1
|
Kim EN, Seok HY, Lim JS, Koh J, Bae JM, Kim CJ, Ryu GH, Ok YJ, Choi JS, Cho CH, Oh SJ. CRP deposition in human abdominal aortic aneurysm is associated with transcriptome alterations toward aneurysmal pathogenesis: insights from in situ spatial whole transcriptomic analysis. Front Immunol 2024; 15:1475051. [PMID: 39737187 PMCID: PMC11682986 DOI: 10.3389/fimmu.2024.1475051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
Background We investigated the effects of C-reactive protein (CRP) deposition on the vessel walls in abdominal aortic aneurysm (AAA) by analyzing spatially resolved changes in gene expression. Our aim was to elucidate the pathways that contribute to disease progression. Methods AAA specimens from surgically resected formalin-fixed paraffin-embedded tissues were categorized into the AAA-high CRP [serum CRP ≥ 0.1 mg/dL, diffuse and strong immunohistochemistry (IHC); n = 7 (12 cores)] and AAA-low-CRP [serum CRP < 0.1 mg/dL, weak IHC; n = 3 (5 cores)] groups. Normal aorta specimens obtained during heart transplantation were used as the control group [n = 3 (6 cores)]. Spatially resolved whole transcriptomic analysis was performed, focusing on CD68-positive macrophages, CD45-positive lymphocytes, and αSMA-positive vascular smooth muscle cells. Results Spatial whole transcriptomic analysis revealed significant differential expression of 1,086, 1,629, and 1,281 genes between high-CRP and low-CRP groups within CD68-, CD45-, and αSMA-positive cells, respectively. Gene ontology (GO) analysis of CD68-positive macrophages identified clusters related to inflammation, apoptosis, and immune response, with signal transducer and activator of transcription 3 implicated across three processes. Notably, genes involved in blood vessel diameter maintenance were significantly downregulated in the high-CRP group. GO analysis of lymphocytes showed upregulation of leukocyte rolling and the apoptosis pathway, whereas, in smooth muscle cells, genes associated with Nuclear factor kappa B (NF-κB) signaling and c-Jun N-terminal Kinase (JNK) pathway were upregulated, and those related to blood pressure regulation were downregulated in the high-CRP group. Discussion CRP deposition was associated with significant transcriptomic changes in macrophages, lymphocytes, and vascular smooth muscle cells in AAA, suggesting its potential role in promoting pro-inflammatory and apoptotic processes, as well as contributing to the degradation of vascular structure and elasticity.
Collapse
MESH Headings
- Humans
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/immunology
- Transcriptome
- Male
- Gene Expression Profiling
- C-Reactive Protein/genetics
- C-Reactive Protein/analysis
- C-Reactive Protein/metabolism
- Female
- Aged
- Macrophages/metabolism
- Macrophages/immunology
- Middle Aged
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
Collapse
Affiliation(s)
- Eun Na Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Young Seok
- Department of Transdisciplinary Research and Collaboration, Genomics Core Facility, Seoul National University Hospital, Seoul, Republic of Korea
| | - Joon Seo Lim
- Clinical Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jiwon Koh
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chong Jai Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ga-Hyeon Ryu
- Genomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - You Jung Ok
- Department of Thoracic and Cardiovascular Surgery, Seoul Metropolitan Government-Seoul National University (SMG-SNU) Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Sung Choi
- Department of Thoracic and Cardiovascular Surgery, Seoul Metropolitan Government-Seoul National University (SMG-SNU) Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chung-Hyun Cho
- Department of Biomedical Sciences and Pharmacology , College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Se Jin Oh
- Department of Thoracic and Cardiovascular Surgery, Seoul Metropolitan Government-Seoul National University (SMG-SNU) Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Li D, Wang L, Jiang B, Miao Y, Li X. An evidence update to explore molecular targets and protective mechanisms of apigenin against abdominal aortic aneurysms based on network pharmacology and experimental validation. Mol Divers 2024; 28:2913-2929. [PMID: 37653360 DOI: 10.1007/s11030-023-10723-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Abdominal aortic aneurysms (AAA) is a life-threatening disease and the incidence of AAA is still on the rise in recent years. Numerous studies suggest that dietary moderate consumption of polyphenol exerts beneficial effects on cardiovascular disease. Apigenin (API) is a promising dietary polyphenol and possesses potent beneficial effects on our body. Although our previous study revealed protective effects of API on experimental AAA formation, up till now few studies were carried out to further investigate its involved molecular mechanisms. In the present study, network pharmacology combined molecular docking and experimental validation was used to explore API-related therapeutic targets and mechanisms in the treatment of AAA. Firstly, we collected 202 API-related therapeutic targets and 2475 AAA-related pathogenetic targets. After removing duplicates, a total of 68 potential therapeutic targets were obtained. Moreover, 5 targets with high degree including TNF, ACTB, INS, JUN, and MMP9 were identified as core targets of API for treating AAA. In addition, functional enrichment analysis indicated that API exerted pharmacological effects in AAA by affecting versatile mechanisms, including apoptosis, inflammation, blood fluid dynamics, and immune modulation. Molecular docking results further supported that API had strong affinity with the above core targets. Furthermore, protein level of core targets and related pathways were evaluated in a Cacl2-induced AAA model by using western blot and immunohistochemistry. The experimental validation results demonstrated that API significantly attenuated phosphorylation of JUN and protein level of predicted core targets. Taken together, based on network pharmacological and experimental validation, our study systematically explored associated core targets and potential therapeutic pathways of API for AAA treatment, which could supply valuable insights and theoretical basis for AAA treatment.
Collapse
Affiliation(s)
- Dongyu Li
- Department of General Surgery & VIP In-Patient Ward, The First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Lei Wang
- Department of Vascular and Thyroid Surgery, The First Hospital of China Medical University, Nanjingbei 155 Street, Shenyang, 110001, Liaoning Province, China
| | - Bo Jiang
- Department of Vascular and Thyroid Surgery, The First Hospital of China Medical University, Nanjingbei 155 Street, Shenyang, 110001, Liaoning Province, China
| | - Yuxi Miao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Xuan Li
- Department of Vascular and Thyroid Surgery, The First Hospital of China Medical University, Nanjingbei 155 Street, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
3
|
Mohammed KAK, Madeddu P, Avolio E. MEK inhibitors: a promising targeted therapy for cardiovascular disease. Front Cardiovasc Med 2024; 11:1404253. [PMID: 39011492 PMCID: PMC11247000 DOI: 10.3389/fcvm.2024.1404253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Cardiovascular disease (CVD) represents the leading cause of mortality and disability all over the world. Identifying new targeted therapeutic approaches has become a priority of biomedical research to improve patient outcomes and quality of life. The RAS-RAF-MEK (mitogen-activated protein kinase kinase)-ERK (extracellular signal-regulated kinase) pathway is gaining growing interest as a potential signaling cascade implicated in the pathogenesis of CVD. This pathway is pivotal in regulating cellular processes like proliferation, growth, migration, differentiation, and survival, which are vital in maintaining cardiovascular homeostasis. In addition, ERK signaling is involved in controlling angiogenesis, vascular tone, myocardial contractility, and oxidative stress. Dysregulation of this signaling cascade has been linked to cell dysfunction and vascular and cardiac pathological remodeling, which contribute to the onset and progression of CVD. Recent and ongoing research has provided insights into potential therapeutic interventions targeting the RAS-RAF-MEK-ERK pathway to improve cardiovascular pathologies. Preclinical studies have demonstrated the efficacy of targeted therapy with MEK inhibitors (MEKI) in attenuating ERK activation and mitigating CVD progression in animal models. In this article, we first describe how ERK signaling contributes to preserving cardiovascular health. We then summarize current knowledge of the roles played by ERK in the development and progression of cardiac and vascular disorders, including atherosclerosis, myocardial infarction, cardiac hypertrophy, heart failure, and aortic aneurysm. We finally report novel therapeutic strategies for these CVDs encompassing MEKI and discuss advantages, challenges, and future developments for MEKI therapeutics.
Collapse
Affiliation(s)
- Khaled A K Mohammed
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Department of Cardiothoracic Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Paolo Madeddu
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Elisa Avolio
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
4
|
Puertas-Umbert L, Alonso J, Roselló-Díez E, Santamaría-Orleans A, Martínez-González J, Rodríguez C. Rolipram impacts on redox homeostasis and cellular signaling in an experimental model of abdominal aortic aneurysm. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2024; 36:108-117. [PMID: 38061958 DOI: 10.1016/j.arteri.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 05/08/2024]
Abstract
INTRODUCTION Cyclic nucleotide phosphodiesterases (PDEs) of the PDE4 subfamily are responsible for the hydrolysis and subcellular compartmentalization of cAMP, a second messenger that modulates vascular functionality. We had shown that PDE4B is induced in abdominal aortic aneurysms (AAA) and that PDE4 inhibition by rolipram limits experimental aneurysms. In this study we have delved into the mechanisms underlying the beneficial effect of rolipram on AAA. METHODS AAA were induced in ApoE-/- mice by angiotensin II (Ang II) infusion. Aneurysm formation was evaluated by ultrasonography. The expression of enzymes involved in rédox homeostasis was analyzed by real-time RT-PCR and the activation of signaling pathways by Western blot. RESULTS Induction of PDE4B in human AAA has been confirmed in a second cohort of patients. In Ang II-infused ApoE-/- mice, rolipram increased the percentage of animals free of aneurysms without affecting the percentage of aortic ruptures. Quantitative analyses determined that this drug significantly attenuated aortic collagen deposition. Additionally, rolipram reduced the increased Nox2 expression triggered by Ang II, exacerbated Sod1 induction, and normalized Sod3 expression. Likewise, PDE4 inhibition decreased the activation of both ERK1/2 and the canonical Wnt pathway, while AKT activity was not altered. CONCLUSIONS The inhibition of PDE4 activity modulates the expression of enzymes involved in rédox homeostasis and affects cell signaling pathways involved in the development of AAA.
Collapse
Affiliation(s)
- Lídia Puertas-Umbert
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, España; Institut de Recerca Hospital de la Santa Creu i Sant Pau (IRHSCSP), Barcelona, España; CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, España
| | - Judith Alonso
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, España; CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, España; Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, España
| | - Elena Roselló-Díez
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, España; Departamento de Cirugía Cardíaca, Hospital de la Santa Creu i Sant Pau-Universitat Autònoma de Barcelona (HSCSP-UAB), Barcelona, España
| | - Alicia Santamaría-Orleans
- Laboratorios Ordesa S.L., Scientific Communication Department, Sant Boi del Llobregat, Barcelona, España
| | - José Martínez-González
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, España; CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, España; Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, España
| | - Cristina Rodríguez
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, España; Institut de Recerca Hospital de la Santa Creu i Sant Pau (IRHSCSP), Barcelona, España; CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, España.
| |
Collapse
|
5
|
Sulistyowati E, Huang SE, Cheng TL, Chao YY, Li CY, Chang CW, Lin MX, Lin MC, Yeh JL. Vasculoprotective Potential of Baicalein in Angiotensin II-Infused Abdominal Aortic Aneurysms through Inhibiting Inflammation and Oxidative Stress. Int J Mol Sci 2023; 24:16004. [PMID: 37958985 PMCID: PMC10647516 DOI: 10.3390/ijms242116004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Aortic wall inflammation, abnormal oxidative stress and progressive degradation of extracellular matrix proteins are the main characteristics of abdominal aortic aneurysms (AAAs). The nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome dysregulation plays a crucial role in aortic damage and disease progression. The first aim of this study was to examine the effect of baicalein (5,6,7-trihydroxy-2-phenyl-4H-1-benzopyran-4-one) on AAA formation in apolipoprotein E-deficient (ApoE-/-) mice. The second aim was to define whether baicalein attenuates aberrant vascular smooth muscle cell (VSMC) proliferation and inflammation in VSMC culture. For male ApoE-/- mice, a clinically relevant AAA model was randomly divided into four groups: saline infusion, baicalein intraperitoneal injection, Angiotensin II (Ang II) infusion and Ang II + baicalein. Twenty-seven days of treatment with baicalein markedly decreased Ang II-infused AAA incidence and aortic diameter, reduced collagen-fiber formation, preserved elastic structure and density and prevented smooth muscle cell contractile protein degradation. Baicalein inhibited rat VSMC proliferation and migration following the stimulation of VSMC cultures with Ang II while blocking the Ang II-inducible cell cycle progression from G0/G1 to the S phase in the synchronized cells. Cal-520 AM staining showed that baicalein decreased cellular calcium in Ang II-induced VSMCs; furthermore, a Western blot assay indicated that baicalein inhibited the expression of PCNA and significantly lowered levels of phospho-Akt and phospho-ERK, along with an increase in baicalein concentration in Ang II-induced VSMCs. Immunofluorescence staining showed that baicalein pretreatment reduced NF-κB nuclear translocation in Ang II-induced VSMCs and furthered the protein expressions of NLRP3 while ASC and caspase-1 were suppressed in a dose-dependent manner. Baicalein pretreatment upregulated Nrf2/HO-1 signaling in Ang II-induced VSMCs. Thus, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) staining showed that its reactive oxygen species (ROS) production decreased, along with the baicalein pretreatment. Our overall results indicate that baicalein could have therapeutic potential in preventing aneurysm development.
Collapse
Affiliation(s)
- Erna Sulistyowati
- Faculty of Medicine, University of Islam Malang, Malang City 65145, Indonesia;
| | - Shang-En Huang
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (S.-E.H.); (C.-W.C.); (M.-X.L.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Tsung-Lin Cheng
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- College of Professional Studies, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Yu-Ying Chao
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Ching-Wen Chang
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (S.-E.H.); (C.-W.C.); (M.-X.L.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Meng-Xuan Lin
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (S.-E.H.); (C.-W.C.); (M.-X.L.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Ming-Chung Lin
- Department of Anesthesiology, Chi Mei Medical Center, Tainan 710, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Tainan 717, Taiwan
| | - Jwu-Lai Yeh
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (S.-E.H.); (C.-W.C.); (M.-X.L.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
6
|
Stougiannou TM, Christodoulou KC, Georgakarakos E, Mikroulis D, Karangelis D. Promising Novel Therapies in the Treatment of Aortic and Visceral Aneurysms. J Clin Med 2023; 12:5878. [PMID: 37762818 PMCID: PMC10531975 DOI: 10.3390/jcm12185878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Aortic and visceral aneurysms affect large arterial vessels, including the thoracic and abdominal aorta, as well as visceral arterial branches, such as the splenic, hepatic, and mesenteric arteries, respectively. Although these clinical entities have not been equally researched, it seems that they might share certain common pathophysiological changes and molecular mechanisms. The yet limited published data, with regard to newly designed, novel therapies, could serve as a nidus for the evaluation and potential implementation of such treatments in large artery aneurysms. In both animal models and clinical trials, various novel treatments have been employed in an attempt to not only reduce the complications of the already implemented modalities, through manufacturing of more durable materials, but also to regenerate or replace affected tissues themselves. Cellular populations like stem and differentiated vascular cell types, large diameter tissue-engineered vascular grafts (TEVGs), and various molecules and biological factors that might target aspects of the pathophysiological process, including cell-adhesion stabilizers, metalloproteinase inhibitors, and miRNAs, could potentially contribute significantly to the treatment of these types of aneurysms. In this narrative review, we sought to collect and present relevant evidence in the literature, in an effort to unveil promising biological therapies, possibly applicable to the treatment of aortic aneurysms, both thoracic and abdominal, as well as visceral aneurysms.
