1
|
Lee D, Antonsdottir IM, Clark ED, Porsteinsson AP. Review of valiltramiprosate (ALZ-801) for the treatment of Alzheimer's disease: a novel small molecule with disease modifying potential. Expert Opin Pharmacother 2024; 25:791-799. [PMID: 38814590 DOI: 10.1080/14656566.2024.2360069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a neurodegenerative condition characterized by progressive cognitive deterioration, functional impairments, and neuropsychiatric symptoms. Valiltramiprosate is a tramiprosate prodrug being investigated as a novel treatment for AD. AREAS COVERED The online databases PubMed, Embase, Web of Science, Cochrane Library, and ClinicalTrials.gov were searched using the terms 'ALZ-801' or 'valiltramiprosate.' Alzheon press releases were reviewed for emerging clinical information. Valiltramiprosate is an oral, well-tolerated synthetic valine-conjugate prodrug of tramiprosate. Valiltramiprosate's active metabolite include tramiprosate and 3-sulfopropanoic acid. Proposed mechanism of action is multiligand binding to Aβ42 which stabilizes amyloid monomers to prevent peptide aggregation and oligomerization. Pharmacokinetic studies show 52% oral bioavailability, rapid absorption, approximately 40% brain-drug exposure, and near complete renal clearance. Compared to tramiprosate, valiltramiprosate extends plasma tramiprosate half-life and improves interindividual pharmacokinetic variability. Interim analyses from valiltramiprosate's phase II biomarker trial show: (1) significant reductions in plasma p-tau181 and related AD fluid biomarkers; (2) brain structure preservation and reduced hippocampal atrophy by MRI; and (3) improvements on cognitive assessments at multiple timepoints. Its phase III clinical trial in ApoE ε4 homozygotes is near completion. EXPERT OPINION Valiltramiprosate's clinical trial data show early indications of efficacy with potential disease modifying effect in AD.
Collapse
Affiliation(s)
- Daniel Lee
- Alzheimer's Disease Care, Research and Education (AD-CARE), Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Inga M Antonsdottir
- Johns Hopkins School of Nursing, Baltimore, MD, USA
- Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Department of Psychiatry and Behavioral Sciences, Johns Hopkins Bayview, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Emily D Clark
- Alzheimer's Disease Care, Research and Education (AD-CARE), Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Anton P Porsteinsson
- Alzheimer's Disease Care, Research and Education (AD-CARE), Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
2
|
Imbimbo BP, Ippati S, Watling M, Imbimbo C. Role of monomeric amyloid-β in cognitive performance in Alzheimer's disease: Insights from clinical trials with secretase inhibitors and monoclonal antibodies. Pharmacol Res 2023; 187:106631. [PMID: 36586644 DOI: 10.1016/j.phrs.2022.106631] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
According to the β-amyloid (Aβ) hypothesis of Alzheimer's disease (AD), brain Aβ accumulation is the primary cascade event leading to cognitive deficit and dementia. Numerous anti-Aβ drugs either inhibiting production or aggregation of Aβ or stimulating its clearance have failed to show clinical benefit in large scale AD trials, with β- and γ-secretase inhibitors consistently worsening cognitive and clinical decline. In June 2021, the FDA approved aducanumab, an anti-Aβ monoclonal antibody for early AD based on its ability to reduce brain amyloid plaques, while two other amyloid-clearing antibodies (lecanemab and donanemab) have recently produced encouraging cognitive and clinical results. We reviewed AD trials using PubMed, meeting abstracts and ClinicalTrials.gov and evaluated the effects of such drugs on cerebrospinal fluid (CSF) Aβ levels, correlating them with cognitive effects. We found that β-secretase and γ-secretase inhibitors produce detrimental cognitive effects by significantly reducing CSF Aβ levels. We speculate that monoclonal antibodies targeting Aβ protofibrils, fibrils or plaques may improve cognitive performance in early AD by increasing soluble Aβ levels through Aβ aggregate disassembly and/or stabilization of existing Aβ monomers.These findings suggest that the real culprit in AD may be decreased levels of soluble monomeric Aβ due to sequestration into brain Aβ aggregates and plaques.
