1
|
Rashid K, Röder C, Goumas F, Egberts JH, Kalthoff H. CD95L Inhibition Impacts Gemcitabine-Mediated Effects and Non-Apoptotic Signaling of TNF-α and TRAIL in Pancreatic Tumor Cells. Cancers (Basel) 2021; 13:cancers13215458. [PMID: 34771621 PMCID: PMC8582466 DOI: 10.3390/cancers13215458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Despite the potential apoptotic functions, the CD95/CD95L system can stimulate survival as well as pro-inflammatory signaling, particularly through the activation of NFκB. This holds true for the TNF/TNFR and the TRAIL/TRAILR systems. Thus, signaling pathways of these three death ligands converge, yet the specific impact of the CD95/CD95L system in this crosstalk has not been well studied. In this study, we show that gemcitabine stimulates the expression of pro-inflammatory cytokines, such as IL6 and IL8, under the influence of the CD95/CD95L system and the pharmacological inhibitor, sCD95Fc, substantially reduced the expression in two PDAC cell lines, PancTuI-luc and A818-4. The stem cell phenotype was reduced when induced upon gemcitabine as well by sCD95Fc. Moreover, TNF-α as well as TRAIL up-regulate the expression of CD95 and CD95L in both cell lines. Conversely, we detected a significant inhibitory effect of sCD95Fc on the expression of both IL8 and IL6 induced upon TNF-α and TRAIL stimulation. In vivo, CD95L inhibition reduced xeno-transplanted recurrent PDAC growth. Thus, our findings indicate that inhibition of CD95 signaling altered the chemotherapeutic effects of gemcitabine, not only by suppressing the pro-inflammatory responses that arose from the CD95L-positive tumor cells but also from the TNF-α and TRAIL signaling in a bi-lateral crosstalk manner.
Collapse
Affiliation(s)
- Khalid Rashid
- Institute for Experimental Cancer Research, University Medical Centre Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (K.R.); (C.R.)
| | - Christian Röder
- Institute for Experimental Cancer Research, University Medical Centre Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (K.R.); (C.R.)
| | - Freya Goumas
- Department of General, Visceral-, Thoracic-, Transplantation- and Paediatric Surgery, University Medical Centre Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (F.G.); (J.-H.E.)
| | - Jan-Hendrik Egberts
- Department of General, Visceral-, Thoracic-, Transplantation- and Paediatric Surgery, University Medical Centre Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (F.G.); (J.-H.E.)
- Department of Visceral Surgery, Israelitisches Krankenhaus, 22297 Hamburg, Germany
| | - Holger Kalthoff
- Institute for Experimental Cancer Research, University Medical Centre Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (K.R.); (C.R.)
- Correspondence: ; Tel.: +49-171-9531643
| |
Collapse
|
2
|
Wu J, Huang H, Huang Q, Qiu R, Huang M, Meng D. A functional variant rs1464938 in the promoter of fibroblast growth factor 12 is associated with an increased risk of bladder transitional cell carcinoma. Cytokine 2020; 136:155294. [PMID: 32950810 DOI: 10.1016/j.cyto.2020.155294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/01/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022]
Abstract
Increasing evidence shows that inflammation plays critical roles in the tumorigenesis of bladder cancer. Fibroblast growth factor 12 (FGF12), a kind of inflammatory cytokine, is located in the region of 3q28 that has been demonstrated to be a bladder cancer risk locus by genome wide association study (GWAS). In this study, we aimed to investigate the association of GWAS signal rs710521 and rs884309 and rs1464938 in the promoter of FGF12 with the risk of bladder transitional cell carcinoma (TCC). The polymorphisms were analyzed by using a Taqman assay in 331 TCC patients and 516 age-, gender-, and ethnicity-matched controls. The expression levels of FGF12 mRNA were examined in TCC and non-cancerous normal tissues by using quantitative real-time PCR and the luciferase activity was determined by using the Dual-Luciferase Assay System. The rs1464938 AA genotype and A allele were associated with a significantly increased risk of TCC (AA vs. GG: adjusted OR = 2.54, 95% CI, 1.49-4.35, P < 0.001; AA vs. AG/GG: adjusted OR = 2.25, 95% CI, 1.36-3.71, P = 0.002; A vs. G: adjusted OR = 1.44, 95% CI, 1.15-1.80, P = 0.001, respectively). Haplotype analysis showed that rs884309G- rs1464938A haplotype was associated with an increased risk of TCC (OR = 1.61, 95% CI, 1.23-2.11, P = 0.001). Functional analysis showed that the rs1464938 AG/AA genotypes exhibited higher levels of FGF12 mRNA in TCC tissues and the rs1464938 A allele enhanced FGF12 promoter activity (P < 0.05). These findings suggest that the rs1464938 A allele at the 3q28 locus contribute to the development of TCC by regulating FGF12 expression levels.
