyloid-β phagocytosis and resolvin D1 in patients with minor cognitive impairment. FASEB J 2015; 29:2681-9. [PMID: 25805829 DOI: 10.1096/fj.14-264218] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 03/04/2015] [Indexed: 12/14/2022]
Abstract
We investigated the effects of 4-17 month supplementation with ω-3 fatty acids and antioxidants (Smartfish drink; Smartfish AS, Oslo, Norway) in 12 patients with minor cognitive impairment (MCI) [minimental state examination (MMSE) ≥19], 2 patients with pre-MCI (normal MMSE), and 7 patients with Alzheimer disease (AD) (MMSE <19). We measured the phagocytosis of amyloid-β 1-42 (Aβ) by flow cytometry and microscopy, the transcription of inflammatory genes by RT-PCR, the production of resolvin D1 (RvD1) by enzyme immunoassay, and the cognitive status by MMSE. In patients with MCI and pre-MCI, phagocytosis of Aβ by monocytes increased from 530 to 1306 mean fluorescence intensity units (P = 0.016). The increase in patients with AD was not significant (N.S.). The lipidic mediator RvD1, which stimulates Aβ phagocytosis in vitro, increased in macrophages in 80% of patients with MCI and pre-MCI (mean increase 9.95 pg/ml) (N.S.). Transcription of inflammatory genes' mRNAs was increased in a subgroup of patients with low transcription at baseline, whereas it was not significantly changed in patients with high transcription at baseline. The mean MMSE score of patients with MCI and pre-MCI was 25.9 at baseline and 25.7 after 4-17 months (N.S.). Our study is the first to show significant immune and biochemical effects of ω-3 fatty acids with antioxidants in patients with MCI. Cognitive benefits of ω-3 supplementation in patients with MCI should be tested in a clinical trial.
Collapse
Affiliation(s)
- Milan Fiala
- *Department of Surgery and Department of Neurology, University of California, Los Angeles, School of Medicine, Los Angeles, California, USA; and Department of Biostatistics, University of California, Los Angeles, School of Public Health, Los Angeles, California, USA
| | - Ramesh C Halder
- *Department of Surgery and Department of Neurology, University of California, Los Angeles, School of Medicine, Los Angeles, California, USA; and Department of Biostatistics, University of California, Los Angeles, School of Public Health, Los Angeles, California, USA
| | - Bien Sagong
- *Department of Surgery and Department of Neurology, University of California, Los Angeles, School of Medicine, Los Angeles, California, USA; and Department of Biostatistics, University of California, Los Angeles, School of Public Health, Los Angeles, California, USA
| | - Olivia Ross
- *Department of Surgery and Department of Neurology, University of California, Los Angeles, School of Medicine, Los Angeles, California, USA; and Department of Biostatistics, University of California, Los Angeles, School of Public Health, Los Angeles, California, USA
| | - James Sayre
- *Department of Surgery and Department of Neurology, University of California, Los Angeles, School of Medicine, Los Angeles, California, USA; and Department of Biostatistics, University of California, Los Angeles, School of Public Health, Los Angeles, California, USA
| | - Verna Porter
- *Department of Surgery and Department of Neurology, University of California, Los Angeles, School of Medicine, Los Angeles, California, USA; and Department of Biostatistics, University of California, Los Angeles, School of Public Health, Los Angeles, California, USA
| | - Dale E Bredesen
- *Department of Surgery and Department of Neurology, University of California, Los Angeles, School of Medicine, Los Angeles, California, USA; and Department of Biostatistics, University of California, Los Angeles, School of Public Health, Los Angeles, California, USA
| |
Collapse
|
44
|
Amyloid-β pathology is attenuated by tauroursodeoxycholic acid treatment in APP/PS1 mice after disease onset. Neurobiol Aging 2014; 36:228-40. [PMID: 25443293 DOI: 10.1016/j.neurobiolaging.2014.08.034] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/31/2014] [Accepted: 08/12/2014] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder hallmarked by the accumulation of extracellular amyloid-β (Aβ) peptide and intraneuronal hyperphosphorylated tau, as well as chronic neuroinflammation. Tauroursodeoxycholic acid (TUDCA) is an endogenous anti-apoptotic bile acid with potent neuroprotective properties in several experimental models of AD. We have previously reported the therapeutic efficacy of TUDCA treatment before amyloid plaque deposition in APP/PS1 double-transgenic mice. In the present study, we evaluated the protective effects of TUDCA when administrated after the onset of amyloid pathology. APP/PS1 transgenic mice with 7 months of age were injected intraperitoneally with TUDCA (500 mg/kg) every 3 days for 3 months. TUDCA treatment significantly attenuated Aβ deposition in the brain, with a concomitant decrease in Aβ₁₋₄₀ and Aβ₁₋₄₂ levels. The amyloidogenic processing of amyloid precursor protein was also reduced, indicating that TUDCA interferes with Aβ production. In addition, TUDCA abrogated GSK3β hyperactivity, which is highly implicated in tau hyperphosphorylation and glial activation. This effect was likely dependent on the specific activation of the upstream kinase, Akt. Finally, TUDCA treatment decreased glial activation and reduced proinflammatory cytokine messenger RNA expression, while partially rescuing synaptic loss. Overall, our results suggest that TUDCA is a promising therapeutic strategy not only for prevention but also for treatment of AD after disease onset.
