1
|
Wittens MMJ, Allemeersch GJ, Sima DM, Vanderhasselt T, Raeymaeckers S, Fransen E, Smeets D, de Mey J, Bjerke M, Engelborghs S. Towards validation in clinical routine: a comparative analysis of visual MTA ratings versus the automated ratio between inferior lateral ventricle and hippocampal volumes in Alzheimer's disease diagnosis. Neuroradiology 2024; 66:487-506. [PMID: 38240767 PMCID: PMC10937807 DOI: 10.1007/s00234-024-03280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/28/2023] [Indexed: 03/14/2024]
Abstract
PURPOSE To assess the performance of the inferior lateral ventricle (ILV) to hippocampal (Hip) volume ratio on brain MRI, for Alzheimer's disease (AD) diagnostics, comparing it to individual automated ILV and hippocampal volumes, and visual medial temporal lobe atrophy (MTA) consensus ratings. METHODS One-hundred-twelve subjects (mean age ± SD, 66.85 ± 13.64 years) with varying degrees of cognitive decline underwent MRI using a Philips Ingenia 3T. The MTA scale by Scheltens, rated on coronal 3D T1-weighted images, was determined by three experienced radiologists, blinded to diagnosis and sex. Automated volumetry was computed by icobrain dm (v. 5.10) for total, left, right hippocampal, and ILV volumes. The ILV/Hip ratio, defined as the percentage ratio between ILV and hippocampal volumes, was calculated and compared against a normative reference population (n = 1903). Inter-rater agreement, association, classification accuracy, and clinical interpretability on patient level were reported. RESULTS Visual MTA scores showed excellent inter-rater agreement. Ordinal logistic regression and correlation analyses demonstrated robust associations between automated brain segmentations and visual MTA ratings, with the ILV/Hip ratio consistently outperforming individual hippocampal and ILV volumes. Pairwise classification accuracy showed good performance without statistically significant differences between the ILV/Hip ratio and visual MTA across disease stages, indicating potential interchangeability. Comparison to the normative population and clinical interpretability assessments showed commensurability in classifying MTA "severity" between visual MTA and ILV/Hip ratio measurements. CONCLUSION The ILV/Hip ratio shows the highest correlation to visual MTA, in comparison to automated individual ILV and hippocampal volumes, offering standardized measures for diagnostic support in different stages of cognitive decline.
Collapse
Affiliation(s)
- Mandy M J Wittens
- Dept. of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
- Dept. of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Av. du Laerbeek 101, 1090, Brussels, Belgium
| | - Gert-Jan Allemeersch
- Dept. of Radiology, Universitair Ziekenhuis Brussel (UZ Brussel), Av. du Laerbeek 101, 1090, Brussels, Belgium.
| | - Diana M Sima
- Icometrix, Kolonel Begaultlaan 1b, 3012, Leuven, Belgium
- AI Supported Modelling in Clinical Sciences (AIMS), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Tim Vanderhasselt
- Dept. of Radiology, Universitair Ziekenhuis Brussel (UZ Brussel), Av. du Laerbeek 101, 1090, Brussels, Belgium
| | - Steven Raeymaeckers
- Dept. of Radiology, Universitair Ziekenhuis Brussel (UZ Brussel), Av. du Laerbeek 101, 1090, Brussels, Belgium
| | - Erik Fransen
- StatUa Center for Statistics, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Dirk Smeets
- Icometrix, Kolonel Begaultlaan 1b, 3012, Leuven, Belgium
| | - Johan de Mey
- Dept. of Radiology, Universitair Ziekenhuis Brussel (UZ Brussel), Av. du Laerbeek 101, 1090, Brussels, Belgium
| | - Maria Bjerke
- Dept. of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
- NEUR (Neuroprotection & Neuromodulation), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Av. du Laerbeek 101, 1090, Brussels, Belgium
- Laboratory of Neurochemistry, Dept. of Clinical Chemistry, Universitair Ziekenhuis Brussel (UZ Brussel), Av. du Laerbeek 101, 1090, Brussels, Belgium
| | - Sebastiaan Engelborghs
- Dept. of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
- Dept. of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Av. du Laerbeek 101, 1090, Brussels, Belgium
- NEUR (Neuroprotection & Neuromodulation), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Av. du Laerbeek 101, 1090, Brussels, Belgium
| |
Collapse
|
2
|
Lalive HM, Griffa A, Carlier S, Nasuti M, Di Noto T, Maréchal B, Rouaud O, Allali G. Amnestic Syndrome in Memory Clinics: Similar Morphological Brain Patterns in Older Adults with and without Alzheimer's Disease. J Alzheimers Dis 2024; 100:333-343. [PMID: 38875037 DOI: 10.3233/jad-240026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Background Amnestic syndrome of the hippocampal type (ASHT) in Memory Clinics is a presentation common to Alzheimer's disease (AD). However, ASHT can be found in other neurodegenerative disorders. Objective To compare brain morphometry including hippocampal volumes between amnestic older adults with and without AD pathology and investigate their relationship with memory performance and cerebrospinal fluid (CSF) biomarkers. Methods Brain morphometry of 92 consecutive patients (72.5±6.8 years old; 39% female) with Free and Cued Selective Recall Reminding Test (FCSRT) total recall < 40/48 was assessed with an automated algorithm and compared between AD and non-AD patients, as defined by CSF biomarkers. Results AD and non-AD patients presented comparable brain morphology. Total recall was associated to hippocampal volume irrespectively from AD pathology. Conclusions Brain morphometry, including hippocampal volumes, is similar between AD and non-AD older adults with ASHT evaluated in a Memory Clinic, underlying the importance of using molecular biomarkers for the diagnosis of AD.
Collapse
Affiliation(s)
- Hadrien M Lalive
- Leenaards Memory Centre, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Alessandra Griffa
- Leenaards Memory Centre, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale De Lausanne - EPFL, Geneva, Switzerland
| | - Sabrina Carlier
- Leenaards Memory Centre, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Mirco Nasuti
- Leenaards Memory Centre, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Tommaso Di Noto
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
- Signal Processing Laboratory - LTS5, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne, Switzerland
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Bénédicte Maréchal
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
- Signal Processing Laboratory - LTS5, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne, Switzerland
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Olivier Rouaud
- Leenaards Memory Centre, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Gilles Allali
- Leenaards Memory Centre, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Yang MH, Kim EH, Choi ES, Ko H. Comparison of Normative Percentiles of Brain Volume Obtained from NeuroQuant ® vs. DeepBrain ® in the Korean Population: Correlation with Cranial Shape. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2023; 84:1080-1090. [PMID: 37869130 PMCID: PMC10585089 DOI: 10.3348/jksr.2023.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/13/2023] [Accepted: 04/15/2023] [Indexed: 10/24/2023]
Abstract
Purpose This study aimed to compare the volume and normative percentiles of brain volumetry in the Korean population using quantitative brain volumetric MRI analysis tools NeuroQuant® (NQ) and DeepBrain® (DB), and to evaluate whether the differences in the normative percentiles of brain volumetry between the two tools is related to cranial shape. Materials and Methods In this retrospective study, we analyzed the brain volume reports obtained from NQ and DB in 163 participants without gross structural brain abnormalities. We measured three-dimensional diameters to evaluate the cranial shape on T1-weighted images. Statistical analyses were performed using intra-class correlation coefficients and linear correlations. Results The mean normative percentiles of the thalamus (90.8 vs. 63.3 percentile), putamen (90.0 vs. 60.0 percentile), and parietal lobe (80.1 vs. 74.1 percentile) were larger in the NQ group than in the DB group, whereas that of the occipital lobe (18.4 vs. 68.5 percentile) was smaller in the NQ group than in the DB group. We found a significant correlation between the mean normative percentiles obtained from the NQ and cranial shape: the mean normative percentile of the occipital lobe increased with the anteroposterior diameter and decreased with the craniocaudal diameter. Conclusion The mean normative percentiles obtained from NQ and DB differed significantly for many brain regions, and these differences may be related to cranial shape.