Collapse
Affiliation(s)
- Theodora M. Stougiannou
- Department of Cardiothoracic Surgery, University General Hospital of Alexandroupolis, Dragana, 68100 Alexandroupolis, Greece; (K.C.C.); (E.G.); (D.M.); (D.K.)
| | | | | | | | | |
Collapse
|
7
|
Sawada H, Daugherty A. BEST3-Mediated MEKK2/3 Activation: A Novel Therapeutic Target in Aortopathies. Circulation 2023; 148:607-609. [PMID: 37579014 PMCID: PMC10430773 DOI: 10.1161/circulationaha.123.065946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Affiliation(s)
- Hisashi Sawada
- Saha Cardiovascular Research Center, Saha Aortic Center, Department of Physiology, University of Kentucky, KY Saha Cardiovascular Research Center (H.S., A.D.), University of Kentucky, Lexington
- Saha Aortic Center (H.S., A.D.), University of Kentucky, Lexington
- Department of Physiology (H.S., A.D.), University of Kentucky, Lexington
| | - Alan Daugherty
- Saha Cardiovascular Research Center, Saha Aortic Center, Department of Physiology, University of Kentucky, KY Saha Cardiovascular Research Center (H.S., A.D.), University of Kentucky, Lexington
- Saha Aortic Center (H.S., A.D.), University of Kentucky, Lexington
- Department of Physiology (H.S., A.D.), University of Kentucky, Lexington
| |
Collapse
|
8
|
Lin CP, Huang PH, Chen CY, Tzeng IS, Wu MY, Chen JS, Chen JW, Lin SJ. Tributyrin Intake Attenuates Angiotensin II-Induced Abdominal Aortic Aneurysm in LDLR-/- Mice. Int J Mol Sci 2023; 24:ijms24098008. [PMID: 37175712 PMCID: PMC10178859 DOI: 10.3390/ijms24098008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/31/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a multifactorial cardiovascular disease with a high risk of death, and it occurs in the infrarenal aorta with vascular dilatation. High blood pressure acts on the aortic wall, resulting in rupture and causing life-threatening intra-abdominal hemorrhage. Vascular smooth muscle cell (VSMC) dysregulation and extracellular matrix (ECM) degradation, especially elastin breaks, contribute to structural changes in the aortic wall. The pathogenesis of AAA includes the occurrence of oxidative stress, inflammatory cell infiltration, elastic fiber fragmentation, VSMC apoptosis, and phenotypic transformation. Tributyrin (TB) is decomposed by intestinal lipase and has a function similar to that of butyrate. Whether TB has a protective effect against AAA remains uncertain. In the present study, we established an AAA murine model by angiotensin II (AngII) induction in low-density lipoprotein receptor knockout (LDLR-/-) mice and investigated the effects of orally administered TB on the AAA size, ratio of macrophage infiltration, levels of matrix metalloproteinase (MMP) expression, and epigenetic regulation. TB attenuates AngII-induced AAA size and decreases elastin fragmentation, macrophage infiltration, and MMP expression in the medial layer of the aorta and reduces the levels of SBP (systolic blood pressure, p < 0.001) and MMP-2 (p < 0.02) in the serum. TB reduces the AngII-stimulated expression levels of MMP2 (p < 0.05), MMP9 (p < 0.05), MMP12, and MMP14 in human aortic smooth muscle cells (HASMCs). Moreover, TB and valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, suppress AngII receptor type 1 (AT1R, p < 0.05) activation and increase the expression of acetyl histone H3 by HDAC activity inhibition (p < 0.05). Our findings suggest that TB exerts its protective effect by suppressing the activation of HDAC to attenuate the AngII-induced AT1R signaling cascade.
Collapse
Affiliation(s)
- Chih-Pei Lin
- Department of Laboratory Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
- Division of Clinical Pathology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Po-Hsun Huang
- Department of Critical Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chi-Yu Chen
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - I-Shiang Tzeng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
| | - Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Jia-Shiong Chen
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Jaw-Wen Chen
- Division of Cardiology & Healthcare and Management Center, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Shing-Jong Lin
- Division of Cardiology & Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 110301, Taiwan
- Division of Cardiology, Heart Center, Cheng-Hsin General Hospital, Taipei 11220, Taiwan
| |
Collapse
|
9
|
Dayal S, Broekelmann T, Mecham RP, Ramamurthi A. Targeting Epidermal Growth Factor Receptor to Stimulate Elastic Matrix Regenerative Repair. Tissue Eng Part A 2023; 29:187-199. [PMID: 36641641 PMCID: PMC10122231 DOI: 10.1089/ten.tea.2022.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/15/2022] [Indexed: 01/16/2023] Open
Abstract
Abdominal aortic aneurysms (AAAs) represent a multifactorial, proteolytic disorder involving disintegration of the matrix structure within the AAA wall. Intrinsic deficiency of adult vascular cells to regenerate and repair the wall elastic matrix, which contributes to vessel stretch and recoil, is a major clinical challenge to therapeutic reversal of AAA growth. In this study, we investigate the involvement of epidermal growth factor receptor-mitogen activated protein kinase (EGFR-MAPK) pathway in the activation of aneurysmal smooth muscle cells (SMCs) by neutrophil elastase, and how EGFR can be targeted for elastic matrix regeneration. We have demonstrated that neutrophil elastase activates EGFR and downregulates expression level of key elastin homeostasis genes (elastin, crosslinking enzyme-lysyl oxidase, and fibulin4) between a dose range of 1-10 μg/mL (p < 0.05). It also incites downstream proteolytic outcomes by upregulating p-extracellular signal-regulated kinase (ERK)1/2 (p < 0.0001) and matrix metalloprotease 2 (MMP2) at a protein level, which is significantly downregulated upon EGFR-specific inhibition by tyrosine kinase inhibitor AG1478 (p-ERK1/2 and MMP2 [p < 0.05]). Moreover, we have shown that EGFR inhibition suppresses collagen amounts in aneurysmal SMCs (p < 0.05) and promotes robust formation of elastic fibers by enhancing its deposition in the extracellular space. Hence, the EGFR-MAPK pathway in aneurysmal cells can be targeted to provide therapeutic effects toward stimulating vascular matrix regeneration. Impact statement Proteolytic disorders such as aortal expansions, called abdominal aortic aneurysms (AAAs), are characterized by naturally irreversible enzymatic breakdown and loss of elastic fibers, a problem that has not yet been surmounted by existing tissue engineering approaches. In this work, we show, for the first time, how epidermal growth factor receptor (EGFR) inhibition provides downstream benefits in elastic fiber assembly and deposition in aneurysmal smooth muscle cell cultures. This work can open future possibilities for development of EGFR-targeted drug-based therapies not only for vessel wall repair in AAAs but also other proteolytically compromised elastic tissues.
Collapse
Affiliation(s)
- Simran Dayal
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Thomas Broekelmann
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, USA
| | - Robert P. Mecham
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, USA
| | - Anand Ramamurthi
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
10
|
Bastola S, Kothapalli C, Ramamurthi A. Sodium Nitroprusside Stimulation of Elastic Matrix Regeneration by Aneurysmal Smooth Muscle Cells. Tissue Eng Part A 2023; 29:225-243. [PMID: 36597287 PMCID: PMC10122248 DOI: 10.1089/ten.tea.2022.0169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023] Open
Abstract
The chronic overexpression of matrix metalloproteases leading to consequent degradation and loss of the elastic matrix with the reduction in tissue elasticity is central to the pathophysiology of proteolytic disorders, such as abdominal aortic aneurysms (AAAs), which are localized rupture-prone aortic expansions. Effecting tissue repair to alleviate this condition is contingent on restoring elastic matrix homeostasis in the aortic wall. This is naturally irreversible due to the poor elastogenicity of adult and diseased vascular cells, and the impaired ability to assemble mature elastic fibers, more so in the context of phenotypic changes to medial smooth muscle cells (SMCs) owing to the loss of nitric oxide (NO) signaling in the AAA wall tissue. In this study, we report the benefits of the exposure of primary human aneurysmal SMCs (aHASMCs) to NO donor drug, sodium nitroprusside (SNP), in improving extracellular matrix homeostasis, particularly aspects of elastic fiber assembly, and inhibition of proteolytic degradation. SNP treatment (100 nM) upregulated elastic matrix regeneration at both gene (p < 0.05) and protein levels (p < 0.01) without affecting cell proliferation, improved gene, and protein expression of crosslinking enzyme, lysyl oxidase (p < 0.05), inhibited the expression of MMP2 (matrix metalloprotease 2) significantly (p < 0.05) and promoted contractile SMC phenotypes in aHASMC culture. In addition, SNP also attenuated the expression of mitogen-activated protein kinases, a significant player in AAA formation and progression. Our results indicate the promise of SNP for therapeutic augmentation of elastic matrix regeneration, with prospects for wall repair in AAAs. Impact Statement Chronic and naturally irreversible enzymatic degradation and loss of elastic fibers are centric to proteolytic disorders such as abdominal aortic aneurysms (AAAs). This is linked to poor elastogenicity of adult and diseased vascular cells, compromising their ability to assemble mature elastic fibers. Toward addressing this, we demonstrate the phenotype-modulatory properties of a nitric oxide donor drug, sodium nitroprusside on aneurysmal smooth muscle cells, and its dose-specific proelastogenic and antiproteolytic properties for restoring elastic matrix homeostasis. Combined with the development of vehicles for site-localized, controlled drug delivery, this can potentially lead to a new nonsurgical approach for AAA wall repair in the future.
Collapse
Affiliation(s)
- Suraj Bastola
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Chandrasekhar Kothapalli
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio, USA
| | - Anand Ramamurthi
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
11
|
Manole S, Rancea R, Vulturar R, Simon SP, Molnar A, Damian L. Frail Silk: Is the Hughes-Stovin Syndrome a Behçet Syndrome Subtype with Aneurysm-Involved Gene Variants? Int J Mol Sci 2023; 24:ijms24043160. [PMID: 36834577 PMCID: PMC9968083 DOI: 10.3390/ijms24043160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Hughes-Stovin syndrome is a rare disease characterized by thrombophlebitis and multiple pulmonary and/or bronchial aneurysms. The etiology and pathogenesis of HSS are incompletely known. The current consensus is that vasculitis underlies the pathogenic process, and pulmonary thrombosis follows arterial wall inflammation. As such, Hughes-Stovin syndrome may belong to the vascular cluster with lung involvement of Behçet syndrome, although oral aphtae, arthritis, and uveitis are rarely found. Behçet syndrome is a multifactorial polygenic disease with genetic, epigenetic, environmental, and mostly immunological contributors. The different Behçet syndrome phenotypes are presumably based upon different genetic determinants involving more than one pathogenic pathway. Hughes-Stovin syndrome may have common pathways with fibromuscular dysplasias and other diseases evolving with vascular aneurysms. We describe a Hughes-Stovin syndrome case fulfilling the Behçet syndrome criteria. A MYLK variant of unknown significance was detected, along with other heterozygous mutations in genes that may impact angiogenesis pathways. We discuss the possible involvement of these genetic findings, as well as other potential common determinants of Behçet/Hughes-Stovin syndrome and aneurysms in vascular Behçet syndrome. Recent advances in diagnostic techniques, including genetic testing, could help diagnose a specific Behçet syndrome subtype and other associated conditions to personalize the disease management.
Collapse
Affiliation(s)
- Simona Manole
- Department of Radiology, “Niculae Stăncioiu” Heart Institute, 19-21 Calea Moților Street, 400001 Cluj-Napoca, Romania
- Department of Radiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Raluca Rancea
- Cardiology Department, Heart Institute “Niculae Stăncioiu”, 19-21 Calea Moților Street, 400001 Cluj-Napoca, Romania
| | - Romana Vulturar
- Department of Molecular Sciences, “Iuliu Hatieganu” University of Medicine and Pharmacy 6, Pasteur, 400349 Cluj-Napoca, Romania
- Cognitive Neuroscience Laboratory, University Babes-Bolyai, 30, Fântânele Street, 400294 Cluj-Napoca, Romania
- Correspondence:
| | - Siao-Pin Simon
- Department of Rheumatology, Emergency Clinical County Hospital Cluj, Centre for Rare Autoimmune and Autoinflammatory Diseases (ERN-ReCONNET), 2-4 Clinicilor Street, 400347 Cluj-Napoca, Romania
- Discipline of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Adrian Molnar
- Department of Cardiovascular Surgery, Heart Institute “Niculae Stăncioiu”, 19-21 Calea Moților Street, 400001 Cluj-Napoca, Romania
- Department of Cardiovascular and Thoracic Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania
| | - Laura Damian
- Department of Rheumatology, Emergency Clinical County Hospital Cluj, Centre for Rare Autoimmune and Autoinflammatory Diseases (ERN-ReCONNET), 2-4 Clinicilor Street, 400347 Cluj-Napoca, Romania
- CMI Reumatologie Dr. Damian, 6-8 Petru Maior Street, 400002 Cluj-Napoca, Romania
| |
Collapse
|
12
|
Jia L, Jing Y, Wang D, Cheng S, Fu C, Chu X, Yang C, Jiang B, Xin S. Through network pharmacology and molecular docking to explore the underlying mechanism of Artemisia annua L. treating in abdominal aortic aneurysm. Front Physiol 2022; 13:1034014. [PMID: 36338468 PMCID: PMC9634740 DOI: 10.3389/fphys.2022.1034014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Abdominal aortic aneurysm (AAA) is a degenerative disease that causes health problems in humans. However, there are no effective drugs for the treatment of AAA. Artemisia annua L. (A. annua) is a traditional herbal that has been widely used in cardiovascular disease. Based on network pharmacology and molecular docking technology, this study predicted the practical components and potential mechanisms of A. annua inhibiting the occurrence and development of AAA. Methods: The main active ingredients and targets of A. annua were screened through the TCMSP database; the GeneCards, OMIM, PharmGkb, and TTD databases were used to search for the targeted genes of AAA and map them to the targets of the active ingredients to obtain the active ingredient therapy of A. annua. The targets of AAA were to construct a protein interaction network through the STRING platform. R software was used to carry out the enrichment analysis of GO and KEGG for relevant targets, and Cytoscape was used to construct the active ingredient-target network prediction model of A. annua. Finally, AutoDock Vina was used to verify the results of the active ingredients and critical targets. Results: The main active ingredients obtained from A. annua for the treatment of AAA include quercetin, luteolin, kaempferol, isorhamnetin, and artemetin, as well as 117 effective targets, including RELA, MAPK14, CCND1, MAPK1, AKT1, MYC, MAPK8, TP53, ESR1, FOS, and JUN. The 11 targeted genes might play a key role in disease treatment. Enriched in 2115 GO biological processes, 159 molecular functions, 56 cellular components, and 156 KEGG pathways, inferred that its mechanism of action might be related to PI3K-Akt signaling pathway, fluid shear stress, atherosclerosis, and AGE-RAGE signaling pathway. Molecular docking results showed that the top five active components of A. annua had a good affinity for core disease targets and played a central role in treating AAA. The low binding energy molecular docking results provided valuable information for the development of drugs to treat AAA. Conclusion: Therefore, A. annua may have multiple components, multiple targets, and multiple signaling pathways to play a role in treating AAA. A. annua may have the potential to treat AAA.