Collapse
Affiliation(s)
- Bruno P Imbimbo
- Department of Research & Development, Chiesi Farmaceutici, Parma, Italy.
| | - Stefania Ippati
- San Raffaele Scientific Institute, San Raffaele Hospital, 20132 Milan, Italy
| | - Mark Watling
- CNS & Pain Department, TranScrip Ltd, Reading, UK
| | - Camillo Imbimbo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
3
|
Zhi D, Yang W, Yue J, Xu S, Ma W, Zhao C, Wang X, Wang D. HSF-1 mediated combined ginsenosides ameliorating Alzheimer's disease like symptoms in Caernorhabditis elegans. Nutr Neurosci 2021; 25:2136-2148. [PMID: 34263695 DOI: 10.1080/1028415x.2021.1949791] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
There are few effective medications to treat Alzheimer's disease (AD). It has been suggested that several ginsenosides possess mild or moderate anti-AD activity. In our present work, a preferred combined ginsenosides was shown to have a more significant benefit effect on AD-like symptoms of worm paralysis and hypersensitivity to exogenous 5-HT in C. elegans. The combined ginsenosides can suppress Aβ deposits and Aβ oligomers, alleviating the toxicity induced by Aβ overexpression more effectively than used alone. Its anti-AD effect was partially abolished by hsf-1 RNAi knocked down or hsf-1 inactivation by point mutation, but not by daf-16 or skn-1 RNAi knocked down. Furthermore, it markedly activated hsp-16.2 gene expression downstream of HSF-1. Our results demonstrated that HSF-1 signaling pathway exerts an important role in mediating the therapeutic effect of combined ginsenosides on AD worms. These results provided powerful evidences and theoretical foundation for reshaping medicinal products of ginsenosides and ginseng on prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Dejuan Zhi
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Wenqi Yang
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Juan Yue
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Shuaishuai Xu
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Wenjuan Ma
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Chengmu Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Xin Wang
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Dongsheng Wang
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| |
Collapse
|
4
|
Lozupone M, Solfrizzi V, D'Urso F, Di Gioia I, Sardone R, Dibello V, Stallone R, Liguori A, Ciritella C, Daniele A, Bellomo A, Seripa D, Panza F. Anti-amyloid-β protein agents for the treatment of Alzheimer's disease: an update on emerging drugs. Expert Opin Emerg Drugs 2020; 25:319-335. [PMID: 32772738 DOI: 10.1080/14728214.2020.1808621] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Currently available Alzheimer's disease (AD) therapeutics are only symptomatic, targeting cholinergic and glutamatergic neurotransmissions. Several putative disease-modifying drugs in late-stage clinical development target amyloid-β (Aβ) peptide and tau protein, the principal neurophatological hallmarks of the disease. AREAS COVERED Phase III randomized clinical trials of anti-Aβ drugs for AD treatment were searched in US and EU clinical trial registries and principal biomedical databases until May 2020. EXPERT OPINION At present, compounds in Phase III clinical development for AD include four anti-Ab monoclonal antibodies (solanezumab, gantenerumab, aducanumab, BAN2401), the combination of cromolyn sodium and ibuprofen (ALZT-OP1), and two small molecules (levetiracetam, GV-971). These drugs are mainly being tested in subjects during early AD phases or at preclinical stage of familial AD or even in asymptomatic subjects at high risk of developing AD. The actual results support the hypothesis that elevated Aβ represents an early stage in the AD continuum and demonstrate the feasibility of enrolling these high-risk participants in secondary prevention trials to slow cognitive decline during the AD preclinical stages. However, a series of clinical failures may question further development of Aβ-targeting drugs and the findings from current ongoing Phase III trials will hopefully give light to this critical issue.