Collapse
Affiliation(s)
- Jun Wu
- Department of Urinary Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Huawu Huang
- Department of Urinary Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China.
| | - Qun Huang
- Department of Urinary Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Rong Qiu
- Department of Urinary Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Minyu Huang
- Department of Urinary Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Dongdong Meng
- Department of Urinary Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| |
Collapse
|
3
|
Ghali GZ, Ghali MGZ. Nafamostat mesylate attenuates the pathophysiologic sequelae of neurovascular ischemia. Neural Regen Res 2020; 15:2217-2234. [PMID: 32594033 PMCID: PMC7749469 DOI: 10.4103/1673-5374.284981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nafamostat mesylate, an apparent soi-disant panacea of sorts, is widely used to anticoagulate patients undergoing hemodialysis or cardiopulmonary bypass, mitigate the inflammatory response in patients diagnosed with acute pancreatitis, and reverse the coagulopathy of patients experiencing the commonly preterminal disseminated intravascular coagulation in the Far East. The serine protease inhibitor nafamostat mesylate exhibits significant neuroprotective effects in the setting of neurovascular ischemia. Nafamostat mesylate generates neuroprotective effects by attenuating the enzymatic activity of serine proteases, neuroinflammatory signaling cascades, and the endoplasmic reticulum stress responses, downregulating excitotoxic transient receptor membrane channel subfamily 7 cationic currents, modulating the activity of intracellular signal transduction pathways, and supporting neuronal survival (brain-derived neurotrophic factor/TrkB/ERK1/2/CREB, nuclear factor kappa B. The effects collectively reduce neuronal necrosis and apoptosis and prevent ischemia mediated disruption of blood-brain barrier microarchitecture. Investigational clinical applications of these compounds may mitigate ischemic reperfusion injury in patients undergoing cardiac, hepatic, renal, or intestinal transplant, preventing allograft rejection, and treating solid organ malignancies. Neuroprotective effects mediated by nafamostat mesylate support the wise conduct of randomized prospective controlled trials in Western countries to evaluate the clinical utility of this compound.