Collapse
|
4
|
Bosco P, Lancione M, Retico A, Nigri A, Aquino D, Baglio F, Carne I, Ferraro S, Giulietti G, Napolitano A, Palesi F, Pavone L, Savini G, Tagliavini F, Bruzzone MG, Gandini Wheeler-Kingshott CAM, Tosetti M, Biagi L. Quality assessment, variability and reproducibility of anatomical measurements derived from T1-weighted brain imaging: The RIN-Neuroimaging Network case study. Phys Med 2023; 110:102577. [PMID: 37126963 DOI: 10.1016/j.ejmp.2023.102577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 03/01/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023] Open
Abstract
Initiatives for the collection of harmonized MRI datasets are growing continuously, opening questions on the reliability of results obtained in multi-site contexts. Here we present the assessment of the brain anatomical variability of MRI-derived measurements obtained from T1-weighted images, acquired according to the Standard Operating Procedures, promoted by the RIN-Neuroimaging Network. A multicentric dataset composed of 77 brain T1w acquisitions of young healthy volunteers (mean age = 29.7 ± 5.0 years), collected in 15 sites with MRI scanners of three different vendors, was considered. Parallelly, a dataset of 7 "traveling" subjects, each undergoing three acquisitions with scanners from different vendors, was also used. Intra-site, intra-vendor, and inter-site variabilities were evaluated in terms of the percentage standard deviation of volumetric and cortical thickness measures. Image quality metrics such as contrast-to-noise and signal-to-noise ratio in gray and white matter were also assessed for all sites and vendors. The results showed a measured global variability that ranges from 11% to 19% for subcortical volumes and from 3% to 10% for cortical thicknesses. Univariate distributions of the normalized volumes of subcortical regions, as well as the distributions of the thickness of cortical parcels appeared to be significantly different among sites in 8 subcortical (out of 17) and 21 cortical (out of 68) regions of i nterest in the multicentric study. The Bland-Altman analysis on "traveling" brain measurements did not detect systematic scanner biases even though a multivariate classification approach was able to classify the scanner vendor from brain measures with an accuracy of 0.60 ± 0.14 (chance level 0.33).
Collapse
Affiliation(s)
- Paolo Bosco
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Marta Lancione
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Alessandra Retico
- Pisa Division, INFN - National Institute for Nuclear Physics, Pisa, Italy
| | - Anna Nigri
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Domenico Aquino
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Irene Carne
- Neuroradiology Unit, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Stefania Ferraro
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Giovanni Giulietti
- Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy; SAIMLAL Department, Sapienza University of Rome, Rome, Italy
| | - Antonio Napolitano
- Medical Physics, IRCCS Istituto Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Fulvia Palesi
- Neuroradiology Unit, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Giovanni Savini
- Neuroradiology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Fabrizio Tagliavini
- Scientific Direction, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Grazia Bruzzone
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Claudia A M Gandini Wheeler-Kingshott
- Neuroradiology Unit, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square, Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Michela Tosetti
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris Foundation, Pisa, Italy.
| | - Laura Biagi
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris Foundation, Pisa, Italy
| |
Collapse
|
5
|
Bozek J, Griffanti L, Lau S, Jenkinson M. Normative models for neuroimaging markers: Impact of model selection, sample size and evaluation criteria. Neuroimage 2023; 268:119864. [PMID: 36621581 DOI: 10.1016/j.neuroimage.2023.119864] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/13/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Modelling population reference curves or normative modelling is increasingly used with the advent of large neuroimaging studies. In this paper we assess the performance of fitting methods from the perspective of clinical applications and investigate the influence of the sample size. Further, we evaluate linear and non-linear models for percentile curve estimation and highlight how the bias-variance trade-off manifests in typical neuroimaging data. We created plausible ground truth distributions of hippocampal volumes in the age range of 45 to 80 years, as an example application. Based on these distributions we repeatedly simulated samples for sizes between 50 and 50,000 data points, and for each simulated sample we fitted a range of normative models. We compared the fitted models and their variability across repetitions to the ground truth, with specific focus on the outer percentiles (1st, 5th, 10th) as these are the most clinically relevant. Our results quantify the expected decreasing trend in variance of the volume estimates with increasing sample size. However, bias in the volume estimates only decreases a modest amount, without much improvement at large sample sizes. The uncertainty of model performance is substantial for what would often be considered large samples in a neuroimaging context and rises dramatically at the ends of the age range, where fewer data points exist. Flexible models perform better across sample sizes, especially for non-linear ground truth. Surprisingly large samples of several thousand data points are needed to accurately capture outlying percentiles across the age range for applications in research and clinical settings. Performance evaluation methods should assess both bias and variance. Furthermore, caution is needed when attempting to go near the ends of the age range captured by the source data set and, as is a well known general principle, extrapolation beyond the age range should always be avoided. To help with such evaluations of normative models we have made our code available to guide researchers developing or utilising normative models.
Collapse
Affiliation(s)
- Jelena Bozek
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Ludovica Griffanti
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity, Department of Psychiatry, Warneford Hospital, University of Oxford, United Kingdom; Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, United Kingdom
| | - Stephan Lau
- Australian Institute for Machine Learning, School of Computer and Mathematical Sciences, The University of Adelaide, Adelaide, SA, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Mark Jenkinson
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, United Kingdom; Australian Institute for Machine Learning, School of Computer and Mathematical Sciences, The University of Adelaide, Adelaide, SA, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.
| |
Collapse
|
6
|
Xiao Y, Liao L, Huang K, Yao S, Gao L. Coupling Between Hippocampal Parenchymal Fraction and Cortical Grey Matter Atrophy at Different Stages of Cognitive Decline. J Alzheimers Dis 2023; 93:791-801. [PMID: 37092228 PMCID: PMC10200204 DOI: 10.3233/jad-230124] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Hippocampal atrophy is a significant brain marker of pathology in Alzheimer's disease (AD). The hippocampal parenchymal fraction (HPF) was recently developed to better assess the hippocampal volumetric integrity, and it has been shown to be a sensitive measure of hippocampal atrophy in AD. OBJECTIVE To investigate the clinical relevance of hippocampal volumetric integrity as measured by the HPF and the coupling between the HPF and brain atrophy during AD progression. METHODS We included data from 143 cognitively normal (CN), 101 mild cognitive impairment (MCI), and 125 AD participants. We examined group differences in the HPF, associations between HPF and cognitive ability, and coupling between the HPF and cortical grey matter volume in the CN, MCI, and AD groups. RESULTS We observed progressive decreases in HPF from CN to MCI and from MCI to AD, and increases in the asymmetry of HPF, with the lowest asymmetry index (AI) in the CN group and the highest AI in the AD group. There was a significant association between HPF and cognitive ability across participants. The coupling between HPF and cortical regions was observed in bilateral hippocampus, parahippocampal gyrus, temporal, frontal, and occipital regions, thalamus, and amygdala in CN, MCI, and AD groups, with a greater involvement of temporal, occipital, frontal, and subcortical regions in MCI and AD patients, especially in AD patients. CONCLUSION This study provides novel evidence for the neuroanatomical basis of cognitive decline and brain atrophy during AD progression, which may have important clinical implications for the prognosis of AD.
Collapse
Affiliation(s)
- Yaqiong Xiao
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Liangjun Liao
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Kaiyu Huang
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Shun Yao
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | | |
Collapse
|
7
|
Griffanti L, Gillis G, O'Donoghue MC, Blane J, Pretorius PM, Mitchell R, Aikin N, Lindsay K, Campbell J, Semple J, Alfaro-Almagro F, Smith SM, Miller KL, Martos L, Raymont V, Mackay CE. Adapting UK Biobank imaging for use in a routine memory clinic setting: The Oxford Brain Health Clinic. Neuroimage Clin 2022; 36:103273. [PMID: 36451375 PMCID: PMC9723313 DOI: 10.1016/j.nicl.2022.103273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/24/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
The Oxford Brain Health Clinic (BHC) is a joint clinical-research service that provides memory clinic patients and clinicians access to high-quality assessments not routinely available, including brain MRI aligned with the UK Biobank imaging study (UKB). In this work we present how we 1) adapted the UKB MRI acquisition protocol to be suitable for memory clinic patients, 2) modified the imaging analysis pipeline to extract measures that are in line with radiology reports and 3) explored the alignment of measures from BHC patients to the largest brain MRI study in the world (ultimately 100,000 participants). Adaptations of the UKB acquisition protocol for BHC patients include dividing the scan into core and optional sequences (i.e., additional imaging modalities) to improve patients' tolerance for the MRI assessment. We adapted the UKB structural MRI analysis pipeline to take into account the characteristics of a memory clinic population (e.g., high amount of white matter hyperintensities and hippocampal atrophy). We then compared the imaging derived phenotypes (IDPs) extracted from the structural scans to visual ratings from radiology reports, non-imaging factors (age, cognition) and to reference distributions derived from UKB data. Of the first 108 BHC attendees (August 2020-November 2021), 92.5 % completed the clinical scans, 88.0 % consented to use of data for research, and 43.5 % completed the additional research sequences, demonstrating that the protocol is well tolerated. The high rates of consent to research makes this a valuable real-world quality research dataset routinely captured in a clinical service. Modified tissue-type segmentation with lesion masking greatly improved grey matter volume estimation. CSF-masking marginally improved hippocampal segmentation. The IDPs were in line with radiology reports and showed significant associations with age and cognitive performance, in line with the literature. Due to the age difference between memory clinic patients of the BHC (age range 65-101 years, average 78.3 years) and UKB participants (44-82 years, average 64 years), additional scans on elderly healthy controls are needed to improve reference distributions. Current and future work aims to integrate automated quantitative measures in the radiology reports and evaluate their clinical utility.