Collapse
Affiliation(s)
- Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro , Bari, Italy
| | - Vincenzo Solfrizzi
- "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari "Aldo Moro" , Bari, Italy
| | - Francesca D'Urso
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia , Foggia, Italy
| | - Ilaria Di Gioia
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia , Foggia, Italy
| | - Rodolfo Sardone
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy
| | - Vittorio Dibello
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy.,Department of Orofacial Pain and Dysfunction, Academic Centre of Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , The Netherlands
| | - Roberta Stallone
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy
| | - Angelo Liguori
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy
| | - Chiara Ciritella
- Physical and Rehabilitation Medicine Department, University of Foggia , Foggia, Italy
| | - Antonio Daniele
- Institute of Neurology, Catholic University of Sacred Heart , Rome, Italy.,Institute of Neurology, Fondazione Policlinico Universitario A. Gemelli IRCCS , Rome, Italy
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia , Foggia, Italy
| | - Davide Seripa
- Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS Casa Sollievo Della Sofferenza , Foggia, Italy.,Hematology and Stem Cell Transplant Unit, Vito Fazzi Hospital, ASL Lecce , Lecce, Italy
| | - Francesco Panza
- Population Health Unit - "Salus in Apulia Study" - National Institute of Gastroenterology, "Saverio De Bellis", Research Hospital , Bari, Italy
| |
Collapse
|
5
|
Panza F, Lozupone M, Solfrizzi V, Watling M, Imbimbo BP. Time to test antibacterial therapy in Alzheimer's disease. Brain 2020; 142:2905-2929. [PMID: 31532495 DOI: 10.1093/brain/awz244] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease is associated with cerebral accumulation of amyloid-β peptide and hyperphosphorylated tau. In the past 28 years, huge efforts have been made in attempting to treat the disease by reducing brain accumulation of amyloid-β in patients with Alzheimer's disease, with no success. While anti-amyloid-β therapies continue to be tested in prodromal patients with Alzheimer's disease and in subjects at risk of developing Alzheimer's disease, there is an urgent need to provide therapeutic support to patients with established Alzheimer's disease for whom current symptomatic treatment (acetylcholinesterase inhibitors and N-methyl d-aspartate antagonist) provide limited help. The possibility of an infectious aetiology for Alzheimer's disease has been repeatedly postulated over the past three decades. Infiltration of the brain by pathogens may act as a trigger or co-factor for Alzheimer's disease, with Herpes simplex virus type 1, Chlamydia pneumoniae, and Porphyromonas gingivalis being most frequently implicated. These pathogens may directly cross a weakened blood-brain barrier, reach the CNS and cause neurological damage by eliciting neuroinflammation. Alternatively, pathogens may cross a weakened intestinal barrier, reach vascular circulation and then cross blood-brain barrier or cause low grade chronic inflammation and subsequent neuroinflammation from the periphery. The gut microbiota comprises a complex community of microorganisms. Increased permeability of the gut and blood-brain barrier induced by microbiota dysbiosis may impact Alzheimer's disease pathogenesis. Inflammatory microorganisms in gut microbiota are associated with peripheral inflammation and brain amyloid-β deposition in subjects with cognitive impairment. Oral microbiota may also influence Alzheimer's disease risk through circulatory or neural access to the brain. At least two possibilities can be envisaged to explain the association of suspected pathogens and Alzheimer's disease. One is that patients with Alzheimer's disease are particularly prone to microbial infections. The other is that microbial infection is a contributing cause of Alzheimer's disease. Therapeutic trials with antivirals and/or antibacterials could resolve this dilemma. Indeed, antiviral agents are being tested in patients with Alzheimer's disease in double-blind placebo-controlled studies. Although combined antibiotic therapy was found to be effective in animal models of Alzheimer's disease, antibacterial drugs are not being widely investigated in patients with Alzheimer's disease. This is because it is not clear which bacterial populations in the gut of patients with Alzheimer's disease are overexpressed and if safe, selective antibacterials are available for them. On the other hand, a bacterial protease inhibitor targeting P. gingivalis toxins is now being tested in patients with Alzheimer's disease. Clinical studies are needed to test if countering bacterial infection may be beneficial in patients with established Alzheimer's disease.