Collapse
Affiliation(s)
- George Zaki Ghali
- United States Environmental Protection Agency, Arlington, VA; Department of Toxicology, Purdue University, West Lafayette, IN, USA
| | - Michael George Zaki Ghali
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA; Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
4
|
Chen X, Xu Z, Zeng S, Wang X, Liu W, Qian L, Wei J, Yang X, Shen Q, Gong Z, Yan Y. The Molecular Aspect of Antitumor Effects of Protease Inhibitor Nafamostat Mesylate and Its Role in Potential Clinical Applications. Front Oncol 2019; 9:852. [PMID: 31552177 PMCID: PMC6733886 DOI: 10.3389/fonc.2019.00852] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/19/2019] [Indexed: 02/05/2023] Open
Abstract
Nafamostat mesylate (NM), a synthetic serine protease inhibitor first placed on the market by Japan Tobacco in 1986, has been approved to treat inflammatory-related diseases, such as pancreatitis. Recently, an increasing number of studies have highlighted the promising effects of NM in inhibiting cancer progression. Alone or in combination treatments, studies have shown that NM attenuates various malignant tumors, including pancreatic, colorectal, gastric, gallbladder, and hepatocellular cancers. In this review, based on several activating pathways, including the canonical Nuclear factor-κB (NF-κB) signaling pathway, tumor necrosis factor receptor-1 (TNFR1) signaling pathway, and tumorigenesis-related tryptase secreted by mast cells, we summarize the anticancer properties of NM in existing studies both in vitro and in vivo. In addition, the efficacy and side effects of NM in cancer patients are summarized in detail. To further clarify NM's antitumor activities, clinical trials devoted to validating the clinical applications and underlying mechanisms are needed in the future.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wanli Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Long Qian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xue Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qiuying Shen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Shadpour P, Zamani M, Aghaalikhani N, Rashtchizadeh N. Inflammatory cytokines in bladder cancer. J Cell Physiol 2019; 234:14489-14499. [PMID: 30779110 DOI: 10.1002/jcp.28252] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/29/2018] [Accepted: 01/22/2019] [Indexed: 01/24/2023]
Abstract
The presence of inflammatory cells and their products in the tumor microenvironment plays a crucial role in the pathogenesis of a tumor. Releasing the cytokines from a host in response to infection and inflammation can inhibit tumor growth and progression. However, tumor cells can also respond to the host cytokines with increasing the growth/invasion/metastasis. Bladder cancer (BC) is one of the most common cancers in the world. The microenvironment of a bladder tumor has been indicated to be rich in growth factors/inflammatory cytokines that can induce the tumor growth/progression and also suppress the immune system. On the contrary, modulate of the cancer progression has been shown following upregulation of the cytokines-related pathways that suggested the cytokines as potential therapeutic targets. In this study, we provide a summary of cytokines that are involved in BC formation/regression with both inflammatory and anti-inflammatory properties. A more accurate understanding of tumor microenvironment creates favorable conditions for cytokines targeting to treat BC.
Collapse
Affiliation(s)
- Pejman Shadpour
- Hasheminejad Kidney Center (HKC), Hospital Management Research Center (HMRC), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mojtaba Zamani
- Department of Agronomy and Plant Breeding, School of Agriculture, University of Tehran, Karaj, Iran
| | - Nazi Aghaalikhani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nadereh Rashtchizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Saito N, Shirai Y, Uwagawa T, Horiuchi T, Sugano H, Haruki K, Shiba H, Ohashi T, Yanaga K. Pomalidomide enhanced gemcitabine and nab-paclitaxel on pancreatic cancer both in vitro and in vivo. Oncotarget 2018; 9:15780-15791. [PMID: 29644009 PMCID: PMC5884664 DOI: 10.18632/oncotarget.24608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/25/2018] [Indexed: 01/05/2023] Open
Abstract
Background Chemotherapy with gemcitabine and nab-paclitaxel (gemcitabine/nab-paclitaxel) is recommended for unresectable pancreatic cancer. However, the therapeutic efficacy is attenuated by the antitumor agent-induced activation of nuclear factor-κB (NF-κB). Thalidomide inhibits NF-κB activation, therefore, we hypothesized that pomalidomide, a third-generation IMiD, would also inhibit NF-κB activation and enhance the antitumor effects of gemcitabine/nab-paclitaxel. Methods In vitro, we assessed NF-κB activity and apoptosis in response to pomalidomide alone, gemcitabine/nab-paclitaxel, or combination of pomalidomide and gemcitabine/nab-paclitaxel in human pancreatic cancer cell lines (PANC-1 and MIA PaCa-2). In vivo, we established orthotopic model and the animals were treated with oral pomalidomide and injection of gemcitabine/nab-paclitaxel. Results In pomalidomide and gemcitabine/nab-paclitaxel group, gemcitabine/nab-paclitaxel-induced NF-κB activation was inhibited and apoptosis was enhanced in comparison with those in the other groups both in vitro and in vivo. Especially, this study revealed for the first time that pomalidomide enhances p53 on pancreatic cancer cells. The tumor growth in the pomalidomide and gemcitabine/nab-paclitaxel group was significantly slower than that in the gemcitabine/nab-paclitaxel group. Moreover, pomalidomide induced G0/G1 cell cycle arrest and suppressed angiogenesis. Conclusions Pomalidomide enhanced the antitumor effect of gemcitabine/nab-paclitaxel by inhibition of NF-κB activation. This combination regimen would be a novel strategy for treating pancreatic cancer.