Collapse
Affiliation(s)
- Ludovica Griffanti
- Department of Psychiatry, University of Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom; Wellcome Centre for Integrative Neuroimaging, University of Oxford, United Kingdom.
| | - Grace Gillis
- Department of Psychiatry, University of Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Oxford, United Kingdom; Wellcome Centre for Integrative Neuroimaging, University of Oxford, United Kingdom
| | - M Clare O'Donoghue
- Department of Psychiatry, University of Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Oxford, United Kingdom; Wellcome Centre for Integrative Neuroimaging, University of Oxford, United Kingdom
| | - Jasmine Blane
- Department of Psychiatry, University of Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| | - Pieter M Pretorius
- Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom; Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | | | - Nicola Aikin
- Department of Psychiatry, University of Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Oxford, United Kingdom; Wellcome Centre for Integrative Neuroimaging, University of Oxford, United Kingdom
| | - Karen Lindsay
- Department of Psychiatry, University of Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| | - Jon Campbell
- Department of Psychiatry, University of Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Oxford, United Kingdom; Wellcome Centre for Integrative Neuroimaging, University of Oxford, United Kingdom
| | - Juliet Semple
- Department of Psychiatry, University of Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Oxford, United Kingdom; Wellcome Centre for Integrative Neuroimaging, University of Oxford, United Kingdom
| | - Fidel Alfaro-Almagro
- Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom; Wellcome Centre for Integrative Neuroimaging, University of Oxford, United Kingdom
| | - Stephen M Smith
- Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom; Wellcome Centre for Integrative Neuroimaging, University of Oxford, United Kingdom
| | - Karla L Miller
- Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom; Wellcome Centre for Integrative Neuroimaging, University of Oxford, United Kingdom
| | - Lola Martos
- Department of Psychiatry, University of Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| | - Vanessa Raymont
- Department of Psychiatry, University of Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| | - Clare E Mackay
- Department of Psychiatry, University of Oxford, United Kingdom; Wellcome Centre for Integrative Neuroimaging, University of Oxford, United Kingdom
| |
Collapse
|
8
|
Wang H, Feng T, Zhao Z, Bai X, Han G, Wang J, Dai Z, Wang R, Zhao W, Ren F, Gao F. Classification of Alzheimer's Disease Based on Deep Learning of Brain Structural and Metabolic Data. Front Aging Neurosci 2022; 14:927217. [PMID: 35903535 PMCID: PMC9315355 DOI: 10.3389/fnagi.2022.927217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
To improve the diagnosis and classification of Alzheimer's disease (AD), a modeling method is proposed based on the combining magnetic resonance images (MRI) brain structural data with metabolite levels of the frontal and parietal regions. First, multi-atlas brain segmentation technology based on T1-weighted images and edited magnetic resonance spectroscopy (MRS) were used to extract data of 279 brain regions and levels of 12 metabolites from regions of interest (ROIs) in the frontal and parietal regions. The t-test combined with false discovery rate (FDR) correction was used to reduce the dimensionality in the data, and MRI structural data of 54 brain regions and levels of 4 metabolites that obviously correlated with AD were screened out. Lastly, the stacked auto-encoder neural network (SAE) was used to classify AD and healthy controls (HCs), which judged the effect of classification method by fivefold cross validation. The results indicated that the mean accuracy of the five experimental model increased from 96 to 100%, the AUC value increased from 0.97 to 1, specificity increased from 90 to 100%, and F1 value increased from 0.97 to 1. Comparing the effect of each metabolite on model performance revealed that the gamma-aminobutyric acid (GABA) + levels in the parietal region resulted in the most significant improvement in model performance, with the accuracy rate increasing from 96 to 98%, the AUC value increased from 0.97 to 0.99 and the specificity increasing from 90 to 95%. Moreover, the GABA + levels in the parietal region was significantly correlated with Mini Mental State Examination (MMSE) scores of patients with AD (r = 0.627), and the F statistics were largest (F = 25.538), which supports the hypothesis that dysfunctional GABAergic system play an important role in the pathogenesis of AD. Overall, our findings support that a comprehensive method that combines MRI structural and metabolic data of brain regions can improve model classification efficiency of AD.
Collapse
Affiliation(s)
- Huiquan Wang
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Tianzi Feng
- School of Electrical and Information Engineering, Tiangong University, Tianjin, China
| | - Zhe Zhao
- School of Electrical and Information Engineering, Tiangong University, Tianjin, China
| | - Xue Bai
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Guang Han
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Jinhai Wang
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Zongrui Dai
- Westa College, Southwest University, Chongqing, China
| | - Rong Wang
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Weibiao Zhao
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Fuxin Ren
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fei Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
9
|
CT-Detected MTA Score Related to Disability and Behavior in Older People with Cognitive Impairment. Biomedicines 2022; 10:biomedicines10061381. [PMID: 35740403 PMCID: PMC9219852 DOI: 10.3390/biomedicines10061381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
Our study aims to investigate the relationship between medial temporal lobe atrophy (MTA) score, assessed by computed tomography (CT) scans, and functional impairment, cognitive deficit, and psycho-behavioral disorder severity. Overall, 239 (M = 92, F = 147; mean age of 79.3 ± 6.8 years) patients were evaluated with cognitive, neuropsychiatric, affective, and functional assessment scales. MTA was evaluated from 0 (no atrophy) to 4 (severe atrophy). The homocysteine serum was set to two levels: between 0 and 10 µmol/L, and >10 µmol/L. The cholesterol and glycemia blood concentrations were measured. Hypertension and atrial fibrillation presence/absence were collected. A total of 14 patients were MTA 0, 44 patients were MTA 1, 63 patients were MTA 2, 79 patients were MTA 3, and 39 patients were MTA 4. Cognitive (p < 0.0001) and functional (p < 0.0001) parameters decreased according to the MTA severity. According to the diagnosis distribution, AD patient percentages increased by MTA severity (p < 0.0001). In addition, the homocysteine levels increased according to MTA severity (p < 0.0001). Depression (p < 0.0001) and anxiety (p = 0.001) increased according to MTA severity. This study encourages and supports the potential role of MTA score and CT scan in the field of neurodegenerative disorder research and diagnosis.
Collapse
|
10
|
Kober T. Letter to the Editor regarding article "Technical and clinical validation of commercial automated volumetric MRI tools for dementia diagnosis-a systematic review" (DOI 10.1007/s00234-021-02818-4). Neuroradiology 2022; 64:847-848. [PMID: 35076715 DOI: 10.1007/s00234-022-02906-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
Affiliation(s)
- Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthineers, Lausanne, Switzerland.
| | | |
Collapse
|
11
|
Feng F, Huang W, Meng Q, Hao W, Yao H, Zhou B, Guo Y, Zhao C, An N, Wang L, Huang X, Zhang X, Shu N. Altered Volume and Structural Connectivity of the Hippocampus in Alzheimer's Disease and Amnestic Mild Cognitive Impairment. Front Aging Neurosci 2021; 13:705030. [PMID: 34675796 PMCID: PMC8524052 DOI: 10.3389/fnagi.2021.705030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/10/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Hippocampal atrophy is a characteristic of Alzheimer’s disease (AD). However, alterations in structural connectivity (number of connecting fibers) between the hippocampus and whole brain regions due to hippocampal atrophy remain largely unknown in AD and its prodromal stage, amnestic mild cognitive impairment (aMCI). Methods: We collected high-resolution structural MRI (sMRI) and diffusion tensor imaging (DTI) data from 36 AD patients, 30 aMCI patients, and 41 normal control (NC) subjects. First, the volume and structural connectivity of the bilateral hippocampi were compared among the three groups. Second, correlations between volume and structural connectivity in the ipsilateral hippocampus were further analyzed. Finally, classification ability by hippocampal volume, its structural connectivity, and their combination were evaluated. Results: Although the volume and structural connectivity of the bilateral hippocampi were decreased in patients with AD and aMCI, only hippocampal volume correlated with neuropsychological test scores. However, positive correlations between hippocampal volume and ipsilateral structural connectivity were displayed in patients with AD and aMCI. Furthermore, classification accuracy (ACC) was higher in AD vs. aMCI and aMCI vs. NC by the combination of hippocampal volume and structural connectivity than by a single parameter. The highest values of the area under the receiver operating characteristic (ROC) curve (AUC) in every two groups were all obtained by combining hippocampal volume and structural connectivity. Conclusions: Our results showed that the combination of hippocampal volume and structural connectivity (number of connecting fibers) is a new perspective for the discrimination of AD and aMCI.