Collapse
Affiliation(s)
- Francesco Panza
- Unit of Epidemiological Research on Aging, National Institute of Gastroenterology 'Saverio de Bellis', Research Hospital, Castellana Grotte, Bari, Italy
| | - Madia Lozupone
- Unit of Epidemiological Research on Aging, National Institute of Gastroenterology 'Saverio de Bellis', Research Hospital, Castellana Grotte, Bari, Italy
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Solfrizzi
- 'C. Frugoni' Internal and Geriatric Medicine and Memory Unit, University of Bari Aldo Moro, Bari, Italy
| | - Mark Watling
- Department of Research and Development, Chiesi Farmaceutici, Parma, Italy
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, Parma, Italy
| |
Collapse
|
6
|
Neuroinflammation and Neurogenesis in Alzheimer's Disease and Potential Therapeutic Approaches. Int J Mol Sci 2020; 21:ijms21030701. [PMID: 31973106 PMCID: PMC7037892 DOI: 10.3390/ijms21030701] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 12/17/2022] Open
Abstract
In adult brain, new neurons are generated throughout adulthood in the subventricular zone and the dentate gyrus; this process is commonly known as adult neurogenesis. The regulation or modulation of adult neurogenesis includes various intrinsic pathways (signal transduction pathway and epigenetic or genetic modulation pathways) or extrinsic pathways (metabolic growth factor modulation, vascular, and immune system pathways). Altered neurogenesis has been identified in Alzheimer's disease (AD), in both human AD brains and AD rodent models. The exact mechanism of the dysregulation of adult neurogenesis in AD has not been completely elucidated. However, neuroinflammation has been demonstrated to alter adult neurogenesis. The presence of various inflammatory components, such as immune cells, cytokines, or chemokines, plays a role in regulating the survival, proliferation, and maturation of neural stem cells. Neuroinflammation has also been considered as a hallmark neuropathological feature of AD. In this review, we summarize current, state-of-the art perspectives on adult neurogenesis, neuroinflammation, and the relationship between these two phenomena in AD. Furthermore, we discuss the potential therapeutic approaches, focusing on the anti-inflammatory and proneurogenic interventions that have been reported in this field.
Collapse
|
7
|
Marra A, Naro A, Chillura A, Bramanti A, Maresca G, De Luca R, Manuli A, Bramanti P, Calabrò RS. Evaluating Peripersonal Space through the Functional Transcranial Doppler: Are We Paving the Way for Early Detecting Mild Cognitive Impairment to Dementia Conversion? J Alzheimers Dis 2019; 62:133-143. [PMID: 29439353 DOI: 10.3233/jad-170973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Identifying the patients with mild cognitive impairment (MCI) who may develop dementia (MDC) is challenging. The study of peripersonal space (PPS) by using functional transcranial Doppler (fTCD) could be used for this purpose. OBJECTIVE To identify changes in cerebral blood flow (CBF) during motor tasks targeting PPS, which can predict MDC. METHODS We evaluated the changes in CBF in 22 patients with MCI and 23 with dementia [Alzheimer's disease (AD) and vascular dementia (VaD)] during a motor task (passive mobilization, motor imagery, and movement observation) in which the hand of the subject moved forward and backward the face. RESULTS CBF increased when the hand approached the face and decreased when the hand moved from the face in the healthy controls (HCs). CBF changed were detectable only in patients with MCI but not in those with the AD and those who were MDC after 8-month follow-up. On the other hand, the patients with VaD presented a paradoxical response to the motor task (i.e., a decrease of CBF rather than an increase, as observed in HCs and MCI). Therefore, we found a modulation of PPS-related CBF only in HCs and patients with stable MCI (at the 8-month follow-up). CONCLUSIONS fTCD may allow preliminarily differentiating and following-up the patients with MCI and MDC, thus allowing the physician to plan beforehand more individualized cognitive rehabilitative training.
Collapse
Affiliation(s)
- Angela Marra
- IRCCS centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | - Antonino Naro
- IRCCS centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Panza F, Lozupone M, Seripa D, Imbimbo BP. Amyloid-β immunotherapy for alzheimer disease: Is it now a long shot? Ann Neurol 2019; 85:303-315. [PMID: 30635926 DOI: 10.1002/ana.25410] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 01/01/2023]
Abstract
The amyloid-β (Aβ) cascade hypothesis of Alzheimer disease (AD) holds that brain accumulation of Aβ initiates the disease process. Accordingly, drug research has targeted Aβ production, clearance, and deposition as therapeutic strategies. Unfortunately, candidate drugs have failed to show clinical benefit in established, early, or prodromal disease, or in those with high AD risk. Currently, monoclonal antibodies specifically directed against the most neurotoxic Aβ forms are undergoing large-scale trials to confirm initially encouraging results. However, recent findings on the normal physiology of Aβ suggest that accumulation may be compensatory rather than the pathological initiator. If this is true, alternative strategies will be needed to defeat this devastating disease. ANN NEUROL 2019;85:303-315.