Collapse
Affiliation(s)
- Longyuan Jia
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention, and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
| | - Yuchen Jing
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention, and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
| | - Ding Wang
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention, and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
| | - Shuai Cheng
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention, and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
| | - Chen Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Xiangyu Chu
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention, and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
| | - Chenye Yang
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention, and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
| | - Bo Jiang
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention, and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
| | - Shijie Xin
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention, and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
- *Correspondence: Shijie Xin,
| |
Collapse
|
13
|
Zhou Y, Chai H, Hu Y, Liu R, Jiang H, Fan R, Chen W, Huang F, Chen X. Overexpressed DDX3x promotes abdominal aortic aneurysm formation and activates AKT in ApoE knockout mice. Biochem Biophys Res Commun 2022; 634:138-144. [DOI: 10.1016/j.bbrc.2022.09.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/02/2022]
|
14
|
Hsa_circ_0087352 promotes the inflammatory response of macrophages in abdominal aortic aneurysm by adsorbing hsa-miR-149-5p. Int Immunopharmacol 2022; 107:108691. [DOI: 10.1016/j.intimp.2022.108691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 12/18/2022]
|
15
|
Kubota H, Yamada H, Sugimoto T, Wada N, Motoyama S, Saburi M, Miyawaki D, Wakana N, Kami D, Ogata T, Ibi M, Matoba S. Repeated Social Defeat Enhances CaCl 2-Induced Abdominal Aortic Aneurysm Expansion by Inhibiting the Early Fibrotic Response via the MAPK-MKP-1 Pathway. Cells 2022; 11:cells11040732. [PMID: 35203381 PMCID: PMC8870675 DOI: 10.3390/cells11040732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 01/25/2023] Open
Abstract
Depression is an independent risk factor for cardiovascular disease and is significantly associated with the prevalence of abdominal aortic aneurysm (AAA). We investigated the effect of repeated social defeat (RSD) on AAA development. Eight-week-old male wild-type mice were exposed to RSD by being housed with larger CD-1 mice in a shared cage. They were subjected to vigorous physical contact. After the confirmation of depressive-like behavior, calcium chloride was applied to the infrarenal aorta of the mice. At one week, AAA development was comparable between the defeated and control mice, without any differences being observed in the accumulated macrophages or in the matrix metalloproteinase activity. At two weeks, the maximum diameter and circumference of the aneurysm were significantly increased in the defeated mice, and a significant decrease in periaortic fibrosis was also observed. Consistently, the phosphorylation of the extracellular signal-regulated kinase and the incorporation of 5-bromo-2'-deoxyuridine in the primarily cultured aortic vascular smooth muscle cells were significantly reduced in the defeated mice, which was accompanied by a substantial increase in mitogen-activated protein kinase phosphatase-1 (MKP-1). The MKP-1 mRNA and protein expression levels during AAA were much higher in the defeated mice than they were in the control mice. Our findings demonstrate that RSD enhances AAA development by suppressing periaortic fibrosis after an acute inflammatory response and imply novel mechanisms that are associated with depression-related AAA development.
Collapse
Affiliation(s)
- Hiroshi Kubota
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.K.); (T.S.); (N.W.); (S.M.); (M.S.); (D.M.); (N.W.); (S.M.)
| | - Hiroyuki Yamada
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.K.); (T.S.); (N.W.); (S.M.); (M.S.); (D.M.); (N.W.); (S.M.)
- Correspondence: ; Tel.: +81-75-251-5511
| | - Takeshi Sugimoto
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.K.); (T.S.); (N.W.); (S.M.); (M.S.); (D.M.); (N.W.); (S.M.)
| | - Naotoshi Wada
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.K.); (T.S.); (N.W.); (S.M.); (M.S.); (D.M.); (N.W.); (S.M.)
| | - Shinichiro Motoyama
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.K.); (T.S.); (N.W.); (S.M.); (M.S.); (D.M.); (N.W.); (S.M.)
| | - Makoto Saburi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.K.); (T.S.); (N.W.); (S.M.); (M.S.); (D.M.); (N.W.); (S.M.)
| | - Daisuke Miyawaki
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.K.); (T.S.); (N.W.); (S.M.); (M.S.); (D.M.); (N.W.); (S.M.)
| | - Noriyuki Wakana
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.K.); (T.S.); (N.W.); (S.M.); (M.S.); (D.M.); (N.W.); (S.M.)
| | - Daisuke Kami
- Department of Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
| | - Takehiro Ogata
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
| | - Masakazu Ibi
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan;
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.K.); (T.S.); (N.W.); (S.M.); (M.S.); (D.M.); (N.W.); (S.M.)
| |
Collapse
|
16
|
Chronic Intermittent Hypoxia Regulates CaMKII-Dependent MAPK Signaling to Promote the Initiation of Abdominal Aortic Aneurysm. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:2502324. [PMID: 34970414 PMCID: PMC8714336 DOI: 10.1155/2021/2502324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 02/05/2023]
Abstract
Obstructive sleep apnea (OSA) is highly prevalent in patients with abdominal aortic aneurysm (AAA). However, the effects of OSA on AAA initiation in a murine model of sleep apnea have not been completely studied. In this paper, Apoe−/− C57BL/6 mice infused with angiotensin II (Ang II) were placed in chronic intermittent hypoxia (CIH) condition for inducing OSA-related AAA. CIH significantly promoted the incidence of AAA and inhibited the survival of mice. By performing ultrasonography and elastic Van Gieson staining, CIH was found to be effective in promoting aortic dilation and elastin degradation. Immunohistochemical and zymography results show that CIH upregulated the expression and activity of MMP2 and MMP9 and upregulated MCP1 expression while downregulating α-SMA expression. Also, CIH exposure promoted ROS generation, apoptosis, and mitochondria damage in vascular smooth muscle cells (VSMCs), which were measured by ROS assay, TUNEL staining, and transmission electron microscopy. The result of RNA sequencing of mouse aortas displayed that 232 mRNAs were differently expressed between Ang II and Ang II+CIH groups, and CaMKII-dependent p38/Jnk was confirmed as one downstream signaling of CIH. CaMKII-IN-1, an inhibitor of CaMKII, eliminated the effects of CIH on the loss of primary VSMCs. To conclude, a mouse model of OSA-related AAA, which contains the phenotypes of both AAA and OSA, was established in this study. We suggested CIH as a risk factor of AAA initiation through CaMKII-dependent MAPK signaling.
Collapse
|
17
|
Mikołajczyk K, Spyt D, Zielińska W, Żuryń A, Faisal I, Qamar M, Świniarski P, Grzanka A, Gagat M. The Important Role of Endothelium and Extracellular Vesicles in the Cellular Mechanism of Aortic Aneurysm Formation. Int J Mol Sci 2021; 22:ijms222313157. [PMID: 34884962 PMCID: PMC8658239 DOI: 10.3390/ijms222313157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Homeostasis is a fundamental property of biological systems consisting of the ability to maintain a dynamic balance of the environment of biochemical processes. The action of endogenous and exogenous factors can lead to internal balance disorder, which results in the activation of the immune system and the development of inflammatory response. Inflammation determines the disturbances in the structure of the vessel wall, connected with the change in their diameter. These disorders consist of accumulation in the space between the endothelium and the muscle cells of low-density lipoproteins (LDL), resulting in the formation of fatty streaks narrowing the lumen and restricting the blood flow in the area behind the structure. The effect of inflammation may also be pathological dilatation of the vessel wall associated with the development of aneurysms. Described disease entities strongly correlate with the increased migration of immune cells. Recent scientific research indicates the secretion of specific vesicular structures during migration activated by the inflammation. The review focuses on the link between endothelial dysfunction and the inflammatory response and the impact of these processes on the development of disease entities potentially related to the secretion of extracellular vesicles (EVs).
Collapse
Affiliation(s)
- Klaudia Mikołajczyk
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.M.); (D.S.); (W.Z.); (A.Ż.); (I.F.); (M.Q.); (A.G.)
| | - Dominika Spyt
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.M.); (D.S.); (W.Z.); (A.Ż.); (I.F.); (M.Q.); (A.G.)
| | - Wioletta Zielińska
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.M.); (D.S.); (W.Z.); (A.Ż.); (I.F.); (M.Q.); (A.G.)
| | - Agnieszka Żuryń
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.M.); (D.S.); (W.Z.); (A.Ż.); (I.F.); (M.Q.); (A.G.)
| | - Inaz Faisal
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.M.); (D.S.); (W.Z.); (A.Ż.); (I.F.); (M.Q.); (A.G.)
| | - Murtaz Qamar
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.M.); (D.S.); (W.Z.); (A.Ż.); (I.F.); (M.Q.); (A.G.)
| | - Piotr Świniarski
- Department of Urology and Andrology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland;
| | - Alina Grzanka
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.M.); (D.S.); (W.Z.); (A.Ż.); (I.F.); (M.Q.); (A.G.)
| | - Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.M.); (D.S.); (W.Z.); (A.Ż.); (I.F.); (M.Q.); (A.G.)
- Correspondence:
| |
Collapse
|
18
|
Kugo H, Sukketsiri W, Iwamoto K, Suihara S, Moriyama T, Zaima N. Low glucose and serum levels cause an increased inflammatory factor in 3T3-L1 cell through Akt, MAPKs and NF-кB activation. Adipocyte 2021; 10:232-241. [PMID: 33896390 PMCID: PMC8078669 DOI: 10.1080/21623945.2021.1914420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) involves the degradation of vascular fibres, and dilation and rupture of the abdominal aorta. Hypoperfusion in the vascular walls due to stenosis of the vasa vasorum is reportedly a cause of AAA onset and involves the induction of adventitial ectopic adipocytes. Recent studies have reported that ectopic adipocytes are associated with AAA rupture in both human and hypoperfusion-induced animal models, highlighting the pathological importance of hypoperfusion and adipocytes in AAA. However, the relationship between hypoperfusion and AAA remains unknown. In this study, we investigated the changes in inflammation-related factors in adipocytes at low glucose and serum levels. Low glucose and serum levels enhanced the production of AAA-related factors in 3T3-L1 cells. Low glucose and serum levels increased the activation of protein kinase B (also known as Akt), extracellular signal-regulated protein kinase 1/2, p38, c-Jun N-terminal kinase, and nuclear factor (NF) кB at the protein level. The inflammatory factors and related signalling pathways were markedly decreased following the return of the cells to normal culture conditions. These data suggest that low glucose and serum levels increase the levels of inflammatory factors through the activation of Akt, mitogen activated protein kinase, and NF-κB signalling pathways.
Collapse
Affiliation(s)
- Hirona Kugo
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara City, Japan
| | - Wanida Sukketsiri
- Department of Pharmacology, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Kazuko Iwamoto
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara City, Japan
- Department of Health and Nutrition, Faculty of Health Science, Osaka Aoyama University, Minoh City, Japan
| | - Satoki Suihara
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara City, Japan
| | - Tatsuya Moriyama
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara City, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
| | - Nobuhiro Zaima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara City, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
| |
Collapse
|
19
|
Meng J, Wen H, Li X, Luan B, Gong S, Wen J, Wang Y, Wang L. POU class 2 homeobox associating factor 1 (POU2AF1) participates in abdominal aortic aneurysm enlargement based on integrated bioinformatics analysis. Bioengineered 2021; 12:8980-8993. [PMID: 34637689 PMCID: PMC8806937 DOI: 10.1080/21655979.2021.1990822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is life-threatening, its natural course is progressively sac expansion and rupture. Elegant studies have been conducted to investigate the molecular markers associated with AAA growth and expansion, this topic however, still needs to be further elucidated. This study aimed to identify potential genes for AAA growth and expansion based on comprehensive bioinformatics approaches. Firstly, 29 up-regulated genes were identified through DEGs analysis between large AAA and small AAA in GSE57691. Secondly, signed WGCNA analysis was conducted based on GSE57691 and the green module was found to exhibit the topmost correlation with large AAA as well as AAA, 133 WGCNA hub genes were further identified. Merged gene set including 29 up-regulated DEGs and 858 green module genes was subjected to constructing a PPI network where 195 PPI hub genes were identified. Subsequently, 4 crucial genes including POU2AF1, FCRLA, CD79B, HLA-DOB were recognized by Venn plot. In addition, by using GSE7084 and GSE98278 for verification, POU2AF1 showed potential diagnostic value between AAA and normal groups, and exhibited a significant higher expression level in large AAA samples compared with small AAA samples. Furthermore, immunohistochemistry results indicated up-regulation of POU2AF1 in large AAA samples than small AAA samples, which implies POU2AF1 may be a key regulator in AAA enlargement and growth. In summary, this study indicates that POU2AF1 has great predictive value for the expansion of AAA, and may contribute to the further exploration of pathogenesis and progression of AAA.