Collapse
|
45
|
Peng J, Guo K, Xia J, Zhou J, Yang J, Westaway D, Wishart DS, Li L. Development of isotope labeling liquid chromatography mass spectrometry for mouse urine metabolomics: quantitative metabolomic study of transgenic mice related to Alzheimer's disease. J Proteome Res 2014; 13:4457-69. [PMID: 25164377 DOI: 10.1021/pr500828v] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Because of a limited volume of urine that can be collected from a mouse, it is very difficult to apply the common strategy of using multiple analytical techniques to analyze the metabolites to increase the metabolome coverage for mouse urine metabolomics. We report an enabling method based on differential isotope labeling liquid chromatography mass spectrometry (LC-MS) for relative quantification of over 950 putative metabolites using 20 μL of urine as the starting material. The workflow involves aliquoting 10 μL of an individual urine sample for ¹²C-dansylation labeling that target amines and phenols. Another 10 μL of aliquot was taken from each sample to generate a pooled sample that was subjected to ¹³C-dansylation labeling. The ¹²C-labeled individual sample was mixed with an equal volume of the ¹³C-labeled pooled sample. The mixture was then analyzed by LC-MS to generate information on metabolite concentration differences among different individual samples. The interday repeatability for the LC-MS runs was assessed, and the median relative standard deviation over 4 days was 5.0%. This workflow was then applied to a metabolomic biomarker discovery study using urine samples obtained from the TgCRND8 mouse model of early onset familial Alzheimer's disease (FAD) throughout the course of their pathological deposition of beta amyloid (Aβ). It was showed that there was a distinct metabolomic separation between the AD prone mice and the wild type (control) group. As early as 15-17 weeks of age (presymptomatic), metabolomic differences were observed between the two groups, and after the age of 25 weeks the metabolomic alterations became more pronounced. The metabolomic changes at different ages corroborated well with the phenotype changes in this transgenic mice model. Several useful candidate biomarkers including methionine, desaminotyrosine, taurine, N1-acetylspermidine, and 5-hydroxyindoleacetic acid were identified. Some of them were found in previous metabolomics studies in human cerebrospinal fluid or blood samples. This work illustrates the utility of this isotope labeling LC-MS method for biomarker discovery using mouse urine metabolomics.
Collapse
Affiliation(s)
- Jun Peng
- Department of Chemistry, ‡Department of Computing Science, §Department of Biological Sciences, and ∥Centre for Prions and Protein Folding Diseases, University of Alberta , Edmonton, Alberta T6G 2R3, Canada
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Adipose and leptomeningeal arteriole endothelial dysfunction induced by β-amyloid peptide: a practical human model to study Alzheimer's disease vasculopathy. J Neurosci Methods 2014; 235:123-9. [PMID: 25004204 DOI: 10.1016/j.jneumeth.2014.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 05/07/2014] [Accepted: 06/11/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Evidence point to vascular dysfunction and hypoperfusion as early abnormalities in Alzheimer's disease (AD); probing their mechanistic bases can lead to new therapeutic approaches. We tested the hypotheses that β-amyloid peptide induces endothelial dysfunction and oxidative stress in human microvasculature and that response will be similar between peripheral adipose and brain leptomeningeal arterioles. NEW METHOD Abdominal subcutaneous arterioles from living human subjects (n=17) and cadaver leptomeningeal arterioles (n=6) from rapid autopsy were exposed to Aβ1-42 (Aβ) for 1-h and dilation response to acetylcholine/papaverine were measured and compared to baseline response. Adipose arteriole reactive oxygen species (ROS) production and nitrotyrosine content were measured. COMPARISON WITH EXISTING METHODS Methods described allow direct investigation of human microvessel functional response that cannot be replicated by human noninvasive imaging or post-mortem histology. RESULTS Adipose arterioles exposed to 2 μM Aβ showed impaired dilation to acetylcholine that was reversed by antioxidant polyethylene glycol superoxide dismutase (PEG-SOD) (Aβ-60.9 ± 6%, control-93.2 ± 1.8%, Aβ+PEGSOD-84.7 ± 3.9%, both p<0.05 vs. Aβ). Aβ caused reduced dilation to papaverine. Aβ increased adipose arteriole ROS production and increased arteriole nitrotyrosine content. Leptomeningeal arterioles showed similar impaired response to acetylcholine when exposed to Aβ (43.0 ± 6.2% versus 81.1 ± 5.7% control, p<0.05). CONCLUSION Aβ exposure induced adipose arteriole endothelial and non-endothelial dysfunction and oxidative stress that were reversed by antioxidant treatment. Aβ-induced endothelial dysfunction was similar between peripheral adipose and leptomeningeal arterioles. Ex vivo living adipose and cadaver leptomeningeal arterioles are viable, novel and practical human tissue models to study Alzheimer's vascular pathophysiology.