Collapse
Affiliation(s)
- Francesco Panza
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Neurodegenerative Disease Unit, Department of Clinical Research in Neurology, University of Bari Aldo Moro, Cardinal G. Panico Pious Foundation, Tricase, Italy.,Geriatric Unit, Home Relief of Suffering, Institute of Hospitalization and Scientific Care Foundation, San Giovanni Rotondo, Italy
| | - Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Davide Seripa
- Geriatric Unit, Home Relief of Suffering, Institute of Hospitalization and Scientific Care Foundation, San Giovanni Rotondo, Italy
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Pharmaceuticals, Parma, Italy
| |
Collapse
|
9
|
Panza F, Lozupone M, Logroscino G, Imbimbo BP. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat Rev Neurol 2019; 15:73-88. [DOI: 10.1038/s41582-018-0116-6] [Citation(s) in RCA: 459] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Urbanova BS, Schwabova JP, Magerova H, Jansky P, Markova H, Vyhnalek M, Laczo J, Hort J, Tomek A. Reduced Cerebrovascular Reserve Capacity as a Biomarker of Microangiopathy in Alzheimer’s Disease and Mild Cognitive Impairment. J Alzheimers Dis 2018; 63:465-477. [DOI: 10.3233/jad-170815] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Barbora Soukupova Urbanova
- Department of Neurology, 2nd Faculty of Medicine, Motol University Hospital, Charles University, Prague, Czech Republic
| | - Jaroslava Paulasova Schwabova
- Department of Neurology, 2nd Faculty of Medicine, Motol University Hospital, Charles University, Prague, Czech Republic
| | - Hana Magerova
- Department of Neurology, 2nd Faculty of Medicine, Motol University Hospital, Charles University, Prague, Czech Republic
| | - Petr Jansky
- Department of Neurology, 2nd Faculty of Medicine, Motol University Hospital, Charles University, Prague, Czech Republic
| | - Hana Markova
- Department of Neurology, 2nd Faculty of Medicine, Motol University Hospital, Charles University, Prague, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Martin Vyhnalek
- Department of Neurology, 2nd Faculty of Medicine, Motol University Hospital, Charles University, Prague, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Jan Laczo
- Department of Neurology, 2nd Faculty of Medicine, Motol University Hospital, Charles University, Prague, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Jakub Hort
- Department of Neurology, 2nd Faculty of Medicine, Motol University Hospital, Charles University, Prague, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Ales Tomek
- Department of Neurology, 2nd Faculty of Medicine, Motol University Hospital, Charles University, Prague, Czech Republic
| |
Collapse
|
11
|
A Cross-Sectional Analysis of Late-Life Cardiovascular Factors and Their Relation to Clinically Defined Neurodegenerative Diseases. Alzheimer Dis Assoc Disord 2017; 30:223-9. [PMID: 26756386 DOI: 10.1097/wad.0000000000000138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Studies have demonstrated associations between cardiovascular factors and Alzheimer disease (AD) with minimal focus on other neurodegenerative diseases. Utilizing cross-sectional data from 17,532 individuals in the National Alzheimer's Coordinating Center, Uniform Data Set, we compared the presence of cardiovascular factors [body mass index (BMI), atrial fibrillation, hypertension, hyperlipidemia, and diabetes] in individuals carrying a diagnosis of Probable AD (ProbAD), Possible AD, vascular dementia, dementia with Lewy bodies (DLB), frontotemporal dementia, Parkinson disease, progressive supranuclear palsy, or corticobasal degeneration, with that of normals. Generalized linear mixed models were fitted with age at visit, gender, and cardiovascular factors as fixed effects and Alzheimer's Disease Centers as random effects. In late life, only BMI of ProbAD and DLB patients was statistically significantly lower than that in normals (P-values <0.001). When accounting for colinearity within cardiovascular factors, a low BMI was a comorbidity of certain dementia etiologies as compared with normals. These data support a concept of disease-specific associations with certain cardiovascular factors.