Collapse
Affiliation(s)
- Jinze Meng
- Department of Pharmacology, China Medical University, Shenyang, China
| | - Hao Wen
- Department of Trauma Center, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xintong Li
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
| | - Boyang Luan
- Department of Trauma Center, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shiqiang Gong
- Department of Pharmacology, China Medical University, Shenyang, China
| | - Jie Wen
- Department of Ultrasonography, Inner Mongolia Baotou City Central Hospital, Baotou, China
| | - Yifei Wang
- Department of Pharmacology, China Medical University, Shenyang, China
| | - Lei Wang
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
| |
Collapse
|
20
|
Mukherjee K, Pingili AK, Singh P, Dhodi AN, Dutta SR, Gonzalez FJ, Malik KU. Testosterone Metabolite 6β-Hydroxytestosterone Contributes to Angiotensin II-Induced Abdominal Aortic Aneurysms in Apoe-/- Male Mice. J Am Heart Assoc 2021; 10:e018536. [PMID: 33719500 PMCID: PMC8174379 DOI: 10.1161/jaha.120.018536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Sex is a prominent risk factor for abdominal aortic aneurysms (AAAs), and angiotensin II (Ang II) induces AAA formation to a greater degree in male than in female mice. We previously reported that cytochrome P450 1B1 contributes to the development of hypertension, as well as AAAs, in male mice. We also found that a cytochrome P450 1B1‐generated metabolite of testosterone, 6β‐hydroxytestosterone (6β‐OHT), contributes to Ang II‐induced hypertension and associated cardiovascular and renal pathogenesis in male mice. The current study was conducted to determine the contribution of 6β‐OHT to Ang II‐induced AAA development in Apoe–/– male mice. Methods and Results Intact or castrated Apoe–/–/Cyp1b1+/+ and Apoe–/–/Cyp1b1–/– male mice were infused with Ang II or its vehicle for 28 days, and administered 6β‐OHT every third day for the duration of the experiment. Abdominal aortas were then evaluated for development of AAAs. We observed a significant increase in the incidence and severity of AAAs in intact Ang II‐infused Apoe–/–/Cyp1b1+/+ mice, compared with vehicle‐treated mice, which were minimized in castrated Apoe–/–/Cyp1b1+/+ and intact Apoe–/–/Cyp1b1–/– mice infused with Ang II. Treatment with 6β‐OHT significantly restored the incidence and severity of AAAs in Ang II‐infused castrated Apoe–/–/Cyp1b1+/+ and intact Apoe–/–/Cyp1b1–/– mice. However, administration of testosterone failed to increase AAA incidence and severity in Ang II‐infused intact Apoe–/–/Cyp1b1–/– mice. Conclusions Our results indicate that the testosterone‐cytochrome P450 1B1‐generated metabolite 6β‐OHT contributes to Ang II‐induced AAA development in Apoe–/– male mice.
Collapse
Affiliation(s)
- Kamalika Mukherjee
- Department of Pharmacology Addiction Science and Toxicology College of Medicine University of Tennessee Health Science Center Memphis TN
| | - Ajeeth K Pingili
- Department of Pharmacology Addiction Science and Toxicology College of Medicine University of Tennessee Health Science Center Memphis TN
| | - Purnima Singh
- Department of Pharmacology Addiction Science and Toxicology College of Medicine University of Tennessee Health Science Center Memphis TN
| | - Ahmad N Dhodi
- Department of Pharmacology Addiction Science and Toxicology College of Medicine University of Tennessee Health Science Center Memphis TN
| | - Shubha R Dutta
- Department of Pharmacology Addiction Science and Toxicology College of Medicine University of Tennessee Health Science Center Memphis TN
| | | | - Kafait U Malik
- Department of Pharmacology Addiction Science and Toxicology College of Medicine University of Tennessee Health Science Center Memphis TN
| |
Collapse
|
21
|
Sajeesh S, Broekelman T, Mecham RP, Ramamurthi A. Stem cell derived extracellular vesicles for vascular elastic matrix regenerative repair. Acta Biomater 2020; 113:267-278. [PMID: 32645438 PMCID: PMC10755342 DOI: 10.1016/j.actbio.2020.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 06/12/2020] [Accepted: 07/01/2020] [Indexed: 01/12/2023]
Abstract
Abdominal aortic aneurysms (AAA) are localized expansions of the abdominal aorta that develop due to chronic proteolytic disruption of the structural extracellular matrix (ECM) components (elastin and collagen) within the aorta wall. Major limitations in arresting or reversing AAAs lie in naturally poor and aberrant regeneration and repair of elastic matrix structures in the aorta wall. Bone marrow derived mesenchymal stem cells (BM-MSCs) have emerged as a promising regenerative tool and their therapeutic effects are also known to be effected through their paracrine secretions. Extracellular vesicles (EVs) present in these secretions have emerged as critical cellular component in facilitating many therapeutic benefits of MSCs. EV treatment is thus potentially appealing as a stem cell-inspired cell-free approach to avoid possible phenotypic plasticity of MSCs in vivo. In this study, we investigated the thus far unknown effects of BM-MSC derived EVs on vascular elastic matrix repair in the context of AAA treatment. EVs isolated from BM-MSC source were characterized and their pro-regenerative and their anti-proteolytic effects were evaluated on our established in vitro experimental conditions derived from AAA rat model. Our studies revealed the efficacy of BM-MSC derived EVs in attenuating the proteolytic activity and also in imparting elastic matrix regenerative benefits under aneurysmal environment. Interestingly, compared to cell culture conditioned media (CCM), EVs demonstrated superior regenerative and anti-proteolytic benefits in a proteolytic injury culture model of AAA. From these studies, it appears that EVs derived from BM-MSCs could be beneficial in undertaking a reparative effort in AAA induced degeneration of vascular tissue. Statement of Significance Abdominal aortic aneurysms (AAAs) are localized, rupture-prone expansions of the aorta which result from loss of wall flexibility due to enzymatic breakdown of elastic fibers. There are no established alternatives to surgery, which possess high risk for the mostly elderly patients. Our previous studies have established the elastic regenerative and reparative effect of cell culture secretions derived from adult stem cell source. In this study, we propose to isolate extracellular vesicles (exosomes) from these secretions and evaluate their regenerative benefits in AAA smooth muscle cell culture model. This simple and innovative treatment approach has the potential to arrest or reverse AAA growth to rupture, not possible so far.
Collapse
Affiliation(s)
- S Sajeesh
- Department of Biomedical Engineering, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Thomas Broekelman
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Anand Ramamurthi
- Department of Biomedical Engineering, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States.
| |
Collapse
|
22
|
Hyperlipidemia does not affect development of elastase-induced abdominal aortic aneurysm in mice. Atherosclerosis 2020; 311:73-83. [PMID: 32949946 DOI: 10.1016/j.atherosclerosis.2020.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/31/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Hyperlipidemia is a suggested risk factor for abdominal aortic aneurysm (AAA). However, whether hyperlipidemia is causally involved in AAA progression remains elusive. Here, we tested the hypothesis that hyperlipidemia aggravates AAA formation in the widely used porcine pancreatic elastase (PPE) model of AAA in mice with varying levels of plasma lipids. METHODS Prior to PPE-surgery, 8-week-old male C57BL/6J mice (n = 32) received 1·1011 viral genomes of rAAV8-D377Y-mPcsk9 or control rAAV8 via the tail vein. Mice were fed either western type diet or regular chow. At baseline and during the 28 days following PPE-surgery, mice underwent weekly ultrasonic assessment of AAA progression. Experiments were repeated using Apolipoprotein E knockout (ApoE-/-) mice (n = 7) and wildtype C57BL/6J mice (n = 5). RESULTS At sacrifice, maximal intergroup plasma cholesterol and non-HDL/HDL ratio differences were >5-fold and >20-fold, respectively. AAA diameters expanded to 150% of baseline, but no intergroup differences were detected. This was verified in an independent experiment comparing 8-week-old male ApoE-/- mice with wildtype mice. Histological evaluation of experimental AAA lesions revealed accumulated lipid in neointimal and medial layers, and analysis of human AAA lesions (n = 5) obtained from open repair showed medial lipid deposition. CONCLUSIONS In summary, we find that lipid deposition in the aortic wall is a feature of PPE-induced AAA in mice as well as human AAA lesions. Despite, our data do not support the hypothesis that hyperlipidemia contributes to AAA progression.
Collapse
|
23
|
Gene Regulatory Network Analysis of Perivascular Adipose Tissue of Abdominal Aortic Aneurysm Identifies Master Regulators of Key Pathogenetic Pathways. Biomedicines 2020; 8:biomedicines8080288. [PMID: 32823940 PMCID: PMC7459520 DOI: 10.3390/biomedicines8080288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/30/2020] [Accepted: 08/12/2020] [Indexed: 11/19/2022] Open
Abstract
The lack of medical therapy to treat abdominal aortic aneurysm (AAA) stems from our inadequate understanding of the mechanisms underlying AAA pathogenesis. To date, the only available treatment option relies on surgical intervention, which aims to prevent AAA rupture. Identifying specific regulators of pivotal pathogenetic mechanisms would allow the development of novel treatments. With this work, we sought to identify regulatory factors associated with co-expressed genes characterizing the diseased perivascular adipose tissue (PVAT) of AAA patients, which is crucially involved in AAA pathogenesis. We applied a reverse engineering approach to identify cis-regulatory elements of diseased PVAT genes, the associated transcription factors, and upstream regulators. Finally, by analyzing the topological properties of the reconstructed regulatory disease network, we prioritized putative targets for AAA interference treatment options. Overall, we identified NFKB1, SPIB, and TBP as the most relevant transcription factors, as well as MAPK1 and GSKB3 protein kinases and RXRA nuclear receptor as key upstream regulators. We showed that these factors could regulate different co-expressed gene subsets in AAA PVAT, specifically associated with both innate and antigen-driven immune response pathways. Inhibition of these factors may represent a novel option for the development of efficient immunomodulatory strategies to treat AAA.
Collapse
|
24
|
Identification of Novel microRNA Profiles Dysregulated in Plasma and Tissue of Abdominal Aortic Aneurysm Patients. Int J Mol Sci 2020; 21:ijms21134600. [PMID: 32605321 PMCID: PMC7370113 DOI: 10.3390/ijms21134600] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022] Open
Abstract
microRNAs (miRNAs) are small RNAs that regulate different biological processes. Our objective was to identify miRNAs dysregulated in plasma and tissue of patients with abdominal aortic aneurysm (AAA) and explore new potential targets involved in AAA. Fifty-seven subjects were recruited for a plasma study (30 AAA patients, 16 healthy volunteers and 11 patients with atherosclerosis). The expression level of 179 miRNAs was screened in plasma from a subset of samples, and dysregulated miRNAs were validated in the entire study population. Dysregulated miRNAs were also quantified in aortic tissue of 21 AAA patients and 8 organ donors. Applying a gene set enrichment analysis, an interaction map of dysregulated miRNAs and their targets was built, and selected targets were quantified in tissue samples. miR-27b-3p and miR-221-3p were overexpressed in plasma of AAA patients compared with healthy controls, 1.6 times and 1.9 times, respectively. In AAA tissue, six miRNAs (miR-1, miR-27b-3p, miR-29b-3p, miR-133a-3p, miR-133b, and miR-195-5p) were underexpressed from 1.6 to 4.8 times and four miRNAs (miR-146a-5p, miR-21-5p, miR-144-3p, and miR-103a-3p) were overexpressed from 1.3 to 7.2 times. Thrombospondin-2, a target of miR-195-5p, was increased in AAA tissue and negatively correlated with the expression of miR-195-5p, suggesting their involvement in a common regulatory mechanism.
Collapse
|
25
|
Li Z, Kong W. Cellular signaling in Abdominal Aortic Aneurysm. Cell Signal 2020; 70:109575. [PMID: 32088371 DOI: 10.1016/j.cellsig.2020.109575] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/31/2022]
Abstract
Abdominal aortic aneurysms (AAAs) are highly lethal cardiovascular diseases without effective medications. However, the molecular and signaling mechanisms remain unclear. A series of pathological cellular processes have been shown to contribute to AAA formation, including vascular extracellular matrix remodeling, inflammatory and immune responses, oxidative stress, and dysfunction of vascular smooth muscle cells. Each cellular process involves complex cellular signaling, such as NF-κB, MAPK, TGFβ, Notch and inflammasome signaling. In this review, we discuss how cellular signaling networks function in various cellular processes during the pathogenesis and progression of AAA. Understanding the interaction of cellular signaling networks with AAA pathogenesis as well as the crosstalk of different signaling pathways is essential for the development of novel therapeutic approaches to and personalized treatments of AAA diseases.
Collapse
Affiliation(s)
- Zhiqing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China.
| |
Collapse
|
26
|
Abstract
Dissections or ruptures of aortic aneurysms remain a leading cause of death in the developed world, with the majority of deaths being preventable if individuals at risk are identified and properly managed. Genetic variants predispose individuals to these aortic diseases. In the case of thoracic aortic aneurysm and dissections (thoracic aortic disease), genetic data can be used to identify some at-risk individuals and dictate management of the associated vascular disease. For abdominal aortic aneurysms, genetic associations have been identified, which provide insight on the molecular pathogenesis but cannot be used clinically yet to identify individuals at risk for abdominal aortic aneurysms. This compendium will discuss our current understanding of the genetic basis of thoracic aortic disease and abdominal aortic aneurysm disease. Although both diseases share several pathogenic similarities, including proteolytic elastic tissue degeneration and smooth muscle dysfunction, they also have several distinct differences, including population prevalence and modes of inheritance.
Collapse
Affiliation(s)
- Amélie Pinard
- From the Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School; University of Texas Health Science Center at Houston (A.P., D.M.M.)
| | - Gregory T Jones
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand (G.T.J.)
| | - Dianna M Milewicz
- From the Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School; University of Texas Health Science Center at Houston (A.P., D.M.M.)
| |
Collapse
|
27
|
Matrix Metalloproteinase in Abdominal Aortic Aneurysm and Aortic Dissection. Pharmaceuticals (Basel) 2019; 12:ph12030118. [PMID: 31390798 PMCID: PMC6789891 DOI: 10.3390/ph12030118] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/25/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
Abdominal Aortic Aneurysm (AAA) affects 4–5% of men over 65, and Aortic Dissection (AD) is a life-threatening aortic pathology associated with high morbidity and mortality. Initiators of AAA and AD include smoking and arterial hypertension, whilst key pathophysiological features of AAA and AD include chronic inflammation, hypoxia, and large modifications to the extra cellular matrix (ECM). As it stands, only surgical methods are available for preventing aortic rupture in patients, which often presents difficulties for recovery. No pharmacological treatment is available, as such researchers are attempting to understand the cellular and molecular pathophysiology of AAA and AD. Upregulation of matrix metalloproteinase (MMPs), particularly MMP-2 and MMP-9, has been identified as a key event occurring during aneurysmal growth. As such, several animal models of AAA and AD have been used to investigate the therapeutic potential of suppressing MMP-2 and MMP-9 activity as well as modulating the activity of other MMPs, and TIMPs involved in the pathology. Whilst several studies have offered promising results, targeted delivery of MMP inhibition still needs to be developed in order to avoid surgery in high risk patients.