Collapse
Affiliation(s)
- Nobuhiro Saito
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.,Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshihiro Shirai
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.,Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Tadashi Uwagawa
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.,Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Horiuchi
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.,Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroshi Sugano
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.,Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Koichiro Haruki
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroaki Shiba
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Toya Ohashi
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Katsuhiko Yanaga
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Shirai Y, Saito N, Uwagawa T, Shiba H, Horiuchi T, Iwase R, Haruki K, Ohashi T, Yanaga K. Pomalidomide promotes chemosensitization of pancreatic cancer by inhibition of NF-κB. Oncotarget 2018; 9:15292-15301. [PMID: 29632644 PMCID: PMC5880604 DOI: 10.18632/oncotarget.24577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/21/2018] [Indexed: 02/07/2023] Open
Abstract
Introduction Nuclear factor κB (NF-κB) plays an important role in cancer progression and causes therapeutic resistance to chemotherapy. Pomalidomide, a third-generation immunomodulating drug derived from thalidomide, has been approved for uncontrolled multiple myeloma. We hypothesized that pomalidomide may inhibit the anticancer agent-induced NF-κB activity and enhance chemosensitization of combination chemotherapy with gemcitabine and S1 (Gem/S1) in pancreatic cancer. Methods In vitro, we assessed NF-κB activity, induction of caspase cascade, cell apoptosis and cell proliferation using human pancreatic cancer cell lines (MIA PaCa-2 and PANC-1). In vivo, we established an orthotopic xenograft mouse model for human pancreatic cancer by injection of PANC-1 cells. At 5 weeks after injection, the animals were randomly divided into four groups and treated with Gem (100 mg/kg) /S1 (10 mg/kg), with oral administration of pomalidomide (0.5 mg/kg), with combination of gemcitabine, S1, and pomalidomide or vehicle only. Results Although chemotherapeutic agents induced NF-κB activation in pancreatic cancer cells, pomalidomide inhibited anticancer agent-induced NF-κB activation (p < 0.01). Of the four groups tested for the apoptosis-related caspase signals and apoptosis under both in vitro and in vivo conditions, Gem/S1/Pomalidomide group demonstrated the strongest activation of the caspase signals and proapoptotic effect. In Gem/S1/Pomalidomide group, cell proliferation and tumor growth were slower than those in other groups both in vitro and in vivo (p < 0.01). There were no obvious adverse effects except for thrombocytosis by using pomalidomide. Conclusions Pomalidomide promotes chemosensitization of pancreatic cancer by inhibiting chemotherapeutic agents-induced NF-κB activation.
Collapse
Affiliation(s)
- Yoshihiro Shirai
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.,Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Nobuhiro Saito
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.,Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Tadashi Uwagawa
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.,Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroaki Shiba
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Horiuchi
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.,Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Ryota Iwase
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Koichiro Haruki
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Toya Ohashi
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Katsuhiko Yanaga
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Radical Resection of a Primarily Unresectable Pancreatic Cancer After Neoadjuvant Chemotherapy Using Gemcitabine, TS-1, and Nafamostat Mesilate; Report of a Case. Int Surg 2016; 100:287-91. [PMID: 25692432 DOI: 10.9738/intsurg-d-13-00193.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A 58-year-old male visited his primary physician for epigastric and back pain. Abdominal-enhanced computed tomography (CT) revealed a hypovascular pancreatic tumor measuring 17 × 11 mm in the uncinate process of the pancreas extending into the superior mesenteric plexus for greater than 180°. With a diagnosis of unresectable pancreatic cancer, the patient received gemcitabine and TS-1 with arterial infusion of nafamostat mesilate. After 3 courses of chemotherapy, enhanced CT revealed a decrease in size of the pancreatic tumor with no lymph node and distant metastasis and improved invasion of the superior mesenteric plexus down to 120°. The patient underwent R0 pancreaticoduodenectomy. The patient made a satisfactory recovery without complications and was discharged on postoperative day 10. We herein report the first curative resected case of a primarily unresectable pancreatic cancer after neoadjuvant chemotherapy using gemcitabine, TS-1, and nafamostat mesilate.