Collapse
|
12
|
Maarouf CL, Kokjohn TA, Walker DG, Whiteside CM, Kalback WM, Whetzel A, Sue LI, Serrano G, Jacobson SA, Sabbagh MN, Reiman EM, Beach TG, Roher AE. Biochemical assessment of precuneus and posterior cingulate gyrus in the context of brain aging and Alzheimer's disease. PLoS One 2014; 9:e105784. [PMID: 25166759 PMCID: PMC4148328 DOI: 10.1371/journal.pone.0105784] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/24/2014] [Indexed: 12/12/2022] Open
Abstract
Defining the biochemical alterations that occur in the brain during “normal” aging is an important part of understanding the pathophysiology of neurodegenerative diseases and of distinguishing pathological conditions from aging-associated changes. Three groups were selected based on age and on having no evidence of neurological or significant neurodegenerative disease: 1) young adult individuals, average age 26 years (n = 9); 2) middle-aged subjects, average age 59 years (n = 5); 3) oldest-old individuals, average age 93 years (n = 6). Using ELISA and Western blotting methods, we quantified and compared the levels of several key molecules associated with neurodegenerative disease in the precuneus and posterior cingulate gyrus, two brain regions known to exhibit early imaging alterations during the course of Alzheimer’s disease. Our experiments revealed that the bioindicators of emerging brain pathology remained steady or decreased with advancing age. One exception was S100B, which significantly increased with age. Along the process of aging, neurofibrillary tangle deposition increased, even in the absence of amyloid deposition, suggesting the presence of amyloid plaques is not obligatory for their development and that limited tangle density is a part of normal aging. Our study complements a previous assessment of neuropathology in oldest-old subjects, and within the limitations of the small number of individuals involved in the present investigation, it adds valuable information to the molecular and structural heterogeneity observed along the course of aging and dementia. This work underscores the need to examine through direct observation how the processes of amyloid deposition unfold or change prior to the earliest phases of dementia emergence.
Collapse
Affiliation(s)
- Chera L. Maarouf
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Tyler A. Kokjohn
- Department of Microbiology, Midwestern University, Glendale, Arizona, United States of America
| | - Douglas G. Walker
- Laboratory of Neuroinflammation, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Charisse M. Whiteside
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Walter M. Kalback
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Alexis Whetzel
- Laboratory of Neuroinflammation, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Lucia I. Sue
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Geidy Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Sandra A. Jacobson
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Marwan N. Sabbagh
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Eric M. Reiman
- Banner Alzheimer’s Institute, Phoenix, Arizona, United States of America
| | - Thomas G. Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Alex E. Roher
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
- * E-mail:
| |
Collapse
|
13
|
Long-term cognitive correlates of traumatic brain injury across adulthood and interactions with APOE genotype, sex, and age cohorts. J Int Neuropsychol Soc 2014; 20:444-54. [PMID: 24670469 DOI: 10.1017/s1355617714000174] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
There is continuing debate about long-term effects of brain injury. We examined a range of traumatic brain injury (TBI) variables (TBI history, severity, frequency, and age of injury) as predictors of cognitive outcome over 8 years in an adult population, and interactions with apolipoprotein E (APOE) genotype, sex, and age cohorts. Three randomly sampled age cohorts (20-24, 40-44, 60-64 years at baseline; N = 6333) were each evaluated three times over 8 years. TBI variables, based on self-report, were separately modeled as predictors of cognitive performance using linear mixed effects models. TBI predicted longitudinal cognitive decline in all three age groups. APOE ε4 + genotypes in the young and middle-aged groups predicted lower baseline cognitive performance in the context of TBI. Baseline cognitive performance was better for young females than males but this pattern reversed in middle age and old age. The findings suggest TBI history is associated with long-term cognitive impairment and decline across the adult lifespan. A role for APOE genotype was apparent in the younger cohorts but there was no evidence that it is associated with impairment in early old age. The effect of sex and TBI on cognition varied with age cohort, consistent with a proposed neuroprotective role for estrogen.