Collapse
|
28
|
Yao F, Yao Z, Zhong T, Zhang J, Wang T, Zhang B, He Q, Ding L, Yang B. Imatinib prevents elastase-induced abdominal aortic aneurysm progression by regulating macrophage-derived MMP9. Eur J Pharmacol 2019; 860:172559. [PMID: 31325435 DOI: 10.1016/j.ejphar.2019.172559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 01/20/2023]
Abstract
Abdominal aortic aneurysm (AAA) is characterized with progressive weakening and considerable dilation of the aortic wall. Despite the high risk of mortality in the elderly population, there are still no clinical pharmacological therapies to alleviate AAA progression. Macrophage-derived MMP9 acts as a key factor in extracellular matrix degradation and is crucial for aortic aneurysm development and aortic rupture. Here, we demonstrated that the transcription level of MMP9 was suppressed with a concentration-dependent manner in macrophages after Imatinib treatment, which was accompanied by the down-regulation of MMP9 protein expression and reduced MMP9 secretion in vitro. Imatinib administration (50 mg/kg/d, i.g.) was carried out one week after the establishment of elastase-induced AAA in rats, stabilizing aneurysm progression and improving survival rate via decreasing the aortic diameter and preventing elastin degradation. Expression and activity of MMP9 in the artery tissues were significantly suppressed after Imatinib treatment via in situ assessment like immunohistochemistry and zymography, although macrophage infiltration was not affected. Furthermore, we found that Imatinib inhibited MMP9 transcription through reduction of STAT3 phosphorylation and translocation from nucleus to cytoplasm. These observations indicated that Imatinib prevents aneurysm progression by inhibiting STAT3-mediated MMP9 expression and activation, suggesting a new application of Imatinib on AAA clinical therapy.
Collapse
Affiliation(s)
- Fengqi Yao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Zhangting Yao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Tiecheng Zhong
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Jieqiong Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Tingting Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Bo Zhang
- Translational Medicine Research Center, Nanjing Medical University, Affiliated Hangzhou Hospital, Hangzhou First People's Hospital, Hangzhou, Zhejiang, 310006, PR China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| |
Collapse
|
29
|
Wang Y, Chen C, Wang Q, Cao Y, Xu L, Qi R. Inhibitory effects of cycloastragenol on abdominal aortic aneurysm and its related mechanisms. Br J Pharmacol 2019; 176:282-296. [PMID: 30302749 PMCID: PMC6295405 DOI: 10.1111/bph.14515] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 08/15/2018] [Accepted: 09/18/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Abdominal aortic aneurysm (AAA) is a degenerative disease affecting human health, but there are no safe and effective medications for AAA therapy. Cycloastragenol (CAG), derived from Astragali Radix, has various pharmacological effects. However, whether CAG can protect against AAA remains elusive. In this study, we investigated whether CAG has an inhibitory effect on AAA and its related mechanism. EXPERIMENTAL APPROACH The AAA mouse model was induced by incubating the abdominal aorta with elastase. CAG was administered by gavage at different doses beginning on the same day or 14 days after inducing AAA to explore its preventive or therapeutic effects respectively. The preventive effects of CAG on AAA were verified in another AAA mouse model induced by angiotensin II in ApoE-/- mouse. In vitro experiments were implemented on rat vascular smooth muscle cells (VSMCs) stimulated by TNF-α. KEY RESULTS Compared to the control AAA model group, CAG (125 mg·kg-1 body weight day-1 ) reduced the incidence of AAA, the dilatation of aorta and elastin degradation in media in both mouse models of AAA. CAG suppressed the inflammation, oxidation, phenotype switch and apoptosis in TNF-α-stimulated VSMCs, ameliorated the expression and activity of MMPs and decreased the activation of the ERK/JNK signalling pathway. CAG also inhibited the degradation of elastin in TNF-α-stimulated VSMCs. CONCLUSION AND IMPLICATIONS CAG presents protective effects against AAA through down-regulation of the MAPK signalling pathways and thus attenuates inflammation, oxidation, VSMC phenotype switch and apoptosis and the expression of MMPs as well as increasing elastin biosynthesis.
Collapse
MESH Headings
- Administration, Oral
- Angiotensin II/metabolism
- Animals
- Aortic Aneurysm, Abdominal/drug therapy
- Aortic Aneurysm, Abdominal/metabolism
- Apolipoproteins E/deficiency
- Apolipoproteins E/metabolism
- Cell Survival/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- Drugs, Chinese Herbal/administration & dosage
- Drugs, Chinese Herbal/pharmacology
- Inflammation/drug therapy
- Inflammation/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Conformation
- Oxidative Stress/drug effects
- Pancreatic Elastase/metabolism
- Rats
- Rats, Sprague-Dawley
- Sapogenins/administration & dosage
- Sapogenins/pharmacology
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Yunxia Wang
- Institute of Cardiovascular Sciences, Health Science CenterPeking UniversityBeijingChina
- Key Laboratory of Molecular Cardiovascular SciencesMinistry of EducationBeijingChina
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery SystemsBeijingChina
| | - Cong Chen
- Institute of Cardiovascular Sciences, Health Science CenterPeking UniversityBeijingChina
- Key Laboratory of Molecular Cardiovascular SciencesMinistry of EducationBeijingChina
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery SystemsBeijingChina
| | - Qinyu Wang
- Institute of Cardiovascular Sciences, Health Science CenterPeking UniversityBeijingChina
- Key Laboratory of Molecular Cardiovascular SciencesMinistry of EducationBeijingChina
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery SystemsBeijingChina
| | - Yini Cao
- Institute of Cardiovascular Sciences, Health Science CenterPeking UniversityBeijingChina
- Key Laboratory of Molecular Cardiovascular SciencesMinistry of EducationBeijingChina
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery SystemsBeijingChina
| | - Lu Xu
- Institute of Cardiovascular Sciences, Health Science CenterPeking UniversityBeijingChina
- Key Laboratory of Molecular Cardiovascular SciencesMinistry of EducationBeijingChina
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery SystemsBeijingChina
| | - Rong Qi
- Institute of Cardiovascular Sciences, Health Science CenterPeking UniversityBeijingChina
- Key Laboratory of Molecular Cardiovascular SciencesMinistry of EducationBeijingChina
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery SystemsBeijingChina
| |
Collapse
|
30
|
Petri MH, Thul S, Andonova T, Lindquist-Liljeqvist M, Jin H, Skenteris NT, Arnardottir H, Maegdefessel L, Caidahl K, Perretti M, Roy J, Bäck M. Resolution of Inflammation Through the Lipoxin and ALX/FPR2 Receptor Pathway Protects Against Abdominal Aortic Aneurysms. JACC Basic Transl Sci 2018; 3:719-727. [PMID: 30623131 PMCID: PMC6314955 DOI: 10.1016/j.jacbts.2018.08.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/31/2022]
Abstract
Specialized lipid mediators transduce the resolution of inflammation by means of the ALX/FPR2. Human AAA exhibited decreased ALX/FPR2 expression. Genetic disruption of the murine ALX/FPR2 ortholog exacerbated AAA and increased inflammation. The ALX/FPR2 agonist ATL induced pro-resolving signaling in bone marrow-derived murine cells. Pro-resolving signaling by means of the ALX/FPR2 receptor may decrease the progression of AAA.
An abdominal aortic aneurysm (AAA) is a progressive aortic dilation that may lead to rupture, which is usually lethal. This study identifies the state of failure in the resolution of inflammation by means of decreased expression of the pro-resolving receptor A lipoxin/formyl peptide receptor 2 (ALX/FPR2) in the adventitia of human AAA lesions. Mimicking this condition by genetic deletion of the murine ALX/FPR2 ortholog in hyperlipidemic mice exacerbated the aortic dilation induced by angiotensin II infusion, associated with decreased vascular collagen and increased inflammation. The authors also identified key roles of lipoxin formation through 12/15-lipoxygenase and neutrophil p38 mitogen-activated protein kinase. In conclusion, this study established pro-resolving signaling by means of the ALX/FPR2 receptor in aneurysms and vascular inflammation.
Collapse
Affiliation(s)
- Marcelo H Petri
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Silke Thul
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Teodora Andonova
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Hong Jin
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Kenneth Caidahl
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mauro Perretti
- William Harvey Research Institute, Barts and London School of Medicine, Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| | - Joy Roy
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Theme Heart and Vessels, Division of Valvular and Coronary Disease, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Bäck
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Theme Heart and Vessels, Division of Valvular and Coronary Disease, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
31
|
Hao Q, Dong X, Chen X, Yan F, Wang X, Shi H, Dong B. Angiotensin-Converting Enzyme 2 Inhibits Angiotensin II-Induced Abdominal Aortic Aneurysms in Mice. Hum Gene Ther 2018; 29:1387-1395. [PMID: 28142259 DOI: 10.1089/hum.2016.144] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent studies have demonstrated that angiotensin-converting enzyme 2 (ACE2) plays an important role in the pathogenesis of abdominal aortic aneurysms (AAAs). However, few studies have reported the direct effect of ACE2 overexpression on the aneurysm. This study hypothesized that the overexpression of ACE2 may prevent the pathogenesis of aneurysms by decreasing RAS activation. Thirty-nine mice were randomly assigned to three groups (n = 13 in each group): the Ad.ACE2 group, the Ad.EGFP group, and a control group. After 8 weeks of treatment, abdominal aortas with AAAs were obtained for hematoxylin and eosin staining, Verhoeff Van Gieson staining, immunohistochemistry, and Western blotting. The incidence and severity of AAAs, macrophage infiltration, and MMP protein expression were all recorded. The results showed that ACE2 gene transfer significantly decreased the occurrence of AAAs and inhibited AAA formation in ApoE-/- mice by inhibiting the inflammatory response and MMP activation, and the mechanisms may involve decreased ERK and Ang II-nuclear factor kappa B signaling pathways.
Collapse
Affiliation(s)
- QingQing Hao
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, P.R. China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Shandong University, Shandong, P.R. China.,Department of Physiopathology, Fenyang College Shanxi Medical University, Fenyang, P.R. China
| | - XueFei Dong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xu Chen
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, P.R. China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Shandong University, Shandong, P.R. China
| | - Feng Yan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Shandong University, Shandong, P.R. China
| | - Xiaoyu Wang
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, P.R. China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Shandong University, Shandong, P.R. China
| | - HaiShui Shi
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, P.R. China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Shandong University, Shandong, P.R. China
| |
Collapse
|
32
|
Raffort J, Chinetti G, Lareyre F. Glucagon-Like peptide-1: A new therapeutic target to treat abdominal aortic aneurysm? Biochimie 2018; 152:149-154. [PMID: 30103898 DOI: 10.1016/j.biochi.2018.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/29/2018] [Indexed: 12/25/2022]
Abstract
Recent antidiabetic drugs including GLP-1 receptor agonists and DPP-IV inhibitors have demonstrated protective effects in several cardiovascular diseases but their effect in abdominal aortic aneurysm (AAA) is far less known. AAA can be associated with extremely high rates of mortality and pharmacological treatments are still lacking underlining the real need to identify new therapeutic targets. The aim of this review was to summarize current knowledge on the role of GLP-1 pathway in AAA. A systematic literature review was performed and 6 relevant studies (2 clinical and 4 experimental) were included. Experimental studies demonstrated a protective effect of both GLP-1 receptor agonists and DPP-IV inhibitors through targeting the main pathophysiological mechanisms underlying AAA formation. The effects of these drugs in human AAA are still poorly known. In the limelight of clinical and experimental studies, we discuss current limits and future directions.
Collapse
Affiliation(s)
- Juliette Raffort
- Clinical Chemistry Laboratory, University Hospital of Nice, France; Université Côte d'Azur, CHU, Inserm, C3M, Nice, France.
| | - Giulia Chinetti
- Clinical Chemistry Laboratory, University Hospital of Nice, France; Université Côte d'Azur, CHU, Inserm, C3M, Nice, France
| | - Fabien Lareyre
- Université Côte d'Azur, CHU, Inserm, C3M, Nice, France; Department of Vascular Surgery, University Hospital of Nice, France
| |
Collapse
|
33
|
He L, Fu Y, Deng J, Shen Y, Wang Y, Yu F, Xie N, Chen Z, Hong T, Peng X, Li Q, Zhou J, Han J, Wang Y, Xi J, Kong W. Deficiency of FAM3D (Family With Sequence Similarity 3, Member D), A Novel Chemokine, Attenuates Neutrophil Recruitment and Ameliorates Abdominal Aortic Aneurysm Development. Arterioscler Thromb Vasc Biol 2018; 38:1616-1631. [PMID: 29853563 PMCID: PMC6039426 DOI: 10.1161/atvbaha.118.311289] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/16/2018] [Indexed: 01/13/2023]
Abstract
Supplemental Digital Content is available in the text. Objective— Chemokine-mediated neutrophil recruitment contributes to the pathogenesis of abdominal aortic aneurysm (AAA) and may serve as a promising therapeutic target. FAM3D (family with sequence similarity 3, member D) is a recently identified novel chemokine. Here, we aimed to explore the role of FAM3D in neutrophil recruitment and AAA development. Approach and Results— FAM3D was markedly upregulated in human AAA tissues, as well as both elastase- and CaPO4-induced mouse aneurysmal aortas. FAM3D deficiency significantly attenuated the development of AAA in both mouse models. Flow cytometry analysis indicated that FAM3D−/− mice exhibited decreased neutrophil infiltration in the aorta during the early stage of AAA formation compared with their wild-type littermates. Moreover, application of FAM3D-neutralizing antibody 6D7 through intraperitoneal injection markedly ameliorated elastase-induced AAA formation and neutrophil infiltration. Further, in vitro coculture experiments with FAM3D-neutralizing antibody 6D7 and in vivo intravital microscopic analysis indicated that endothelial cell–derived FAM3D induced neutrophil recruitment. Mechanistically, FAM3D upregulated and activated Mac-1 (macrophage-1 antigen) in neutrophils, whereas inhibition of FPR1 (formyl peptide receptor 1) or FPR2 significantly blocked FAM3D-induced Mac-1 activation, indicating that the effect of FAM3D was dependent on both FPRs. Moreover, specific inhibitors of FPR signaling related to Gi protein or β-arrestin inhibited FAM3D-activated Mac-1 in vitro, whereas FAM3D deficiency decreased the activation of both FPR-Gi protein and β-arrestin signaling in neutrophils in vivo. Conclusions— FAM3D, as a dual agonist of FPR1 and FPR2, induced Mac-1-mediated neutrophil recruitment and aggravated AAA development through FPR-related Gi protein and β-arrestin signaling.