Collapse
|
9
|
Horiuchi T, Uwagawa T, Shirai Y, Saito N, Iwase R, Haruki K, Shiba H, Ohashi T, Yanaga K. New treatment strategy with nuclear factor-κB inhibitor for pancreatic cancer. J Surg Res 2016; 206:1-8. [PMID: 27916347 DOI: 10.1016/j.jss.2016.06.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/18/2016] [Accepted: 06/09/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Because of difficulties with early diagnosis, most patients with pancreatic cancer receive chemotherapy. The National Comprehensive Cancer Network guidelines (version 2.2015) suggest therapy with gemcitabine (GEM) plus nab-paclitaxel (nPTX) as a category 1 recommendation for metastatic pancreatic ductal adenocarcinoma. According to the results of many studies, the activation of chemotherapeutic agents-induced nuclear factor-κB (NF-κB) causes chemoresistance. Hence, we hypothesized that the addition of nafamostat mesilate (NM), a potent NF-κB inhibitor, to GEM/nPTX therapy could enhance the antitumor effect in the treatment of pancreatic ductal adenocarcinoma. MATERIALS AND METHODS In vitro, we assessed NF-κB activity and apoptosis under treatment with NM alone (80 μg/mL), with GEM/nPTX, or with a combination of NM and GEM/nPTX in human pancreatic cancer cell lines (PANC-1, MIA PaCa-2, and AsPC-1). In vivo, orthotopic pancreatic cancer mice (BALBc nu/nu) were divided into four groups: control (n = 13), NM (n = 13), GEM/nPTX (n = 13), and triple combination (n = 13). NM (30 mg/kg) was delivered intraperitoneally three times a week, and GEM/nPTX was injected intravenously once a week to orthotopic pancreatic cancer model mice. In the triple combination group, mice received NM followed by GEM/nPTX on the first day to avoid GEM/nPTX-induced NF-κB activation. RESULTS In vitro and in vivo, NM inhibited GEM/nPTX-induced NF-κB activation, and a synergistic effect of apoptosis was observed in the triple combination group. Furthermore, tumor growth was significantly suppressed in the triple combination group compared with the other groups. CONCLUSIONS NM enhances the antitumor effect of GEM/nPTX chemotherapy for orthotopic pancreatic cancer by inhibition of NF-κB activation.
Collapse
Affiliation(s)
- Takashi Horiuchi
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.