Collapse
|
14
|
Kokjohn TA, Maarouf CL, Daugs ID, Hunter JM, Whiteside CM, Malek-Ahmadi M, Rodriguez E, Kalback W, Jacobson SA, Sabbagh MN, Beach TG, Roher AE. Neurochemical profile of dementia pugilistica. J Neurotrauma 2013; 30:981-97. [PMID: 23268705 PMCID: PMC3684215 DOI: 10.1089/neu.2012.2699] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dementia pugilistica (DP), a suite of neuropathological and cognitive function declines after chronic traumatic brain injury (TBI), is present in approximately 20% of retired boxers. Epidemiological studies indicate TBI is a risk factor for neurodegenerative disorders including Alzheimer disease (AD) and Parkinson disease (PD). Some biochemical alterations observed in AD and PD may be recapitulated in DP and other TBI persons. In this report, we investigate long-term biochemical changes in the brains of former boxers with neuropathologically confirmed DP. Our experiments revealed biochemical and cellular alterations in DP that are complementary to and extend information already provided by histological methods. ELISA and one-dimensional and two dimensional Western blot techniques revealed differential expression of select molecules between three patients with DP and three age-matched non-demented control (NDC) persons without a history of TBI. Structural changes such as disturbances in the expression and processing of glial fibrillary acidic protein, tau, and α-synuclein were evident. The levels of the Aβ-degrading enzyme neprilysin were reduced in the patients with DP. Amyloid-β levels were elevated in the DP participant with the concomitant diagnosis of AD. In addition, the levels of brain-derived neurotrophic factor and the axonal transport proteins kinesin and dynein were substantially decreased in DP relative to NDC participants. Traumatic brain injury is a risk factor for dementia development, and our findings are consistent with permanent structural and functional damage in the cerebral cortex and white matter of boxers. Understanding the precise threshold of damage needed for the induction of pathology in DP and TBI is vital.
Collapse
Affiliation(s)
- Tyler A. Kokjohn
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
- Department of Microbiology, Midwestern University School of Medicine, Glendale, Arizona
| | - Chera L. Maarouf
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
| | - Ian D. Daugs
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
| | - Jesse M. Hunter
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
| | - Charisse M. Whiteside
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
| | - Michael Malek-Ahmadi
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, Sun City, Arizona
| | - Emma Rodriguez
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
- National Institute of Cardiology, Mexico City, Mexico
| | - Walter Kalback
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
| | - Sandra A. Jacobson
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, Sun City, Arizona
| | - Marwan N. Sabbagh
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, Sun City, Arizona
| | - Thomas G. Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona
| | - Alex E. Roher
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
| |
Collapse
|
15
|
Roher AE, Cribbs DH, Kim RC, Maarouf CL, Whiteside CM, Kokjohn TA, Daugs ID, Head E, Liebsack C, Serrano G, Belden C, Sabbagh MN, Beach TG. Bapineuzumab alters aβ composition: implications for the amyloid cascade hypothesis and anti-amyloid immunotherapy. PLoS One 2013; 8:e59735. [PMID: 23555764 PMCID: PMC3605408 DOI: 10.1371/journal.pone.0059735] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/17/2013] [Indexed: 11/23/2022] Open
Abstract
The characteristic neuropathological changes associated with Alzheimer’s disease (AD) and other lines of evidence support the amyloid cascade hypothesis. Viewing amyloid deposits as the prime instigator of dementia has now led to clinical trials of multiple strategies to remove or prevent their formation. We performed neuropathological and biochemical assessments of 3 subjects treated with bapineuzumab infusions. Histological analyses were conducted to quantify amyloid plaque densities, Braak stages and the extent of cerebral amyloid angiopathy (CAA). Amyloid-β (Aβ) species in frontal and temporal lobe samples were quantified by ELISA. Western blots of amyloid-β precursor protein (AβPP) and its C-terminal (CT) fragments as well as tau species were performed. Bapineuzumab-treated (Bapi-AD) subjects were compared to non-immunized age-matched subjects with AD (NI-AD) and non-demented control (NDC) cases. Our study revealed that Bapi-AD subjects exhibited overall amyloid plaque densities similar to those of NI-AD cases. In addition, CAA was moderate to severe in NI-AD and Bapi-AD patients. Although histologically-demonstrable leptomeningeal, cerebrovascular and neuroparenchymal-amyloid densities all appeared unaffected by treatment, Aβ peptide profiles were significantly altered in Bapi-AD subjects. There was a trend for reduction in total Aβ42 levels as well as an increase in Aβ40 which led to a corresponding significant decrease in Aβ42:Aβ40 ratio in comparison to NI-AD subjects. There were no differences in the levels of AβPP, CT99 and CT83 or tau species between Bapi-AD and NI-AD subjects. The remarkable alteration in Aβ profiles reveals a dynamic amyloid production in which removal and depositional processes were apparently perturbed by bapineuzumab therapy. Despite the alteration in biochemical composition, all 3 immunized subjects exhibited continued cognitive decline.