Collapse
Affiliation(s)
- Li He
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, People's Republic of China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People's Republic of China (L.H., Y.F., Y.S., Yingbao Wang., F.Y., N.X., Z.C., J.Z., W.K.)
| | - Yi Fu
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, People's Republic of China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People's Republic of China (L.H., Y.F., Y.S., Yingbao Wang., F.Y., N.X., Z.C., J.Z., W.K.)
| | - Jingna Deng
- Tasly Microcirculation Research Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China (J.D., J.H.)
| | - Yicong Shen
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, People's Republic of China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People's Republic of China (L.H., Y.F., Y.S., Yingbao Wang., F.Y., N.X., Z.C., J.Z., W.K.)
| | - Yingbao Wang
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, People's Republic of China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People's Republic of China (L.H., Y.F., Y.S., Yingbao Wang., F.Y., N.X., Z.C., J.Z., W.K.)
| | - Fang Yu
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, People's Republic of China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People's Republic of China (L.H., Y.F., Y.S., Yingbao Wang., F.Y., N.X., Z.C., J.Z., W.K.)
| | - Nan Xie
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, People's Republic of China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People's Republic of China (L.H., Y.F., Y.S., Yingbao Wang., F.Y., N.X., Z.C., J.Z., W.K.)
| | - Zhongjiang Chen
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, People's Republic of China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People's Republic of China (L.H., Y.F., Y.S., Yingbao Wang., F.Y., N.X., Z.C., J.Z., W.K.)
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, People's Republic of China (T.H.)
| | - Xinjian Peng
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing, People's Republic of China (X.P., Q.L., Ying Wang)
| | - Qingqing Li
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing, People's Republic of China (X.P., Q.L., Ying Wang)
| | - Jing Zhou
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, People's Republic of China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People's Republic of China (L.H., Y.F., Y.S., Yingbao Wang., F.Y., N.X., Z.C., J.Z., W.K.)
| | - Jingyan Han
- Tasly Microcirculation Research Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China (J.D., J.H.)
| | - Ying Wang
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing, People's Republic of China (X.P., Q.L., Ying Wang)
| | - Jianzhong Xi
- Department of Biomedicine, College of Engineering, Peking University, Beijing, People's Republic of China (J.X.).
| | - Wei Kong
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, People's Republic of China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People's Republic of China (L.H., Y.F., Y.S., Yingbao Wang., F.Y., N.X., Z.C., J.Z., W.K.)
| |
Collapse
|
34
|
Li FF, Shang XK, Du XL, Chen S. Rapamycin Treatment Attenuates Angiotensin II -induced Abdominal Aortic Aneurysm Formation via VSMC Phenotypic Modulation and Down-regulation of ERK1/2 Activity. Curr Med Sci 2018; 38:93-100. [PMID: 30074157 DOI: 10.1007/s11596-018-1851-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/10/2018] [Indexed: 10/24/2022]
Abstract
The aim of the present study is to address the effect of rapamycin on abdominal aortic aneurysm (AAA) and the potential mechanisms. A clinically relevant AAA model was induced in apolipoprotein E-deficient (ApoE-/-) mice, in which miniosmotic pump was implanted subcutaneously to deliver angiotensin II (Ang II) for 14 days. Male ApoE-/- mice were randomly divided into 3 groups: saline infusion, Ang II infusion, and Ang II infusion plus intraperitoneal injection of rapamycin. The diameter of the supra-renal abdominal aorta was measured by ultrasonography at the end of the infusion. Then aortic tissue was excised and examined by Western blotting and histoimmunochemistry. Ang n with or without rapamycin treatment was applied to the cultured vascular smooth muscle cells (VSMCs) in vitro. The results revealed that rapamycin treatment significantly attenuated the incidence of Ang II induced-AAA in ApoE-/- mice. Histologic analysis showed that rapamycin treatment decreased disarray of elastin fibers and VSMCs hyperplasia in the medial layer. Immunochemistry staining and Western blotting documented the increased phospho-ERK1/2 and ERK1/2 expression in aortic walls in Ang II induced-AAA, as well as in human lesions. Whereas in the rapamycintreated group, decreased phospho-ERKl/2 expression level was detected. Moreover, rapamycin reversed Ang II -induced VSMCs phenotypic change both in vivo and in vitro. Based on those results, we confirmed that rapamycin therapy suppressed Ang II -induced AAA formation in mice, partially via VSMCs phenotypic modulation and down-regulation of ERK1/2 activity.
Collapse
Affiliation(s)
- Fei-Fei Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao-Ke Shang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xin-Ling Du
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shu Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
35
|
Boese AC, Chang L, Yin KJ, Chen YE, Lee JP, Hamblin MH. Sex differences in abdominal aortic aneurysms. Am J Physiol Heart Circ Physiol 2018; 314:H1137-H1152. [PMID: 29350999 DOI: 10.1152/ajpheart.00519.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a vascular disorder with a high case fatality rate in the instance of rupture. AAA is a multifactorial disease, and the etiology is still not fully understood. AAA is more likely to occur in men, but women have a greater risk of rupture and worse prognosis. Women are reportedly protected against AAA possibly by premenopausal levels of estrogen and are, on average, diagnosed at older ages than men. Here, we review the present body of research on AAA pathophysiology in humans, animal models, and cultured cells, with an emphasis on sex differences and sex steroid hormone signaling.
Collapse
Affiliation(s)
- Austin C Boese
- Department of Pharmacology, Tulane University School of Medicine , New Orleans, Louisiana
| | - Lin Chang
- Center for Advanced Models for Translational Sciences and Therapeutics, Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan
| | - Ke-Jie Yin
- Department of Neurology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan
| | - Jean-Pyo Lee
- Department of Physiology, Tulane University School of Medicine , New Orleans, Louisiana.,Center for Stem Cell Research and Regenerative Medicine , New Orleans, Louisiana
| | - Milton H Hamblin
- Department of Pharmacology, Tulane University School of Medicine , New Orleans, Louisiana
| |
Collapse
|
36
|
Takahara Y, Tokunou T, Ichiki T. Suppression of Abdominal Aortic Aneurysm Formation in Mice by Teneligliptin, a Dipeptidyl Peptidase-4 Inhibitor. J Atheroscler Thromb 2018; 25:698-708. [PMID: 29321388 PMCID: PMC6099070 DOI: 10.5551/jat.42481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: Dipeptidyl peptidase-4 (DPP-4) inhibitors lower blood glucose levels through inhibition of incretin degradation, which stimulates insulin secretion. Recent studies reported that DPP-4 inhibitors suppressed atherogenesis in apolipoprotein E-knockout (ApoEKO) mice. In this study, we investigated whether teneligliptin, a DPP-4 inhibitor, affects the development of abdominal aortic aneurysms (AAA) in ApoEKO mice. Methods: ApoEKO mice were fed a high-fat diet (HFD) and infused with angiotensin (Ang) II by osmotic mini pumps for 4 weeks to induce AAA with (DPP-4i group) or without (control group) teneligliptin administered orally from 1 week before HFD and Ang II infusion to the end of the experiment. Confluent rat vascular smooth muscle cells (VSMCs) were serum-starved for 48 hours, then incubated with or without teneligliptin for another 24 hours and stimulated with Ang II. Results: Treatment with teneligliptin significantly reduced the AAA formation rate (30.7% vs. 71.4% vs. control, P < 0.05), aortic dilatation (1.32 ± 0.09 mm vs. 1.76 ± 0.18 mm in the control, P < 0.05) and severity score (0.75 ± 0.28 vs. 1.91 ± 0.4 in the control, P < 0.05). Elastin degradation grade was also attenuated in DPP-4i group (2.83 ± 0.17 vs. 3.45 ± 0.16 in the control, P < 0.05). The number of macrophages infiltrating into the abdominal aorta was decreased in the DPP-4i group (51.8 ± 29.8/section vs. 219.5 ± 78.5/section in the control, P < 0.05). Teneligliptin attenuated Ang II-induced phosphorylation of extracellular signal-regulated kinase (ERK) and Akt, and mRNA expression of monocyte chemoattractant protein-1 in VSMCs. Conclusion: Treatment with teneligliptin suppressed AAA formation in ApoEKO mice with HFD and Ang II infusion. Suppression of macrophage infiltration by teneligliptin may be involved in the inhibition of AAA formation.
Collapse
Affiliation(s)
- Yusuke Takahara
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Kyushu University
| | - Tomotake Tokunou
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Kyushu University.,Center for Disruptive Cardiovascular Medicine, Department of Advanced Cardiovascular Regulation and Therapeutics, Kyushu University
| | - Toshihiro Ichiki
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Kyushu University.,Department of Cardiology, Harasanshin Hospital
| |
Collapse
|
37
|
Munjal C, Jegga AG, Opoka AM, Stoilov I, Norris RA, Thomas CJ, Smith JM, Mecham RP, Bressan GM, Hinton RB. Inhibition of MAPK-Erk pathway in vivo attenuates aortic valve disease processes in Emilin1-deficient mouse model. Physiol Rep 2017; 5:5/5/e13152. [PMID: 28270590 PMCID: PMC5350168 DOI: 10.14814/phy2.13152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/08/2017] [Indexed: 12/20/2022] Open
Abstract
Aortic valve disease (AVD) is a common condition with a progressive natural history, and presently, there are no pharmacologic treatment strategies. Elastic fiber fragmentation (EFF) is a hallmark of AVD, and increasing evidence implicates developmental elastic fiber assembly defects. Emilin1 is a glycoprotein necessary for elastic fiber assembly that is present in both developing and mature human and mouse aortic valves. The Emilin1‐deficient mouse (Emilin1−/−) is a model of latent AVD, characterized by activated TGFβ/MEK/p‐Erk signaling and upregulated elastase activity. Emilin1−/− aortic valves demonstrate early EFF and aberrant angiogenesis followed by late neovascularization and fibrosis. The objective of this study was to test the effectiveness of three different targeted therapies. Aged (12–14 months) Emilin1−/− mice were treated with refametinib (RDEA‐119, MEK1/2 inhibitor), doxycycline (elastase inhibitor), or G6‐31 (anti‐VEGF‐A mouse antibody) for 4 weeks. Refametinib‐ and doxycycline‐treated Emilin1−/− mice markedly reduced MEK/p‐Erk activation in valve tissue. Furthermore, both refametinib and doxycycline attenuated elastolytic cathepsin K, L, MMP‐2, and MMP‐9 activation, and abrogated macrophage and neutrophil infiltration in Emilin1−/− aortic valves. RNAseq analysis was performed in aortic valve tissue from adult (4 months) and aged (14 months) Emilin1−/− and age‐matched wild‐type control mice, and demonstrated upregulation of genes associated with MAPK/MEK/p‐Erk signaling and elastases at the adult stage and inflammatory pathways at the aged stage controlling for age. These results suggest that Erk1/2 signaling is an important modulator of early elastase activation, and pharmacological inhibition using refametinib may be a promising treatment to halt AVD progression
Collapse
Affiliation(s)
- Charu Munjal
- Divisions of Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Anil G Jegga
- Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Amy M Opoka
- Divisions of Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ivan Stoilov
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Ohio
| | - Russell A Norris
- Department of Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Craig J Thomas
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences National Institutes of Health, Bethesda, Maryland
| | - J Michael Smith
- TriHealth Heart Institute, Cardio-Thoracic Surgery, Cincinnati, Ohio
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Ohio
| | - Giorgio M Bressan
- The Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Robert B Hinton
- Divisions of Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
38
|
Moran CS, Biros E, Krishna SM, Wang Y, Tikellis C, Morton SK, Moxon JV, Cooper ME, Norman PE, Burrell LM, Thomas MC, Golledge J. Resveratrol Inhibits Growth of Experimental Abdominal Aortic Aneurysm Associated With Upregulation of Angiotensin-Converting Enzyme 2. Arterioscler Thromb Vasc Biol 2017; 37:2195-2203. [DOI: 10.1161/atvbaha.117.310129] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/31/2017] [Indexed: 12/16/2022]
Abstract
Objective—
Recent evidence suggests an important role for angiotensin-converting enzyme 2 (ACE2) in limiting abdominal aortic aneurysm (AAA). This study examined the effect of ACE2 deficiency on AAA development and the efficacy of resveratrol to upregulate ACE2 in experimental AAA.
Approach and Results—
Ace2
deletion in apolipoprotein-deficient mice (
ApoE
−/−
Ace2
−/y
) resulted in increased aortic diameter and spontaneous aneurysm of the suprarenal aorta associated with increased expression of inflammation and proteolytic enzyme markers. In humans, serum ACE2 activity was negatively associated with AAA diagnosis.
ACE2
expression was lower in infrarenal biopsies of patients with AAA than organ donors. AAA was more severe in
ApoE
−/−
Ace2
−/y
mice compared with controls in 2 experimental models. Resveratrol (0.05/100-g chow) inhibited growth of pre-established AAAs in
ApoE
−/−
mice fed high-fat chow and infused with angiotensin II continuously for 56 days. Reduced suprarenal aorta dilatation in mice receiving resveratrol was associated with elevated serum ACE2 and increased suprarenal aorta tissue levels of ACE2 and sirtuin 1 activity. In addition, the relative phosphorylation of Akt and ERK (extracellular signal-regulated kinase) 1/2 within suprarenal aorta tissue and gene expression for nuclear factor of kappa light polypeptide gene enhancer in B cells 1, angiotensin type-1 receptor, and metallopeptidase 2 and 9 were significantly reduced. Upregulation of ACE2 in human aortic smooth muscle cells by resveratrol in vitro was sirtuin 1-dependent.
Conclusions—
This study provides experimental evidence of an important role for ACE2 in limiting AAA development and growth. Resveratrol upregulated ACE2 and inhibited AAA growth in a mouse model.
Collapse
Affiliation(s)
- Corey S. Moran
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| | - Erik Biros
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| | - Smriti M. Krishna
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| | - Yutang Wang
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| | - Chris Tikellis
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| | - Susan K. Morton
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| | - Joseph V. Moxon
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| | - Mark E. Cooper
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| | - Paul E. Norman
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| | - Louise M. Burrell
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| | - Merlin C. Thomas
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| | - Jonathan Golledge
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (C.S.M., E.B., S.M.K., S.K.M., J.V.M., J.G.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Mount Helen, Victoria (Y.W.); Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia (C.T., M.E.C., M.C.T.); School of Surgery,
| |
Collapse
|
39
|
MacFarlane EG, Haupt J, Dietz HC, Shore EM. TGF-β Family Signaling in Connective Tissue and Skeletal Diseases. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022269. [PMID: 28246187 DOI: 10.1101/cshperspect.a022269] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The transforming growth factor β (TGF-β) family of signaling molecules, which includes TGF-βs, activins, inhibins, and numerous bone morphogenetic proteins (BMPs) and growth and differentiation factors (GDFs), has important functions in all cells and tissues, including soft connective tissues and the skeleton. Specific TGF-β family members play different roles in these tissues, and their activities are often balanced with those of other TGF-β family members and by interactions with other signaling pathways. Perturbations in TGF-β family pathways are associated with numerous human diseases with prominent involvement of the skeletal and cardiovascular systems. This review focuses on the role of this family of signaling molecules in the pathologies of connective tissues that manifest in rare genetic syndromes (e.g., syndromic presentations of thoracic aortic aneurysm), as well as in more common disorders (e.g., osteoarthritis and osteoporosis). Many of these diseases are caused by or result in pathological alterations of the complex relationship between the TGF-β family of signaling mediators and the extracellular matrix in connective tissues.