| | - Tadashi Uwagawa
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshihiro Shirai
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Nobuhiro Saito
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Ryota Iwase
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Koichiro Haruki
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroaki Shiba
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Toya Ohashi
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Katsuhiko Yanaga
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Li L, Zhang J, Xiong N, Li S, Chen Y, Yang H, Wu C, Zeng H, Liu Y. Notch-1 signaling activates NF-κB in human breast carcinoma MDA-MB-231 cells via PP2A-dependent AKT pathway. Med Oncol 2016; 33:33. [DOI: 10.1007/s12032-016-0747-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
|
11
|
Shirai Y, Shiba H, Iwase R, Haruki K, Fujiwara Y, Furukawa K, Uwagawa T, Ohashi T, Yanaga K. Dual inhibition of nuclear factor kappa-B and Mdm2 enhance the antitumor effect of radiation therapy for pancreatic cancer. Cancer Lett 2015; 370:177-84. [PMID: 26546875 DOI: 10.1016/j.canlet.2015.10.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/28/2015] [Accepted: 10/28/2015] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Radiation therapy, alone or in combination with chemotherapy, is effective for patients with locally advanced and recurrent pancreatic cancer. Ionizing radiation induces cell cycle arrest and cell apoptosis through enhancement several signals such as p53, p21(Waf1/Cip1), and caspase. However, the therapeutic efficacy is attenuated by radiation-induced activation of NF-κB. Nafamostat mesilate, a synthetic serine protease inhibitor, inhibits NF-κB activation in pancreatic cancer. Therefore, we hypothesized that nafamostat mesilate inhibited radiation-induced activation of NF-κB and improves therapeutic outcome. RESULTS In combination group, NF-κB activation was significantly inhibited in comparison with that of radiation group. Nafamostat mesilate obviously down-regulated the expression levels of Mdm2 compared with control cells or irradiated cells. Consequently, p53 expression was stabilized inversely in correlation with Mdm2 protein expression level. The expression levels of p53, p21(Waf1/Cip1), cleaved caspase-3 and -8 were the highest in the combination group. Nafamostat mesilate enhanced ionizing radiation-induced cell apoptosis and G2/M cell cycle arrest. In combination group, cell proliferation and tumor growth were significantly slower than those in other groups. CONCLUSION Combination therapy of radiation with nafamostat mesilate exerts enhanced anti-tumor effect against human pancreatic cancer.
Collapse
Affiliation(s)
- Yoshihiro Shirai
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan; Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan.
| | - Hiroaki Shiba
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Ryota Iwase
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan; Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Koichiro Haruki
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuki Fujiwara
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Kenei Furukawa
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Tadashi Uwagawa
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Toya Ohashi
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Katsuhiko Yanaga
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Waters JA, Matos J, Yip-Schneider M, Aguilar-Saavedra JR, Crean CD, Beane JD, Dumas RP, Suvannasankha A, Schmidt CM. Targeted nuclear factor-kappaB suppression enhances gemcitabine response in human pancreatic tumor cell line murine xenografts. Surgery 2015. [DOI: 10.1016/j.surg.2015.04.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Xing YL, Wang YC. Influence of autologous and homologous blood transfusion on interleukins and tumor necrosis factor-α in peri-operative patients with esophageal cancer. Asian Pac J Cancer Prev 2015; 15:7831-4. [PMID: 25292072 DOI: 10.7314/apjcp.2014.15.18.7831] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To explore the influence of different ways of blood transfusion on the expression levels of interleukins (IL) and tumor necrosis factor-α (TNF-α) inperi-operative patients with esophageal cancer. MATERIALS AND METHODS A total of 80 patients with esophageal cancer who underwent radical operations were selected as study patients and randomly divided into an observation group (treated with autologous blood transfusion) and control group (with homologous blood transfusion). Changes of intra-operative indexes and peri-operative blood indexes, from hemoglobin (Hb) and hematocrit value (Hct), to levels of inflammatory factors like interleukins-6 (IL-6), IL-8, IL-10 and tumor necrosis factor-α (TNF-α) were compared. RESULTS Operations for patients in both groups were successfully conducted, and no significant differences in mean surgical duration and intra-operative hemorrhage volume, fluid infusion volume and blood transfusion volume were detected (p>0.05). Compared with values before surgery, Hb and Hct levels decreased significantly while white blood cell count (WBC) increased 1, 5 and 7 d after operation (p<0.05, p<0.01). In addition, WBC was apparently higher in observation group than in control group 5 and 7 d after operation (p<0.01). Compared with before surgery, in the observation group, levels of IL-6, IL-8 and IL-10 had no significant differences after operation (P>0.05), but TNF-α level increased y (p<0.01), whereas in control group, IL-6 level had no significant difference (p>0.05), IL-8 level decreased obviously (p<0.05), IL-10 level increased markedly first and then decreased gradually as time passed but its level remained elevated (p<0.01), and TNF-α level increased first and then decreased, and there was no significant difference 7 d after operation (p>0.05). CONCLUSIONS Decreased IL-8 and increased IL-10 levels are two important reasons forimmunosuppression after homologous blood transfusion, whereas autologous blood transfusion can alleviate this while increasing the TNF-α level, which also has potential to improve anti-tumor immunity in the human body.