Collapse
Affiliation(s)
- Alex E Roher
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- Lon S Schneider
- Department of Psychiatry and the Behavioral Sciences, and Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
17
|
Morphological and pathological evolution of the brain microcirculation in aging and Alzheimer's disease. PLoS One 2012; 7:e36893. [PMID: 22615835 PMCID: PMC3353981 DOI: 10.1371/journal.pone.0036893] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/12/2012] [Indexed: 01/01/2023] Open
Abstract
Key pathological hallmarks of Alzheimer's disease (AD), including amyloid plaques, cerebral amyloid angiopathy (CAA) and neurofibrillary tangles do not completely account for cognitive impairment, therefore other factors such as cardiovascular and cerebrovascular pathologies, may contribute to AD. In order to elucidate the microvascular changes that contribute to aging and disease, direct neuropathological staining and immunohistochemistry, were used to quantify the structural integrity of the microvasculature and its innervation in three oldest-old cohorts: 1) nonagenarians with AD and a high amyloid plaque load; 2) nonagenarians with no dementia and a high amyloid plaque load; 3) nonagenarians without dementia or amyloid plaques. In addition, a non-demented (ND) group (average age 71 years) with no amyloid plaques was included for comparison. While gray matter thickness and overall brain mass were reduced in AD compared to ND control groups, overall capillary density was not different. However, degenerated string capillaries were elevated in AD, potentially suggesting greater microvascular "dysfunction" compared to ND groups. Intriguingly, apolipoprotein ε4 carriers had significantly higher string vessel counts relative to non-ε4 carriers. Taken together, these data suggest a concomitant loss of functional capillaries and brain volume in AD subjects. We also demonstrated a trend of decreasing vesicular acetylcholine transporter staining, a marker of cortical cholinergic afferents that contribute to arteriolar vasoregulation, in AD compared to ND control groups, suggesting impaired control of vasodilation in AD subjects. In addition, tyrosine hydroxylase, a marker of noradrenergic vascular innervation, was reduced which may also contribute to a loss of control of vasoconstriction. The data highlight the importance of the brain microcirculation in the pathogenesis and evolution of AD.
Collapse
|
18
|
Chuang JY, Lee CW, Shih YH, Yang T, Yu L, Kuo YM. Interactions between amyloid-β and hemoglobin: implications for amyloid plaque formation in Alzheimer's disease. PLoS One 2012; 7:e33120. [PMID: 22412990 PMCID: PMC3295782 DOI: 10.1371/journal.pone.0033120] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/10/2012] [Indexed: 02/05/2023] Open
Abstract
Accumulation of amyloid-β (Aβ) peptides in the brain is one of the central pathogenic events in Alzheimer's disease (AD). However, why and how Aβ aggregates within the brain of AD patients remains elusive. Previously, we demonstrated hemoglobin (Hb) binds to Aβ and co-localizes with the plaque and vascular amyloid deposits in post-mortem AD brains. In this study, we further characterize the interactions between Hb and Aβ in vitro and in vivo and report the following observations: 1) the binding of Hb to Aβ required iron-containing heme; 2) other heme-containing proteins, such as myoglobin and cytochrome C, also bound to Aβ; 3) hemin-induced cytotoxicity was reduced in neuroblastoma cells by low levels of Aβ; 4) Hb was detected in neurons and glial cells of post-mortem AD brains and was up-regulated in aging and APP/PS1 transgenic mice; 5) microinjection of human Hb into the dorsal hippocampi of the APP/PS1 transgenic mice induced the formation of an envelope-like structure composed of Aβ surrounding the Hb droplets. Our results reveal an enhanced endogenous expression of Hb in aging brain cells, probably serving as a compensatory mechanism against hypoxia. In addition, Aβ binds to Hb and other hemoproteins via the iron-containing heme moiety, thereby reducing Hb/heme/iron-induced cytotoxicity. As some of the brain Hb could be derived from the peripheral circulation due to a compromised blood-brain barrier frequently observed in aged and AD brains, our work also suggests the genesis of some plaques may be a consequence of sustained amyloid accretion at sites of vascular injury.
Collapse
Affiliation(s)
- Jia-Ying Chuang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chu-Wan Lee
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yao-Hsiang Shih
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Tingting Yang
- Division of Neuroscience and Neuropathology, The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Lung Yu
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
- Institute of Behavioral Medicine, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (LY); (YK)
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (LY); (YK)
| |
Collapse
|