Collapse
Affiliation(s)
- Elena Gallo MacFarlane
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Julia Haupt
- Department of Orthopedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.,Howard Hughes Medical Institute, Bethesda, Maryland 21205
| | - Eileen M Shore
- Department of Orthopedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
40
|
Yamawaki-Ogata A, Oshima H, Usui A, Narita Y. Bone marrow–derived mesenchymal stromal cells regress aortic aneurysm via the NF-kB, Smad3 and Akt signaling pathways. Cytotherapy 2017; 19:1167-1175. [DOI: 10.1016/j.jcyt.2017.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/19/2017] [Accepted: 07/28/2017] [Indexed: 12/11/2022]
|
41
|
Jiang W, Wang Z, Hu Z, Wu H, Hu R, Hu X, Ren Z, Huang J. Blocking the ERK1/2 signal pathway can inhibit S100A12 induced human aortic smooth muscle cells damage. Cell Biol Int 2017; 41:1307-1315. [PMID: 28816402 DOI: 10.1002/cbin.10840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/12/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Wanli Jiang
- Department of Cardiovascular Surgery, Renmin Hospital; Wuhan University; Wuhan P.R. China
- Hubei Key Laboratory of Cardiology; Wuhan P.R. China
| | - Zhiwei Wang
- Department of Cardiovascular Surgery, Renmin Hospital; Wuhan University; Wuhan P.R. China
- Hubei Key Laboratory of Cardiology; Wuhan P.R. China
| | - Zhipeng Hu
- Department of Cardiovascular Surgery, Renmin Hospital; Wuhan University; Wuhan P.R. China
- Hubei Key Laboratory of Cardiology; Wuhan P.R. China
| | - Hongbing Wu
- Department of Cardiovascular Surgery, Renmin Hospital; Wuhan University; Wuhan P.R. China
- Hubei Key Laboratory of Cardiology; Wuhan P.R. China
| | - Rui Hu
- Department of Cardiovascular Surgery, Renmin Hospital; Wuhan University; Wuhan P.R. China
- Hubei Key Laboratory of Cardiology; Wuhan P.R. China
| | - Xiaoping Hu
- Department of Cardiovascular Surgery, Renmin Hospital; Wuhan University; Wuhan P.R. China
- Hubei Key Laboratory of Cardiology; Wuhan P.R. China
| | - Zongli Ren
- Department of Cardiovascular Surgery, Renmin Hospital; Wuhan University; Wuhan P.R. China
- Hubei Key Laboratory of Cardiology; Wuhan P.R. China
| | - Jizhen Huang
- Department of Cardiovascular Surgery, Renmin Hospital; Wuhan University; Wuhan P.R. China
- Hubei Key Laboratory of Cardiology; Wuhan P.R. China
| |
Collapse
|
42
|
Miyagawa K, Ogata T, Ueyama T, Kasahara T, Nakanishi N, Naito D, Taniguchi T, Hamaoka T, Maruyama N, Nishi M, Kimura T, Yamada H, Aoki H, Matoba S. Loss of MURC/Cavin-4 induces JNK and MMP-9 activity enhancement in vascular smooth muscle cells and exacerbates abdominal aortic aneurysm. Biochem Biophys Res Commun 2017; 487:587-593. [PMID: 28433630 DOI: 10.1016/j.bbrc.2017.04.096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/18/2017] [Indexed: 01/04/2023]
Abstract
Abdominal aortic aneurysm (AAA) is relatively common in elderly patients with atherosclerosis. MURC (muscle-restricted coiled-coil protein)/Cavin-4 modulating the caveolae function of muscle cells is expressed in cardiomyocytes, skeletal muscle cells and smooth muscle cells. Here, we show a novel functional role of MURC/Cavin-4 in vascular smooth muscle cells (VSMCs) and AAA development. Both wild-type (WT) and MURC/Cavin-4 knockout (MURC-/-) mice subjected to periaortic application of CaCl2 developed AAAs. Six weeks after CaCl2 treatment, internal and external aortic diameters were significantly increased in MURC-/- AAAs compared with WT AAAs, which were accompanied by advanced fibrosis in the tunica media of MURC-/- AAAs. The activity of JNK and matrix metalloproteinase (MMP) -2 and -9 were increased in MURC-/- AAAs compared with WT AAAs at 5 days after CaCl2 treatment. At 6 weeks after CaCl2 treatment, MURC-/- AAAs exhibited attenuated JNK activity compared with WT AAAs. There was no difference in the activity of MMP-2 or -9 between saline and CaCl2 treatments. In MURC/Cavin-4-knockdown VSMCs, TNFα-induced activity of JNK and MMP-9 was enhanced compared with control VSMCs. Furthermore, WT, MURC-/-, apolipoprotein E-/- (ApoE-/-), and MURC/Cavin-4 and ApoE double-knockout (MURC-/-ApoE-/-) mice were subjected to angiotensin II (Ang II) infusion. In both ApoE-/- and MURC-/-ApoE-/- mice infused for 4 weeks with Ang II, AAAs were promoted. The internal aortic diameter was significantly increased in Ang II-infused MURC-/-ApoE-/- mice compared with Ang II-infused ApoE-/- mice. In MURC/Cavin-4-knockdown VSMCs, Ang II-induced activity of JNK and MMP-9 was enhanced compared with control VSMCs. Our results suggest that MURC/Cavin-4 in VSMCs modulates AAA progression at the early stage via the activation of JNK and MMP-9. MURC/Cavin-4 is a potential therapeutic target against AAA progression.
Collapse
Affiliation(s)
- Kotaro Miyagawa
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takehiro Ogata
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Tomomi Ueyama
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeru Kasahara
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naohiko Nakanishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daisuke Naito
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takuya Taniguchi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuro Hamaoka
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naoki Maruyama
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masahiro Nishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Taizo Kimura
- Division of Cardiology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hiroyuki Yamada
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroki Aoki
- Cardiovascular Research Institute, Kurume University, Fukuoka, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
43
|
Shen YH, LeMaire SA. Molecular pathogenesis of genetic and sporadic aortic aneurysms and dissections. Curr Probl Surg 2017; 54:95-155. [PMID: 28521856 DOI: 10.1067/j.cpsurg.2017.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/16/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX.
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
44
|
Lu WW, Jia LX, Ni XQ, Zhao L, Chang JR, Zhang JS, Hou YL, Zhu Y, Guan YF, Yu YR, Du J, Tang CS, Qi YF. Intermedin1-53 Attenuates Abdominal Aortic Aneurysm by Inhibiting Oxidative Stress. Arterioscler Thromb Vasc Biol 2016; 36:2176-2190. [PMID: 27634835 DOI: 10.1161/atvbaha.116.307825] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 08/31/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Oxidative stress plays a critical role in the development of abdominal aortic aneurysm (AAA). Intermedin (IMD) is a regulator of oxidative stress. Here, we investigated whether IMD reduces AAA by inhibiting oxidative stress. APPROACH AND RESULTS In angiotensin II-induced ApoE-/- mouse and CaCl2-induced C57BL/6J mouse model of AAA, IMD1-53 significantly reduced the incidence of AAA and maximal aortic diameter. Ultrasonography, hematoxylin, and eosin staining and Verhoeff-van Gieson staining showed that IMD1-53 significantly decreased the enlarged aortas and elastic lamina degradation induced by angiotensin II or CaCl2. Mechanistically, IMD1-53 attenuated oxidative stress, inflammation, vascular smooth muscle cell apoptosis, and matrix metalloproteinase activation. IMD1-53 inhibited the activation of redox-sensitive signaling pathways, decreased the mRNA and protein expression of nicotinamide adenine dinucleotide phosphate oxidase subunits, and reduced the activity of nicotinamide adenine dinucleotide phosphate oxidase in AAA mice. Expression of Nox4 was upregulated in human AAA segments and in angiotensin II-treated mouse aortas and was markedly decreased by IMD1-53. In vitro, vascular smooth muscle cells with small-interfering RNA knockdown of IMD showed significantly increased angiotensin II-induced reactive oxygen species, and small-interfering RNA knockdown of Nox4 markedly inhibited the reactive oxygen species. IMD knockdown further increased the apoptosis of vascular smooth muscle cells and inflammation, which was reversed by Nox4 knockdown. Preincubation with IMD17-47 and protein kinase A inhibitor H89 inhibited the effect of IMD1-53, reducing Nox4 protein levels. CONCLUSIONS IMD1-53 could have a protective effect on AAA by inhibiting oxidative stress.
Collapse
Affiliation(s)
- Wei-Wei Lu
- From the Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing An Zhen Hospital, Capital Medical University, Ministry of Education, China (W.-W.L., L.-X.J., X.-Q.N., L.Z., Y.-L.H., J.D., Y.-F.Q.); Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China (W.-W.L., X.-Q.N., L.Z., J.-R.C., J.-S.Z., Y.Z., Y.-F.G., C.-S.T., Y.-F.Q.); and Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China (W.-W.L., X.-Q.N., J.-S.Z., Y.-L.H., Y.-R.Y., Y.-F.Q.)
| | - Li-Xin Jia
- From the Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing An Zhen Hospital, Capital Medical University, Ministry of Education, China (W.-W.L., L.-X.J., X.-Q.N., L.Z., Y.-L.H., J.D., Y.-F.Q.); Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China (W.-W.L., X.-Q.N., L.Z., J.-R.C., J.-S.Z., Y.Z., Y.-F.G., C.-S.T., Y.-F.Q.); and Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China (W.-W.L., X.-Q.N., J.-S.Z., Y.-L.H., Y.-R.Y., Y.-F.Q.)
| | - Xian-Qiang Ni
- From the Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing An Zhen Hospital, Capital Medical University, Ministry of Education, China (W.-W.L., L.-X.J., X.-Q.N., L.Z., Y.-L.H., J.D., Y.-F.Q.); Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China (W.-W.L., X.-Q.N., L.Z., J.-R.C., J.-S.Z., Y.Z., Y.-F.G., C.-S.T., Y.-F.Q.); and Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China (W.-W.L., X.-Q.N., J.-S.Z., Y.-L.H., Y.-R.Y., Y.-F.Q.)
| | - Lei Zhao
- From the Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing An Zhen Hospital, Capital Medical University, Ministry of Education, China (W.-W.L., L.-X.J., X.-Q.N., L.Z., Y.-L.H., J.D., Y.-F.Q.); Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China (W.-W.L., X.-Q.N., L.Z., J.-R.C., J.-S.Z., Y.Z., Y.-F.G., C.-S.T., Y.-F.Q.); and Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China (W.-W.L., X.-Q.N., J.-S.Z., Y.-L.H., Y.-R.Y., Y.-F.Q.)
| | - Jin-Rui Chang
- From the Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing An Zhen Hospital, Capital Medical University, Ministry of Education, China (W.-W.L., L.-X.J., X.-Q.N., L.Z., Y.-L.H., J.D., Y.-F.Q.); Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China (W.-W.L., X.-Q.N., L.Z., J.-R.C., J.-S.Z., Y.Z., Y.-F.G., C.-S.T., Y.-F.Q.); and Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China (W.-W.L., X.-Q.N., J.-S.Z., Y.-L.H., Y.-R.Y., Y.-F.Q.)
| | - Jin-Sheng Zhang
- From the Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing An Zhen Hospital, Capital Medical University, Ministry of Education, China (W.-W.L., L.-X.J., X.-Q.N., L.Z., Y.-L.H., J.D., Y.-F.Q.); Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China (W.-W.L., X.-Q.N., L.Z., J.-R.C., J.-S.Z., Y.Z., Y.-F.G., C.-S.T., Y.-F.Q.); and Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China (W.-W.L., X.-Q.N., J.-S.Z., Y.-L.H., Y.-R.Y., Y.-F.Q.)
| | - Yue-Long Hou
- From the Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing An Zhen Hospital, Capital Medical University, Ministry of Education, China (W.-W.L., L.-X.J., X.-Q.N., L.Z., Y.-L.H., J.D., Y.-F.Q.); Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China (W.-W.L., X.-Q.N., L.Z., J.-R.C., J.-S.Z., Y.Z., Y.-F.G., C.-S.T., Y.-F.Q.); and Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China (W.-W.L., X.-Q.N., J.-S.Z., Y.-L.H., Y.-R.Y., Y.-F.Q.)
| | - Yi Zhu
- From the Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing An Zhen Hospital, Capital Medical University, Ministry of Education, China (W.-W.L., L.-X.J., X.-Q.N., L.Z., Y.-L.H., J.D., Y.-F.Q.); Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China (W.-W.L., X.-Q.N., L.Z., J.-R.C., J.-S.Z., Y.Z., Y.-F.G., C.-S.T., Y.-F.Q.); and Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China (W.-W.L., X.-Q.N., J.-S.Z., Y.-L.H., Y.-R.Y., Y.-F.Q.)
| | - You-Fei Guan
- From the Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing An Zhen Hospital, Capital Medical University, Ministry of Education, China (W.-W.L., L.-X.J., X.-Q.N., L.Z., Y.-L.H., J.D., Y.-F.Q.); Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China (W.-W.L., X.-Q.N., L.Z., J.-R.C., J.-S.Z., Y.Z., Y.-F.G., C.-S.T., Y.-F.Q.); and Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China (W.-W.L., X.-Q.N., J.-S.Z., Y.-L.H., Y.-R.Y., Y.-F.Q.)
| | - Yan-Rong Yu
- From the Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing An Zhen Hospital, Capital Medical University, Ministry of Education, China (W.-W.L., L.-X.J., X.-Q.N., L.Z., Y.-L.H., J.D., Y.-F.Q.); Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China (W.-W.L., X.-Q.N., L.Z., J.-R.C., J.-S.Z., Y.Z., Y.-F.G., C.-S.T., Y.-F.Q.); and Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China (W.-W.L., X.-Q.N., J.-S.Z., Y.-L.H., Y.-R.Y., Y.-F.Q.)
| | - Jie Du
- From the Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing An Zhen Hospital, Capital Medical University, Ministry of Education, China (W.-W.L., L.-X.J., X.-Q.N., L.Z., Y.-L.H., J.D., Y.-F.Q.); Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China (W.-W.L., X.-Q.N., L.Z., J.-R.C., J.-S.Z., Y.Z., Y.-F.G., C.-S.T., Y.-F.Q.); and Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China (W.-W.L., X.-Q.N., J.-S.Z., Y.-L.H., Y.-R.Y., Y.-F.Q.)