Collapse
Affiliation(s)
- Feng Feng
- Department of Neurology, First Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of Neurology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Weijie Huang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Qingqing Meng
- Department of Neurology, Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Health Care Office of the Service Bureau of Agency for Offices Administration of the Central Military Commission, Beijing, China
| | - Weijun Hao
- Department of Healthcare, Bureau of Guard, General Office of the Communist Party of China, Beijing, China
| | - Hongxiang Yao
- Department of Radiology, Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bo Zhou
- Department of Neurology, Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yan'e Guo
- Department of Neurology, Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Cui Zhao
- Department of Neurology, Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Department of Geriatrics, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Ningyu An
- Department of Radiology, Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Luning Wang
- Department of Neurology, Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Xusheng Huang
- Department of Neurology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xi Zhang
- Department of Neurology, Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| |
Collapse
|
12
|
Du J, Liang P, He H, Tong Q, Gong T, Qian T, Sun Y, Zhong J, Li K. Reproducibility of volume and asymmetry measurements of hippocampus, amygdala, and entorhinal cortex on traveling volunteers: a multisite MP2RAGE prospective study. Acta Radiol 2021; 62:1381-1390. [PMID: 33121264 DOI: 10.1177/0284185120963919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Multisite studies can considerably increase the pool of normally aging individuals with neurodegenerative disorders and thereby expedite the associated research. Understanding the reproducibility of the parameters of related brain structures-including the hippocampus, amygdala, and entorhinal cortex-in multisite studies is crucial in determining the impact of healthy aging or neurodegenerative diseases. PURPOSE To estimate the reproducibility of the fascinating structures by automatic (FreeSurfer) and manual segmentation methods in a well-controlled multisite dataset. MATERIAL AND METHODS Three traveling individuals were scanned at 10 sites, which were equipped with the same equipment (3T Prisma Siemens). They used the same scan protocol (two inversion-contrast magnetization-prepared rapid gradient echo sequences) and operators. Validity coefficients (intraclass correlations coefficient [ICC]) and spatial overlap measures (Dice Similarity Coefficient [DSC]) were used to estimate the reproducibility of multisite data. RESULTS ICC and DSC values varied substantially among structures and segmentation methods, and values of manual tracing were relatively higher than the automated method. ICC and DSC values of structural parameters were greater than 0.80 and 0.60 across sites, as determined by manual tracing. Low reproducibility was observed in the amygdala parameters by automatic segmentation method (ICC = 0.349-0.529, DSC = 0.380-0.873). However, ICC and DSC scores of the hippocampus were higher than 0.60 and 0.65 by two segmentation methods. CONCLUSION This study suggests that a well-controlled multisite study could provide a reliable MRI dataset. Manual tracing of volume assessments is recommended for low reproducibility structures that require high levels of precision in multisite studies.
Collapse
Affiliation(s)
- Jiachen Du
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, PR China
| | - Peipeng Liang
- School of Psychology, Capital Normal University, Beijing, PR China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, PR China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Qiqi Tong
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Ting Gong
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Tianyi Qian
- MR Collaboration NE Asia, Siemens Healthcare, Beijing, PR China
| | - Yi Sun
- MR Collaboration NE Asia, Siemens Healthcare, Shanghai, PR China
| | - Jianhui Zhong
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, Zhejiang, PR China
- Department of Imaging Sciences, University of Rochester, Rochester, NY, USA
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, PR China
| |
Collapse
|
13
|
Wibawa P, Matta G, Das S, Eratne D, Farrand S, Desmond P, Velakoulis D, Gaillard F. Bringing psychiatrists into the picture: Automated measurement of regional MRI brain volume in patients with suspected dementia. Aust N Z J Psychiatry 2021; 55:799-808. [PMID: 33726553 DOI: 10.1177/0004867421998444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The volumes of various brain regions can be rapidly quantified using automated magnetic resonance imaging tools. While these appear to be useful at face value, their formal clinical utility is not yet understood, particularly for non-neuroradiologists and in patients presenting with suspected dementia. This study investigated the utility of an automated normative morphometry tool on determinations of brain atrophy by psychiatrists and radiologists in a tertiary hospital. METHODS Consecutive magnetic resonance scans (n = 110) of patients referred with suspected neurodegenerative disorders were obtained retrospectively and rated by two neuroradiologists, two general radiologists and four psychiatrists over two sessions. First, conventional magnetic resonance sequences were shown. Then, morphometry colour-coded maps, which segmented T1-weighted magnetisation prepared rapid gradient echo images into brain regions and visualised these regions in colour according to their volumetric standard deviation from a normative population, were added to the second reading which occurred ⩾6 weeks later. Presence and laterality of atrophy in frontal, parietal and temporal lobes and hippocampal regions were measured using a digital checklist. The primary outcome of inter-rater agreement on atrophy was measured with Fleiss' Kappa (κ). We also evaluated the accuracy of the atrophy ratings for differentiating post hoc diagnosis of subjective cognitive impairment, mild cognitive impairment and dementia. RESULTS Agreement among all raters was fair in frontal lobe and moderate in other regions with conventional method (κ = 0.362-0.555). With morphometry, higher agreement was seen in all regions (κ = 0.551-0.654), reaching significant improvement in the frontal and temporal lobes. No significant improvement was seen within the various disciplines, except in frontal lobes rated by psychiatrists. Accuracy of atrophy ratings on determining post hoc diagnosis was significantly improved for distinguishing subjective cognitive impairment versus dementia. CONCLUSION In routine clinical assessment, automated normative morphometry complements the determination of regional atrophy and improves inter-rater agreement regardless of neuroradiology experience.
Collapse
Affiliation(s)
- Pierre Wibawa
- Neuropsychiatry Unit, The Royal Melbourne Hospital, Melbourne, VIC, Australia
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Melbourne, VIC, Australia
| | - Gabrielle Matta
- Neuropsychiatry Unit, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Sourav Das
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Dhamidhu Eratne
- Neuropsychiatry Unit, The Royal Melbourne Hospital, Melbourne, VIC, Australia
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Melbourne, VIC, Australia
| | - Sarah Farrand
- Department of Radiology and Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
- Department of Radiology, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Patricia Desmond
- Department of Radiology and Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
- Department of Radiology, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Dennis Velakoulis
- Neuropsychiatry Unit, The Royal Melbourne Hospital, Melbourne, VIC, Australia
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Melbourne, VIC, Australia
| | - Frank Gaillard
- Department of Radiology and Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
- Department of Radiology, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| |
Collapse
|
14
|
De Francesco S, Galluzzi S, Vanacore N, Festari C, Rossini PM, Cappa SF, Frisoni GB, Redolfi A. Norms for Automatic Estimation of Hippocampal Atrophy and a Step Forward for Applicability to the Italian Population. Front Neurosci 2021; 15:656808. [PMID: 34262425 PMCID: PMC8273578 DOI: 10.3389/fnins.2021.656808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/03/2021] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Hippocampal volume is one of the main biomarkers of Alzheimer's Dementia (AD). Over the years, advanced tools that performed automatic segmentation of Magnetic Resonance Imaging (MRI) T13D scans have been developed, such as FreeSurfer (FS) and ACM-Adaboost (AA). Hippocampal volume is considered abnormal when it is below the 5th percentile of the normative population. The aim of this study was to set norms, established from the Alzheimer's Disease Neuroimaging Initiative (ADNI) population, for hippocampal volume measured with FS v.6.0 and AA tools in the neuGRID platform (www.neugrid2.eu) and demonstrate their applicability for the Italian population. METHODS Norms were set from a large group of 545 healthy controls belonging to ADNI. For each pipeline, subjects with segmentation errors were discarded, resulting in 532 valid segmentations for FS and 421 for AA (age range 56-90 years). The comparability of ADNI and the Italian Brain Normative Archive (IBNA), representative of the Italian general population, was assessed testing clinical variables, neuropsychological scores and normalized hippocampal volumes. Finally, percentiles were validated using the Italian Alzheimer's disease Repository Without Borders (ARWiBo) as external independent data set to evaluate FS and AA generalizability. RESULTS Hippocampal percentiles were checked with the chi-square goodness of fit test. P-values were not significant, showing that FS and AA algorithm distributions fitted the data well. Clinical, neuropsychological and volumetric features were similar in ADNI and IBNA (p > 0.01). Hippocampal volumes measured with both FS and AA were associated with age (p < 0.001). The 5th percentile thresholds, indicating left/right hippocampal atrophy were respectively: (i) below 3,223/3,456 mm3 at 56 years and 2,506/2,415 mm3 at 90 years for FS; (ii) below 4,583/4,873 mm3 at 56 years and 3,831/3,870 mm3 at 90 years for AA. The average volumes computed on 100 cognitively intact healthy controls (CN) selected from ARWiBo were close to the 50th percentiles, while those for 100 AD patients were close to the abnormal percentiles. DISCUSSION Norms generated from ADNI through the automatic FS and AA segmentation tools may be used as normative references for Italian patients with suspected AD.