Collapse
|
47
|
Chronic neuroinflammation in Alzheimer's disease: new perspectives on animal models and promising candidate drugs. BIOMED RESEARCH INTERNATIONAL 2014; 2014:309129. [PMID: 25025046 PMCID: PMC4083880 DOI: 10.1155/2014/309129] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/14/2014] [Accepted: 05/14/2014] [Indexed: 12/03/2022]
Abstract
Chronic neuroinflammation is now considered one of the major factors in the pathogenesis of Alzheimer's disease (AD). However, the most widely used transgenic AD models (overexpressing mutated forms of amyloid precursor protein, presenilin, and/or tau) do not demonstrate the degree of inflammation, neurodegeneration (particularly of the cholinergic system), and cognitive decline that is comparable with the human disease. Hence a more suitable animal model is needed to more closely mimic the resulting cognitive decline and memory loss in humans in order to investigate the effects of neuroinflammation on neurodegeneration. One of these models is the glial fibrillary acidic protein-interleukin 6 (GFAP-IL6) mouse, in which chronic neuroinflammation triggered constitutive expression of the cytokine interleukin-6 (IL-6) in astrocytes. These transgenic mice show substantial and progressive neurodegeneration as well as a decline in motor skills and cognitive function, starting from 6 months of age. This animal model could serve as an excellent tool for drug discovery and validation in vivo. In this review, we have also selected three potential anti-inflammatory drugs, curcumin, apigenin, and tenilsetam, as candidate drugs, which could be tested in this model.
Collapse
|
48
|
Hunter S, Brayne C. Integrating the molecular and the population approaches to dementia research to help guide the future development of appropriate therapeutics. Biochem Pharmacol 2014; 88:652-60. [DOI: 10.1016/j.bcp.2013.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/18/2013] [Accepted: 12/18/2013] [Indexed: 12/13/2022]
|
49
|
Härtig W, Saul A, Kacza J, Grosche J, Goldhammer S, Michalski D, Wirths O. Immunolesion-induced loss of cholinergic projection neurones promotes β-amyloidosis and tau hyperphosphorylation in the hippocampus of triple-transgenic mice. Neuropathol Appl Neurobiol 2014; 40:106-20. [DOI: 10.1111/nan.12050] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/28/2013] [Indexed: 01/13/2023]
Affiliation(s)
- W. Härtig
- Paul Flechsig Institute for Brain Research; University of Leipzig; Leipzig Germany
| | - A. Saul
- Division of Molecular Psychiatry; Department of Psychiatry; University of Göttingen; Göttingen Germany
| | - J. Kacza
- Institute of Anatomy, Histology and Embryology; Faculty of Veterinary Medicine; University of Leipzig; Leipzig Germany
| | - J. Grosche
- Paul Flechsig Institute for Brain Research; University of Leipzig; Leipzig Germany
| | - S. Goldhammer
- Paul Flechsig Institute for Brain Research; University of Leipzig; Leipzig Germany
| | - D. Michalski
- Department of Neurology; University of Leipzig; Leipzig Germany
| | - O. Wirths
- Division of Molecular Psychiatry; Department of Psychiatry; University of Göttingen; Göttingen Germany
| |
Collapse
|
50
|
Zetzsche T, Rujescu D, Hardy J, Hampel H. Advances and perspectives from genetic research: development of biological markers in Alzheimer’s disease. Expert Rev Mol Diagn 2014; 10:667-90. [PMID: 20629514 DOI: 10.1586/erm.10.48] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Thomas Zetzsche
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Nussbaumstrasse 7, Munich, Germany. thomas.zetzsche@ med.uni-muenchen.de
| | | | | | | |
Collapse
|