| | - Chao-Shu Tang
- From the Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing An Zhen Hospital, Capital Medical University, Ministry of Education, China (W.-W.L., L.-X.J., X.-Q.N., L.Z., Y.-L.H., J.D., Y.-F.Q.); Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China (W.-W.L., X.-Q.N., L.Z., J.-R.C., J.-S.Z., Y.Z., Y.-F.G., C.-S.T., Y.-F.Q.); and Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China (W.-W.L., X.-Q.N., J.-S.Z., Y.-L.H., Y.-R.Y., Y.-F.Q.)
| | - Yong-Fen Qi
- From the Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing An Zhen Hospital, Capital Medical University, Ministry of Education, China (W.-W.L., L.-X.J., X.-Q.N., L.Z., Y.-L.H., J.D., Y.-F.Q.); Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China (W.-W.L., X.-Q.N., L.Z., J.-R.C., J.-S.Z., Y.Z., Y.-F.G., C.-S.T., Y.-F.Q.); and Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China (W.-W.L., X.-Q.N., J.-S.Z., Y.-L.H., Y.-R.Y., Y.-F.Q.).
| |
Collapse
|
45
|
Martorell S, Hueso L, Gonzalez-Navarro H, Collado A, Sanz MJ, Piqueras L. Vitamin D Receptor Activation Reduces Angiotensin-II-Induced Dissecting Abdominal Aortic Aneurysm in Apolipoprotein E-Knockout Mice. Arterioscler Thromb Vasc Biol 2016; 36:1587-97. [PMID: 27283745 DOI: 10.1161/atvbaha.116.307530] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 05/27/2016] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Abdominal aortic aneurysm (AAA) is a vascular disorder characterized by chronic inflammation of the aortic wall. Low concentrations of vitamin D3 are associated with AAA development; however, the potential direct effect of vitamin D3 on AAA remains unknown. This study evaluates the effect of oral treatment with the vitamin D3 receptor (VDR) ligand, calcitriol, on dissecting AAA induced by angiotensin-II (Ang-II) infusion in apoE(-/-) mice. APPROACH AND RESULTS Oral treatment with calcitriol reduced Ang-II-induced dissecting AAA formation in apoE(-/-) mice, which was unrelated to systolic blood pressure or plasma cholesterol concentrations. Immunohistochemistry and reverse-transcription polymerase chain reaction analysis demonstrated a significant increase in macrophage infiltration, neovessel formation, matrix metalloproteinase-2 and matrix metalloproteinase-9, chemokine (CCL2 [(C-C motif) ligand 2], CCL5 [(C-C motif) ligand 5], and CXCL1 [(C-X-C motif) ligand 1]) and vascular endothelial growth factor expression in suprarenal aortic walls of apoE(-/-) mice infused with Ang-II, and all were significantly reduced by cotreatment with calcitriol. Phosphorylation of extracellular signal-regulated kinases 1/2, p38 mitogen-activated protein kinase, and nuclear factor-κB was also decreased in the suprarenal aortas of apoE(-/-) mice cotreated with calcitriol. These effects were accompanied by a marked increase in VDR-retinoid X receptor (RXR) interaction in the aortas of calcitriol-treated mice. In vitro, VDR activation by calcitriol in human endothelial cells inhibited Ang-II-induced leukocyte-endothelial cell interactions, morphogenesis, and production of endothelial proinflammatory and angiogenic chemokines through VDR-RXR interactions, and knockdown of VDR or RXR abolished the inhibitory effects of calcitriol. CONCLUSIONS VDR activation reduces dissecting AAA formation induced by Ang-II in apoE(-/-) mice and may constitute a novel therapeutic strategy to prevent AAA progression.
Collapse
Affiliation(s)
- Sara Martorell
- From the Institute of Health Research-INCLIVA, Department of Pharmacology, Valencia, Spain (S.M., L.H., H.G.-N., A.C., M.-J.S., L.P.); Faculty of Medicine, Department of Pharmacology, University of Valencia, Valencia, Spain (M.-J.S.); and Diabetes and Associated Metabolic Disorders Unit, CIBERDEM, Madrid, Spain (H.G.-N.)
| | - Luisa Hueso
- From the Institute of Health Research-INCLIVA, Department of Pharmacology, Valencia, Spain (S.M., L.H., H.G.-N., A.C., M.-J.S., L.P.); Faculty of Medicine, Department of Pharmacology, University of Valencia, Valencia, Spain (M.-J.S.); and Diabetes and Associated Metabolic Disorders Unit, CIBERDEM, Madrid, Spain (H.G.-N.)
| | - Herminia Gonzalez-Navarro
- From the Institute of Health Research-INCLIVA, Department of Pharmacology, Valencia, Spain (S.M., L.H., H.G.-N., A.C., M.-J.S., L.P.); Faculty of Medicine, Department of Pharmacology, University of Valencia, Valencia, Spain (M.-J.S.); and Diabetes and Associated Metabolic Disorders Unit, CIBERDEM, Madrid, Spain (H.G.-N.)
| | - Aida Collado
- From the Institute of Health Research-INCLIVA, Department of Pharmacology, Valencia, Spain (S.M., L.H., H.G.-N., A.C., M.-J.S., L.P.); Faculty of Medicine, Department of Pharmacology, University of Valencia, Valencia, Spain (M.-J.S.); and Diabetes and Associated Metabolic Disorders Unit, CIBERDEM, Madrid, Spain (H.G.-N.)
| | - Maria-Jesus Sanz
- From the Institute of Health Research-INCLIVA, Department of Pharmacology, Valencia, Spain (S.M., L.H., H.G.-N., A.C., M.-J.S., L.P.); Faculty of Medicine, Department of Pharmacology, University of Valencia, Valencia, Spain (M.-J.S.); and Diabetes and Associated Metabolic Disorders Unit, CIBERDEM, Madrid, Spain (H.G.-N.).
| | - Laura Piqueras
- From the Institute of Health Research-INCLIVA, Department of Pharmacology, Valencia, Spain (S.M., L.H., H.G.-N., A.C., M.-J.S., L.P.); Faculty of Medicine, Department of Pharmacology, University of Valencia, Valencia, Spain (M.-J.S.); and Diabetes and Associated Metabolic Disorders Unit, CIBERDEM, Madrid, Spain (H.G.-N.).
| |
Collapse
|
46
|
Groeneveld ME, van Burink MV, Begieneman MPV, Niessen HWM, Wisselink W, Eringa EC, Yeung KK. Activation of extracellular signal-related kinase in abdominal aortic aneurysm. Eur J Clin Invest 2016; 46:440-7. [PMID: 26988568 DOI: 10.1111/eci.12618] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 03/09/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Extracellular matrix degeneration, caused by matrix metalloproteinase-2, facilitates smooth muscle cell migration leading to medial layer decline and, ultimately, abdominal aortic aneurysm. It remains unclear what exactly causes aneurysms to rupture, which leads to death in most patients. The extracellular signal-related kinase may be linked to the latter process. We aimed to clarify the role of extracellular signal-related kinase in aortic aneurysm development and rupture in patients. DESIGN Aortic fragments were harvested during open repair of nonruptured (n = 20) and ruptured (n = 8) aneurysms. As control, nondilated aortas (n = 6) were obtained during autopsy. We determined levels of phosphorylated and total extracellular signal-related kinase by Western blot, matrix metalloproteinase-2 by immunohistochemistry and medial layer thickness by conventional microscopy. RESULTS Nonruptured aneurysms had 1·8 times higher activation of extracellular signal-related kinase (ratio: phosphorylated/total) than controls (P = 0·011). However, the ruptured aneurysms had only 0·9 times the activation of controls (ns). Both nonruptured and ruptured aneurysms showed significantly higher matrix metalloproteinase-2 than controls (3·8 and 4·0-times, respectively; P < 0·005). Of the medial layer thickness in controls, the median was 1·5 mm, in nonruptured 1·0 mm and in ruptured aneurysms 0·7 mm. Activation of extracellular signal-related kinase correlated positively to medial layer thickness (Rs = 0·48; P = 0·014), but not to matrix metalloproteinase-2 (Rs = -0·36; P = 0·10). CONCLUSIONS In this study, nonruptured aneurysms are associated with increased extracellular signal-related kinase activation while ruptured aneurysms are not. Extracellular signal-related kinase was not related to total matrix metalloproteinase-2 expression. We therefore speculate that increased extracellular signal-related kinase, in response to medial layer decline, could be protective against aneurysm rupture.
Collapse
Affiliation(s)
- Menno E Groeneveld
- Department of Vascular Surgery, ICaR-VU, VU University Medical Center (VUmc), Amsterdam, the Netherlands.,Department of Physiology, ICaR-VU, VU University Medical Center (VUmc), Amsterdam, the Netherlands
| | - Max V van Burink
- Department of Vascular Surgery, ICaR-VU, VU University Medical Center (VUmc), Amsterdam, the Netherlands
| | - Mark P V Begieneman
- Department of Pathology and Cardiac Surgery, ICaR-VU, VU University Medical Center (VUmc), Amsterdam, the Netherlands.,Netherlands Forensic Institute, The Hague, the Netherlands
| | - Hans W M Niessen
- Department of Pathology and Cardiac Surgery, ICaR-VU, VU University Medical Center (VUmc), Amsterdam, the Netherlands
| | - Willem Wisselink
- Department of Vascular Surgery, ICaR-VU, VU University Medical Center (VUmc), Amsterdam, the Netherlands
| | - Ed C Eringa
- Department of Physiology, ICaR-VU, VU University Medical Center (VUmc), Amsterdam, the Netherlands
| | - Kak K Yeung
- Department of Vascular Surgery, ICaR-VU, VU University Medical Center (VUmc), Amsterdam, the Netherlands.,Department of Physiology, ICaR-VU, VU University Medical Center (VUmc), Amsterdam, the Netherlands
| |
Collapse
|
47
|
Zhang C, van der Voort D, Shi H, Zhang R, Qing Y, Hiraoka S, Takemoto M, Yokote K, Moxon JV, Norman P, Rittié L, Kuivaniemi H, Atkins GB, Gerson SL, Shi GP, Golledge J, Dong N, Perbal B, Prosdocimo DA, Lin Z. Matricellular protein CCN3 mitigates abdominal aortic aneurysm. J Clin Invest 2016; 126:1282-99. [PMID: 26974158 DOI: 10.1172/jci82337] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 01/28/2016] [Indexed: 12/19/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a major cause of morbidity and mortality; however, the mechanisms that are involved in disease initiation and progression are incompletely understood. Extracellular matrix proteins play an integral role in modulating vascular homeostasis in health and disease. Here, we determined that the expression of the matricellular protein CCN3 is strongly reduced in rodent AAA models, including angiotensin II-induced AAA and elastase perfusion-stimulated AAA. CCN3 levels were also reduced in human AAA biopsies compared with those in controls. In murine models of induced AAA, germline deletion of Ccn3 resulted in severe phenotypes characterized by elastin fragmentation, vessel dilation, vascular inflammation, dissection, heightened ROS generation, and smooth muscle cell loss. Conversely, overexpression of CCN3 mitigated both elastase- and angiotensin II-induced AAA formation in mice. BM transplantation experiments suggested that the AAA phenotype of CCN3-deficient mice is intrinsic to the vasculature, as AAA was not exacerbated in WT animals that received CCN3-deficient BM and WT BM did not reduce AAA severity in CCN3-deficient mice. Genetic and pharmacological approaches implicated the ERK1/2 pathway as a critical regulator of CCN3-dependent AAA development. Together, these results demonstrate that CCN3 is a nodal regulator in AAA biology and identify CCN3 as a potential therapeutic target for vascular disease.
Collapse
|
48
|
Glucagon-like peptide-1 prevented abdominal aortic aneurysm development in rats. Surg Today 2015; 46:1099-107. [PMID: 26658813 DOI: 10.1007/s00595-015-1287-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/28/2015] [Indexed: 02/07/2023]
Abstract
PURPOSE To demonstrate the protective effect of glucagon-like peptide 1 (GLP-1) signaling on the cardiovascular system, we conducted this study to show that the GLP-1 receptor analog (lixisenatide) could inhibit abdominal aortic aneurysm (AAA) development in rats. METHODS Lixisenatide was injected subcutaneously 7 days after aneurysm preparation. We evaluated reactive oxygen species (ROS) expression by dihydroethidium staining and 8-hydroxydeoxyguanosine (8-OHdG; the oxidation product of DNA) by immunohistochemical staining. We also analyzed the effect of GLP-1 signaling on the inflammatory response. Histopathological examination was done on day 28, and the AAA dilatation ratio was calculated. RESULTS On day 14, ROS expression and 8-OHdG-positive cells in the aneurysm walls were seen to have been significantly decreased by lixisenatide treatment. Western blot analysis showed decreased ERK expression. There was significantly reduced tumor necrosis factor-α mRNA expression in the aneurysm walls and CD68-positive cell infiltration in the aneurysm walls. On day 28, it was evident that the lixisenatide had dramatically reduced aneurysm development in the rats. CONCLUSION GLP-1 elevation inhibits AAA development in rats through its anti-oxidant and anti-inflammatory effects. Thus, GLP-1 could be a potent pharmacological target for AAA treatment.
Collapse
|
49
|
Ghosh A, Pechota LVTA, Upchurch GR, Eliason JL. Cross-talk between macrophages, smooth muscle cells, and endothelial cells in response to cigarette smoke: the effects on MMP2 and 9. Mol Cell Biochem 2015; 410:75-84. [DOI: 10.1007/s11010-015-2539-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/18/2015] [Indexed: 01/26/2023]
|
50
|
Abstract
Formation of arterial vasculature, here termed arteriogenesis, is a central process in embryonic vascular development as well as in adult tissues. Although the process of capillary formation, angiogenesis, is relatively well understood, much remains to be learned about arteriogenesis. Recent discoveries point to the key role played by vascular endothelial growth factor receptor 2 in control of this process and to newly identified control circuits that dramatically influence its activity. The latter can present particularly attractive targets for a new class of therapeutic agents capable of activation of this signaling cascade in a ligand-independent manner, thereby promoting arteriogenesis in diseased tissues.
Collapse
Affiliation(s)
- Michael Simons
- From the Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine (M.S., A.E.) and Departments of Cell Biology (M.S.) and Molecular Physiology (A.E.), Yale University School of Medicine, New Haven, CT.
| | - Anne Eichmann
- From the Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine (M.S., A.E.) and Departments of Cell Biology (M.S.) and Molecular Physiology (A.E.), Yale University School of Medicine, New Haven, CT.
| |
Collapse
|