Collapse
Affiliation(s)
- Silvia De Francesco
- Laboratory of Neuroinformatics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Samantha Galluzzi
- Laboratory of Alzheimer’s Neuroimaging and Epidemiology - LANE, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Nicola Vanacore
- National Center for Disease Prevention and Health Promotion, National Institute of Health, Rome, Italy
| | - Cristina Festari
- Laboratory of Alzheimer’s Neuroimaging and Epidemiology - LANE, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Paolo Maria Rossini
- Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Pisana, Rome, Italy
| | - Stefano F. Cappa
- IRCCS Mondino Foundation, Pavia, Italy
- IUSS Cognitive Neuroscience (ICoN) Center, University School for Advanced Studies, Pavia, Italy
| | - Giovanni B. Frisoni
- Laboratory of Alzheimer’s Neuroimaging and Epidemiology - LANE, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Alberto Redolfi
- Laboratory of Neuroinformatics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
15
|
Mai Y, Yu Q, Zhu F, Luo Y, Liao W, Zhao L, Xu C, Fang W, Ruan Y, Cao Z, Lei M, Au L, Mok VCT, Shi L, Liu J. AD Resemblance Atrophy Index as a Diagnostic Biomarker for Alzheimer's Disease: A Retrospective Clinical and Biological Validation. J Alzheimers Dis 2021; 79:1023-1032. [PMID: 33459705 DOI: 10.3233/jad-201033] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) provides objective information about brain structural atrophy in patients with Alzheimer's disease (AD). This multi-structural atrophic information, when integrated as a single differential index, has the potential to further elevate the accuracy of AD identification from normal control (NC) compared to the conventional structure volumetric index. OBJECTIVE We herein investigated the performance of such an MRI-derived AD index, AD-Resemblance Atrophy Index (AD-RAI), as a neuroimaging biomarker in clinical scenario. METHOD Fifty AD patients (19 with the Amyloid, Tau, Neurodegeneration (ATN) results assessed in cerebrospinal fluid) and 50 age- and gender-matched NC (19 with ATN results assessed using positron emission tomography) were recruited in this study. MRI-based imaging biomarkers, i.e., AD-RAI, were quantified using AccuBrain®. The accuracy, sensitivity, specificity, and area under the ROC curve (AUC) of these MRI-based imaging biomarkers were evaluated with the diagnosis result according to clinical criteria for all subjects and ATN biological markers for the subgroup. RESULTS In the whole groups of AD and NC subjects, the accuracy of AD-RAI was 91%, sensitivity and specificity were 88% and 96%, respectively, and the AUC was 92%. In the subgroup of 19 AD and 19 NC with ATN results, AD-RAI results matched completely with ATN classification. AD-RAI outperforms the volume of any single brain structure measured. CONCLUSION The finding supports the hypothesis that MRI-derived composite AD-RAI is a more accurate imaging biomarker than individual brain structure volumetry in the identification of AD from NC in the clinical scenario.
Collapse
Affiliation(s)
- Yingren Mai
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qun Yu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Yishan Luo
- BrainNow Research Institute, Shenzhen, China
| | - Wang Liao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lei Zhao
- BrainNow Research Institute, Shenzhen, China
| | - Chunyan Xu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Wenli Fang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuting Ruan
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiyu Cao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Lei
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lisa Au
- Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vincent C T Mok
- BrainNow Research Institute, Shenzhen, China.,Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lin Shi
- BrainNow Research Institute, Shenzhen, China.,Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Liu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China
| |
Collapse
|
16
|
Lee J, Lee JY, Oh SW, Chung MS, Park JE, Moon Y, Jeon HJ, Moon WJ. Evaluation of Reproducibility of Brain Volumetry between Commercial Software, Inbrain and Established Research Purpose Method, FreeSurfer. J Clin Neurol 2021; 17:307-316. [PMID: 33835753 PMCID: PMC8053534 DOI: 10.3988/jcn.2021.17.2.307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 01/18/2023] Open
Abstract
Background and Purpose We aimed to determine the intermethod reproducibility between the commercial software Inbrain (MIDAS IT) and the established research-purpose method FreeSurfer, as well as the effect of MRI resolution and the pathological condition of subjects on their intermethod reproducibility. Methods This study included 45 healthy volunteers and 85 patients with mild cognitive impairment (MCI). In 43 of the 85 patients with MCI, three-dimensional, T1-weighted MRI data were obtained at an in-plane resolution of 1.2 mm. The data of the remaining 42 patients with MCI and the healthy volunteers were obtained at an in-plane resolution of 1.0 mm. The within-subject coefficient of variation (CoV), intraclass correlation coefficient (ICC), and effect size were calculated, and means were compared using paired t-tests. The parameters obtained at 1.0-mm and 1.2-mm resolutions in patients with MCI were compared to evaluate the effect of the in-plane resolution on the intermethod reproducibility. The parameters obtained at a 1.0-mm in-plane resolution in patients with MCI and healthy volunteers were used to analyze the effect of subject condition on intermethod reproducibility. Results Overall the two methods showed excellent reproducibility across all regions of the brain (CoV=0.5–3.9, ICC=0.93 to >0.99). In the subgroup of healthy volunteers, the intermethod reliability was only good in some regions (frontal, temporal, cingulate, and insular). The intermethod reproducibility was better in the 1.0-mm group than the 1.2-mm group in all regions other than the nucleus accumbens. Conclusions Inbrain and FreeSurfer showed good-to-excellent intermethod reproducibility for volumetric measurements. Nevertheless, some noticeable differences were found based on subject condition, image resolution, and brain region.
Collapse
Affiliation(s)
- Jungbin Lee
- Department of Radiology, Soonchunghyang University Bucheon Hospital, Bucheon, Korea
| | - Ji Young Lee
- Department of Radiology, Hanyang University Medical Center, Seoul, Korea
| | - Se Won Oh
- Department of Radiology, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Mi Sun Chung
- Department of Radiology, Chung-Ang University Hospital, Seoul, Korea
| | - Ji Eun Park
- Department of Radiology, Asan Medical Center, Seoul, Korea
| | - Yeonsil Moon
- Department of Neurology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Hong Jun Jeon
- Department of Psychiatry, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Won Jin Moon
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea.
| |
Collapse
|
17
|
Zeng HM, Han HB, Zhang QF, Bai H. Application of modern neuroimaging technology in the diagnosis and study of Alzheimer's disease. Neural Regen Res 2021; 16:73-79. [PMID: 32788450 PMCID: PMC7818875 DOI: 10.4103/1673-5374.286957] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neurological abnormalities identified via neuroimaging are common in patients with Alzheimer’s disease. However, it is not yet possible to easily detect these abnormalities using head computed tomography in the early stages of the disease. In this review, we evaluated the ways in which modern imaging techniques such as positron emission computed tomography, single photon emission tomography, magnetic resonance spectrum imaging, structural magnetic resonance imaging, magnetic resonance diffusion tensor imaging, magnetic resonance perfusion weighted imaging, magnetic resonance sensitive weighted imaging, and functional magnetic resonance imaging have revealed specific changes not only in brain structure, but also in brain function in Alzheimer’s disease patients. The reviewed literature indicated that decreased fluorodeoxyglucose metabolism in the temporal and parietal lobes of Alzheimer’s disease patients is frequently observed via positron emission computed tomography. Furthermore, patients with Alzheimer’s disease often show a decreased N-acetylaspartic acid/creatine ratio and an increased myoinositol/creatine ratio revealed via magnetic resonance imaging. Atrophy of the entorhinal cortex, hippocampus, and posterior cingulate gyrus can be detected early using structural magnetic resonance imaging. Magnetic resonance sensitive weighted imaging can show small bleeds and abnormal iron metabolism. Task-related functional magnetic resonance imaging can display brain function activity through cerebral blood oxygenation. Resting functional magnetic resonance imaging can display the functional connection between brain neural networks. These are helpful for the differential diagnosis and experimental study of Alzheimer’s disease, and are valuable for exploring the pathogenesis of Alzheimer’s disease.
Collapse
Affiliation(s)
- Hong-Mei Zeng
- Department of Neurology, Third Affiliated Hospital of Guizhou Medical University, Duyun; Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Hua-Bo Han
- Department of Radiology, Third Affiliated Hospital of Guizhou Medical University, Duyun, Guizhou Province, China
| | - Qi-Fang Zhang
- Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, and Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Hua Bai
- Department of Neurology, Third Affiliated Hospital of Guizhou Medical University, Duyun; Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang; Medical Experiment Center, Third Affiliated Hospital of Guizhou Medical University, Duyun, Guizhou Province, China
| |
Collapse
|
18
|
Prosser A, Tossici-Bolt L, Kipps C. The impact of regional 99mTc-HMPAO single-photon-emission computed tomography (SPECT) imaging on clinician diagnostic confidence in a mixed cognitive impairment sample. Clin Radiol 2020; 75:714.e7-714.e14. [DOI: 10.1016/j.crad.2020.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/28/2020] [Indexed: 11/17/2022]
|
19
|
Goodkin O, Pemberton HG, Vos SB, Prados F, Das RK, Moggridge J, De Blasi B, Bartlett P, Williams E, Campion T, Haider L, Pearce K, Bargallό N, Sanchez E, Bisdas S, White M, Ourselin S, Winston GP, Duncan JS, Cardoso J, Thornton JS, Yousry TA, Barkhof F. Clinical evaluation of automated quantitative MRI reports for assessment of hippocampal sclerosis. Eur Radiol 2020; 31:34-44. [PMID: 32749588 PMCID: PMC7755617 DOI: 10.1007/s00330-020-07075-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/07/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Hippocampal sclerosis (HS) is a common cause of temporal lobe epilepsy. Neuroradiological practice relies on visual assessment, but quantification of HS imaging biomarkers-hippocampal volume loss and T2 elevation-could improve detection. We tested whether quantitative measures, contextualised with normative data, improve rater accuracy and confidence. METHODS Quantitative reports (QReports) were generated for 43 individuals with epilepsy (mean age ± SD 40.0 ± 14.8 years, 22 men; 15 histologically unilateral HS; 5 bilateral; 23 MR-negative). Normative data was generated from 111 healthy individuals (age 40.0 ± 12.8 years, 52 men). Nine raters with different experience (neuroradiologists, trainees, and image analysts) assessed subjects' imaging with and without QReports. Raters assigned imaging normal, right, left, or bilateral HS. Confidence was rated on a 5-point scale. RESULTS Correct designation (normal/abnormal) was high and showed further trend-level improvement with QReports, from 87.5 to 92.5% (p = 0.07, effect size d = 0.69). Largest magnitude improvement (84.5 to 93.8%) was for image analysts (d = 0.87). For bilateral HS, QReports significantly improved overall accuracy, from 74.4 to 91.1% (p = 0.042, d = 0.7). Agreement with the correct diagnosis (kappa) tended to increase from 0.74 ('fair') to 0.86 ('excellent') with the report (p = 0.06, d = 0.81). Confidence increased when correctly assessing scans with the QReport (p < 0.001, η2p = 0.945). CONCLUSIONS QReports of HS imaging biomarkers can improve rater accuracy and confidence, particularly in challenging bilateral cases. Improvements were seen across all raters, with large effect sizes, greatest for image analysts. These findings may have positive implications for clinical radiology services and justify further validation in larger groups. KEY POINTS • Quantification of imaging biomarkers for hippocampal sclerosis-volume loss and raised T2 signal-could improve clinical radiological detection in challenging cases. • Quantitative reports for individual patients, contextualised with normative reference data, improved diagnostic accuracy and confidence in a group of nine raters, in particular for bilateral HS cases. • We present a pre-use clinical validation of an automated imaging assessment tool to assist clinical radiology reporting of hippocampal sclerosis, which improves detection accuracy.
Collapse
Affiliation(s)
- Olivia Goodkin
- Centre for Medical Image Computing (CMIC), University College London, London, UK. .,Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Hugh G Pemberton
- Centre for Medical Image Computing (CMIC), University College London, London, UK.,Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sjoerd B Vos
- Centre for Medical Image Computing (CMIC), University College London, London, UK.,Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK.,Epilepsy Society MRI Unit, Chalfont St Peter, UK
| | - Ferran Prados
- Centre for Medical Image Computing (CMIC), University College London, London, UK.,Universitat Oberta de Catalunya, Barcelona, Spain
| | - Ravi K Das
- Clinical, Educational and Health Psychology, University College London, London, UK
| | - James Moggridge
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK.,Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, UK
| | - Bianca De Blasi
- Department of Medical Physics and Bioengineering, University College London, London, UK
| | - Philippa Bartlett
- Epilepsy Society MRI Unit, Chalfont St Peter, UK.,Department of Clinical and Experimental Epilepsy, University College London, London, UK
| | - Elaine Williams
- Wellcome Trust Centre for Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Thomas Campion
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, UK
| | - Lukas Haider
- Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Vienna, Austria.,NMR Research Unit, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kirsten Pearce
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, UK
| | - Nuria Bargallό
- Radiology Department, Hospital Clínic de Barcelona and Magnetic Resonance Image Core Facility, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Esther Sanchez
- Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Sotirios Bisdas
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK.,Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, UK
| | - Mark White
- Digital Services, University College London Hospital, London, UK
| | - Sebastien Ourselin
- Department of Medical Physics and Bioengineering, University College London, London, UK.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Gavin P Winston
- Epilepsy Society MRI Unit, Chalfont St Peter, UK.,Department of Clinical and Experimental Epilepsy, University College London, London, UK.,Department of Medicine, Division of Neurology, Queen's University, Kingston, Ontario, Canada
| | - John S Duncan
- Epilepsy Society MRI Unit, Chalfont St Peter, UK.,Department of Clinical and Experimental Epilepsy, University College London, London, UK
| | - Jorge Cardoso
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - John S Thornton
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK.,Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, UK
| | - Tarek A Yousry
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK.,Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, UK
| | - Frederik Barkhof
- Centre for Medical Image Computing (CMIC), University College London, London, UK.,Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK.,Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, UK.,Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Ardekani BA, Izadi NO, Hadid SA, Meftah AM, Bachman AH. Effects of sex, age, and apolipoprotein E genotype on hippocampal parenchymal fraction in cognitively normal older adults. Psychiatry Res Neuroimaging 2020; 301:111107. [PMID: 32416384 DOI: 10.1016/j.pscychresns.2020.111107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/24/2020] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
Abstract
Early detection of Alzheimer's disease (AD) is important for timely interventions and developing new treatments. Hippocampus atrophy is an early biomarker of AD. The hippocampal parenchymal fraction (HPF) is a promising measure of hippocampal structural integrity computed from structural MRI. It is important to characterize the dependence of HPF on covariates such as age and sex in the normal population to enhance its utility as a disease biomarker. We measured the HPF in 4239 structural MRI scans from 340 cognitively normal (CN) subjects aged 59-89 years from the AD Neuroimaging Initiative database, and studied its dependence on age, sex, apolipoprotein E (APOE) genotype, brain hemisphere, intracranial volume (ICV), and education using a linear mixed-effects model. In this CN cohort, HPF was inversely associated with ICV; was greater on the right hemisphere compared to left in both sexes with the degree of right > left asymmetry being slightly more pronounced in men; declined quadratically with age and faster in APOE ϵ4 carriers compared to non-carriers; and was significantly associated with cognitive ability. Consideration of HPF as an AD biomarker should be in conjunction with other subject attributes that are shown in this research to influence HPF levels in CN older individuals.
Collapse
Affiliation(s)
- Babak A Ardekani
- Center for Brain Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
| | - Neema O Izadi
- Center for Brain Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Somar A Hadid
- Center for Brain Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Amir M Meftah
- Center for Brain Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Alvin H Bachman
- Center for Brain Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| |
Collapse
|
21
|
Automated MRI volumetry as a diagnostic tool for Alzheimer's disease: Validation of icobrain dm. NEUROIMAGE-CLINICAL 2020; 26:102243. [PMID: 32193172 PMCID: PMC7082216 DOI: 10.1016/j.nicl.2020.102243] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 02/16/2020] [Accepted: 03/10/2020] [Indexed: 12/20/2022]
Abstract
icobrain dm is an automated brain MRI segmentation faster than Freesurfer. Significantly higher accuracy was obtained for several brain structures, including hippocampus. icobrain dm volumes had a test-retest error below normal annual atrophy rates. icobrain dm temporal lobe volume had highest sensitivity in discriminating Alzheimer's.
Brain volumes computed from magnetic resonance images have potential for assisting with the diagnosis of individual dementia patients, provided that they have low measurement error and high reliability. In this paper we describe and validate icobrain dm, an automatic tool that segments brain structures that are relevant for differential diagnosis of dementia, such as the hippocampi and cerebral lobes. Experiments were conducted in comparison to the widely used FreeSurfer software. The hippocampus segmentations were compared against manual segmentations, with significantly higher Dice coefficients obtained with icobrain dm (25–75th quantiles: 0.86–0.88) than with FreeSurfer (25–75th quantiles: 0.80–0.83). Other brain structures were also compared against manual delineations, with icobrain dm showing lower volumetric errors overall. Test-retest experiments show that the precision of all measurements is higher for icobrain dm than for FreeSurfer except for the parietal cortex volume. Finally, when comparing volumes obtained from Alzheimer's disease patients against age-matched healthy controls, all measures achieved high diagnostic performance levels when discriminating patients from cognitively healthy controls, with the temporal cortex volume measured by icobrain dm reaching the highest diagnostic performance level (area under the receiver operating characteristic curve = 0.99) in this dataset.
Collapse
|
22
|
The A/T/N model applied through imaging biomarkers in a memory clinic. Eur J Nucl Med Mol Imaging 2019; 47:247-255. [PMID: 31792573 DOI: 10.1007/s00259-019-04536-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE The A/T/N model is a research framework proposed to investigate Alzheimer's disease (AD) pathological bases (i.e., amyloidosis A, neurofibrillary tangles T, and neurodegeneration N). The application of this system on clinical populations is still limited. The aim of the study is to evaluate the topography of T distribution by 18F-flortaucipir PET in relation to A and N and to describe the A/T/N status through imaging biomarkers in memory clinic patients. METHODS Eighty-one patients with subjective and objective cognitive impairment were classified as A+/A- and N+/N- through amyloid PET and structural MRI. Tau deposition was compared across A/N subgroups at voxel level. T status was defined through a global cut point based on A/N subgroups and subjects were categorized following the A/T/N model. RESULTS A+N+ and A+N- subgroups showed higher tau burden compared to A-N- group, with A+N- showing significant deposition limited to the medial and lateral temporal regions. Global cut point discriminated A+N+ and A+N- from A-N- subjects. On A/T/N classification, 23% of patients showed a negative biomarker profile, 58% fell within the Alzheimer's continuum, and 19% of the sample was characterized by non-AD pathologic change. CONCLUSION Medial and lateral temporal regions represent a site of significant tau accumulation in A+ subjects and possibly a useful marker of early clinical changes. This is the first study in which the A/T/N model is applied using 18F-flortaucipir PET in a memory clinic population. The majority of patients showed a profile consistent with the Alzheimer's continuum, while a minor percentage showed a profile suggestive of possible other neurodegenerative diseases. These results support the applicability of the A/T/N model in clinical practice.
Collapse
|
23
|
Hedderich DM, Spiro JE, Goldhardt O, Kaesmacher J, Wiestler B, Yakushev I, Zimmer C, Boeckh-Behrens T, Grimmer T. Increasing Diagnostic Accuracy of Mild Cognitive Impairment due to Alzheimer's Disease by User-Independent, Web-Based Whole-Brain Volumetry. J Alzheimers Dis 2019; 65:1459-1467. [PMID: 30175976 DOI: 10.3233/jad-180532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Volumetric quantification of structural MRI has been shown to increase the diagnostic accuracy of patients with mild cognitive impairment (MCI); however, its implementation in clinical routine is usually technically difficult and time-consuming. OBJECTIVE The purpose of this study was to investigate whether volumetric information obtained from the free and easy-to-use online tool volBrain can improve correct identification of MCI patients with Alzheimer's disease (AD) compared to visual reading. METHODS The study cohort consisted of 27 patients with MCI due to AD (AD positive) as determined by biomarker information and 26 cognitively normal controls (CN). Three blinded readers, 2 radiologists and 1 clinical dementia expert, assessed the patients' MRI regarding brain atrophy and probability of underlying AD two times, without and with supporting volumetric information from volBrain. To assess diagnostic accuracy of volBrain measures alone, a simple sum score based on basic volumetric measures was developed and tested. RESULTS Correct patient classification by readers 1, 2, and 3 without a volumetric report was 73.6%, 77.4%, and 83.0%. With a volumetric report, correct classification increased for the radiological readers to 77.4% and 81.1%, respectively and decreased to 77.4% for reader 3. Usage of the volumetric report alone yielded the highest diagnostic accuracy of 84.9%. Diagnostic confidence increased significantly for radiological readers. CONCLUSION Volumetric information from volBrain increases the radiologist's diagnostic performance and confidence in identifying MCI patients with AD. We propose that such tools may be implemented in the routine diagnostic work-up of patients with suspected AD.
Collapse
Affiliation(s)
- Dennis M Hedderich
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Judith E Spiro
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Oliver Goldhardt
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Johannes Kaesmacher
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Neurology, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Benedikt Wiestler
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Igor Yakushev
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Tobias Boeckh-Behrens
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
24
|
Goodkin O, Pemberton H, Vos SB, Prados F, Sudre CH, Moggridge J, Cardoso MJ, Ourselin S, Bisdas S, White M, Yousry T, Thornton J, Barkhof F. The quantitative neuroradiology initiative framework: application to dementia. Br J Radiol 2019; 92:20190365. [PMID: 31368776 DOI: 10.1259/bjr.20190365] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
There are numerous challenges to identifying, developing and implementing quantitative techniques for use in clinical radiology, suggesting the need for a common translational pathway. We developed the quantitative neuroradiology initiative (QNI), as a model framework for the technical and clinical validation necessary to embed automated segmentation and other image quantification software into the clinical neuroradiology workflow. We hypothesize that quantification will support reporters with clinically relevant measures contextualized with normative data, increase the precision of longitudinal comparisons, and generate more consistent reporting across levels of radiologists' experience. The QNI framework comprises the following steps: (1) establishing an area of clinical need and identifying the appropriate proven imaging biomarker(s) for the disease in question; (2) developing a method for automated analysis of these biomarkers, by designing an algorithm and compiling reference data; (3) communicating the results via an intuitive and accessible quantitative report; (4) technically and clinically validating the proposed tool pre-use; (5) integrating the developed analysis pipeline into the clinical reporting workflow; and (6) performing in-use evaluation. We will use current radiology practice in dementia as an example, where radiologists have established visual rating scales to describe the degree and pattern of atrophy they detect. These can be helpful, but are somewhat subjective and coarse classifiers, suffering from floor and ceiling limitations. Meanwhile, several imaging biomarkers relevant to dementia diagnosis and management have been proposed in the literature; some clinically approved radiology software tools exist but in general, these have not undergone rigorous clinical validation in high volume or in tertiary dementia centres. The QNI framework aims to address this need. Quantitative image analysis is developing apace within the research domain. Translating quantitative techniques into the clinical setting presents significant challenges, which must be addressed to meet the increasing demand for accurate, timely and impactful clinical imaging services.
Collapse
Affiliation(s)
- Olivia Goodkin
- 1Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, United Kingdom.,2Neuroradiological Academic Unit, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Hugh Pemberton
- 1Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, United Kingdom.,2Neuroradiological Academic Unit, Queen Square Institute of Neurology, University College London, London, United Kingdom.,3Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sjoerd B Vos
- 1Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, United Kingdom.,2Neuroradiological Academic Unit, Queen Square Institute of Neurology, University College London, London, United Kingdom.,4Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, United Kingdom.,5Department of Clinical and Experimental Epilepsy, University College London, London, United Kingdom
| | - Ferran Prados
- 1Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, United Kingdom.,6Queen Square MS Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom.,7Universitat Oberta de Catalunya, Barcelona, Spain
| | - Carole H Sudre
- 8School of Biomedical Engineering and Imaging Sciences, King's College London.,9Department of Medical Physics and Biomedical Engineering, University College London
| | - James Moggridge
- 2Neuroradiological Academic Unit, Queen Square Institute of Neurology, University College London, London, United Kingdom.,4Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, United Kingdom
| | - M Jorge Cardoso
- 8School of Biomedical Engineering and Imaging Sciences, King's College London
| | - Sebastien Ourselin
- 8School of Biomedical Engineering and Imaging Sciences, King's College London
| | - Sotirios Bisdas
- 2Neuroradiological Academic Unit, Queen Square Institute of Neurology, University College London, London, United Kingdom.,4Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, United Kingdom
| | - Mark White
- 10Digital Services, University College London Hospital, London United Kingdom
| | - Tarek Yousry
- 2Neuroradiological Academic Unit, Queen Square Institute of Neurology, University College London, London, United Kingdom.,4Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, United Kingdom
| | - John Thornton
- 2Neuroradiological Academic Unit, Queen Square Institute of Neurology, University College London, London, United Kingdom.,4Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, United Kingdom
| | - Frederik Barkhof
- 1Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, United Kingdom.,2Neuroradiological Academic Unit, Queen Square Institute of Neurology, University College London, London, United Kingdom.,4Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, United Kingdom.,6Queen Square MS Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom.,11Department of Radiology and Nuclear Medicine, VU University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Falgàs N, Sánchez-Valle R, Bargalló N, Balasa M, Fernández-Villullas G, Bosch B, Olives J, Tort-Merino A, Antonell A, Muñoz-García C, León M, Grau O, Castellví M, Coll-Padrós N, Rami L, Redolfi A, Lladó A. Hippocampal atrophy has limited usefulness as a diagnostic biomarker on the early onset Alzheimer's disease patients: A comparison between visual and quantitative assessment. NEUROIMAGE-CLINICAL 2019; 23:101927. [PMID: 31491836 PMCID: PMC6627030 DOI: 10.1016/j.nicl.2019.101927] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 06/11/2019] [Accepted: 06/30/2019] [Indexed: 11/24/2022]
Abstract
NIA-AA diagnostic criteria include volumetric or visual rating measures of hippocampal atrophy (HA) as a diagnostic biomarker of Alzheimer's disease (AD). We aimed to determine its utility as a diagnostic biomarker for early onset Alzheimer's disease (EOAD) by assessing Medial Temporal Atrophy (MTA) and hippocampal volume (HV) determination. MTA score and HV quantified by FreeSurfer were assessed in 140 (aged ≤65) subjects with biomarker supported diagnosis: 38 amnesic (A-EOAD), 20 non-amnesic (NA-EOAD), 30 late onset AD (LOAD), 20 fronto-temporal dementia (FTD) and 32 healthy controls (HC). The results showed that the proportion of MTA ≥ 1.5 was higher on LOAD and FTD than EOAD and HC but none of the MTA thresholds (≥1, ≥1.5 and ≥ 2) showed acceptable diagnostic accuracy. LOAD had lower HV than the other groups. A-EOAD HV was lower than NA-EOAD and HC but equal to FTD. The 6258 mm3 cut-off showed good diagnostic accuracy between A-EOAD and HC. Both tools showed a moderate inverse correlation. In conclusion, MTA has a limited diagnostic utility as an EOAD biomarker as it does not discriminate AD from FTD or HC in initial symptomatic stages. HV may discriminate A-EOAD from HC but not from FTD. FTD had higher MTA scores than AD patients. MTA scores visual assessment had low diagnostic performance in EOAD. Amnesic EOAD patients had lower hippocampal volume than the non-amnesic ones. Quantitative assessment only discriminate between amnesic EOAD from controls.
Collapse
Affiliation(s)
- Neus Falgàs
- Alzheimer's disease and other cognitive disorders Unit, Neurology department, IDIBAPS, Hospital Clínic, Barcelona, Spain
| | - Raquel Sánchez-Valle
- Alzheimer's disease and other cognitive disorders Unit, Neurology department, IDIBAPS, Hospital Clínic, Barcelona, Spain
| | - Núria Bargalló
- Imaging Diagnostic Center, Hospital Clínic, Barcelona, Spain; Magnetic Resonance Image Core Facility, IDIBAPS, Spain
| | - Mircea Balasa
- Alzheimer's disease and other cognitive disorders Unit, Neurology department, IDIBAPS, Hospital Clínic, Barcelona, Spain; Atlantic Fellow for Equity in Brain Health, Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Guadalupe Fernández-Villullas
- Alzheimer's disease and other cognitive disorders Unit, Neurology department, IDIBAPS, Hospital Clínic, Barcelona, Spain
| | - Beatriz Bosch
- Alzheimer's disease and other cognitive disorders Unit, Neurology department, IDIBAPS, Hospital Clínic, Barcelona, Spain
| | - Jaume Olives
- Alzheimer's disease and other cognitive disorders Unit, Neurology department, IDIBAPS, Hospital Clínic, Barcelona, Spain
| | - Adrià Tort-Merino
- Alzheimer's disease and other cognitive disorders Unit, Neurology department, IDIBAPS, Hospital Clínic, Barcelona, Spain
| | - Anna Antonell
- Alzheimer's disease and other cognitive disorders Unit, Neurology department, IDIBAPS, Hospital Clínic, Barcelona, Spain
| | - Cristina Muñoz-García
- Alzheimer's disease and other cognitive disorders Unit, Neurology department, IDIBAPS, Hospital Clínic, Barcelona, Spain
| | - María León
- Alzheimer's disease and other cognitive disorders Unit, Neurology department, IDIBAPS, Hospital Clínic, Barcelona, Spain
| | - Oriol Grau
- Alzheimer's disease and other cognitive disorders Unit, Neurology department, IDIBAPS, Hospital Clínic, Barcelona, Spain
| | - Magdalena Castellví
- Alzheimer's disease and other cognitive disorders Unit, Neurology department, IDIBAPS, Hospital Clínic, Barcelona, Spain
| | - Nina Coll-Padrós
- Alzheimer's disease and other cognitive disorders Unit, Neurology department, IDIBAPS, Hospital Clínic, Barcelona, Spain
| | - Lorena Rami
- Alzheimer's disease and other cognitive disorders Unit, Neurology department, IDIBAPS, Hospital Clínic, Barcelona, Spain
| | - Alberto Redolfi
- Laboratory of Alzheimer's Neuroimaging and Epidemiology - LANE, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Albert Lladó
- Alzheimer's disease and other cognitive disorders Unit, Neurology department, IDIBAPS, Hospital Clínic, Barcelona, Spain.
| |
Collapse
|
26
|
Buchert R, Lange C, Suppa P, Apostolova I, Spies L, Teipel S, Dubois B, Hampel H, Grothe MJ. Magnetic resonance imaging-based hippocampus volume for prediction of dementia in mild cognitive impairment: Why does the measurement method matter so little? Alzheimers Dement 2018; 14:976-978. [PMID: 29679575 DOI: 10.1016/j.jalz.2018.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/23/2018] [Accepted: 03/01/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Ralph Buchert
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany.
| | - Catharina Lange
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Per Suppa
- jung diagnostics GmbH, Hamburg, Germany
| | - Ivayla Apostolova
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Bruno Dubois
- AXA Research Fund and Sorbonne University Chair, Paris, France, Sorbonne University, GRC No. 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France, Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France, Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Harald Hampel
- AXA Research Fund and Sorbonne University Chair, Paris, France, Sorbonne University, GRC No. 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France, Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France, Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Michel J Grothe
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| |
Collapse
|
27
|
Maksimovich IV. Differences in Cerebral Angioarchitectonics in Alzheimer's Disease in Comparison with Other Neurodegenerative and Ischemic Lesions. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/wjns.2018.84036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Niemantsverdriet E, Valckx S, Bjerke M, Engelborghs S. Alzheimer's disease CSF biomarkers: clinical indications and rational use. Acta Neurol Belg 2017; 117:591-602. [PMID: 28752420 PMCID: PMC5565643 DOI: 10.1007/s13760-017-0816-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/12/2017] [Indexed: 11/29/2022]
Abstract
This review focusses on the validation and standardization of Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers, as well as on the current clinical indications and rational use of CSF biomarkers in daily clinical practice. The validated AD CSF biomarkers, Aβ1-42, T-tau, and P-tau181, have an added value in the (differential) diagnosis of AD and related disorders, including mixed pathologies, atypical presentations, and in case of ambiguous clinical dementia diagnosis. CSF biomarkers should not be routinely used in the diagnostic work-up of dementia and cannot be used to diagnose non-AD dementias. In cognitively healthy subjects, CSF biomarkers can only be applied for research purposes, e.g., to identify pre-clinical AD in the context of clinical trials with potentially disease-modifying drugs. Therefore, biomarker-based early diagnosis of AD offers great opportunities for preventive treatment development in the near future.
Collapse
Affiliation(s)
- Ellis Niemantsverdriet
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp (UAntwerp), Antwerp, Belgium
| | - Sara Valckx
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp (UAntwerp), Antwerp, Belgium
| | - Maria Bjerke
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp (UAntwerp), Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp (UAntwerp), Antwerp, Belgium.
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium.
| |
Collapse
|