Collapse
Affiliation(s)
- Yue-Li Xing
- Department of Blood Transfusion, Binzhou Medical University Hospital, Binzhou, China E-mail :
| | | |
Collapse
|
14
|
Tyciakova S, Matuskova M, Bohovic R, Polakova K, Toro L, Skolekova S, Kucerova L. Genetically engineered mesenchymal stromal cells producing TNFα have tumour suppressing effect on human melanoma xenograft. J Gene Med 2015; 17:54-67. [DOI: 10.1002/jgm.2823] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/19/2014] [Accepted: 02/05/2015] [Indexed: 12/21/2022] Open
Affiliation(s)
- Silvia Tyciakova
- Laboratory of Molecular Oncology; Cancer Research Institute of Slovak Academy of Sciences; Bratislava Slovakia
| | - Miroslava Matuskova
- Laboratory of Molecular Oncology; Cancer Research Institute of Slovak Academy of Sciences; Bratislava Slovakia
| | - Roman Bohovic
- Laboratory of Molecular Oncology; Cancer Research Institute of Slovak Academy of Sciences; Bratislava Slovakia
| | - Katarina Polakova
- Laboratory of Tumour Immunology; Cancer Research Institute of Slovak Academy of Sciences; Bratislava Slovakia
| | - Lenka Toro
- Laboratory of Molecular Oncology; Cancer Research Institute of Slovak Academy of Sciences; Bratislava Slovakia
| | - Svetlana Skolekova
- Laboratory of Molecular Oncology; Cancer Research Institute of Slovak Academy of Sciences; Bratislava Slovakia
| | - Lucia Kucerova
- Laboratory of Molecular Oncology; Cancer Research Institute of Slovak Academy of Sciences; Bratislava Slovakia
| |
Collapse
|
15
|
The histone deacetylase inhibitor LBH589 (panobinostat) modulates the crosstalk of lymphocytes with Hodgkin lymphoma cell lines. PLoS One 2013; 8:e79502. [PMID: 24278143 PMCID: PMC3836980 DOI: 10.1371/journal.pone.0079502] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/24/2013] [Indexed: 11/19/2022] Open
Abstract
Epigenetic changes have been implicated in the malignant phenotype of Hodgkin Reed Sternberg (HRS) cells in Hodgkin lymphoma (HL), where HRS survival and proliferation depends on the microenvironment. The histone-deacetylase (HDAC) inhibitor LBH589 (panobinostat) showed clinical efficacy but its impact on the HRS microenvironment is unclear. Hence, we analysed the effects of LBH589 on lymphocytes and also potential combination therapies. In lymphocyte-target cell killing assays, LBH589-treatment triggered an enhanced lymphocyte-dependent lysis of HL cells despite of mild lymphocytopenic effects. In co-culture experiments of lymphocytes with HL cells, LBH589 suppressed the IFNgamma-release but increased the TNFalpha secretion. Recombinant TNFalpha boosted the lymphocyte-dependent lysis of HL target cells. In HL cell lines, LBH589 induced cell death, autophagy, and an increase of MICA/B that are ligands to natural killer cell receptors. The combination of LBH589 with Brentuximab Vedotin was inefficient due to down-regulation of CD30 as a target. Combination with gemcitabine revealed highly significant effects, suggesting a potential combination for future therapy. Based on these data we suggest that LBH589 favourably modulates the cytokine network and lymphocyte activity in the HL microenvironment.
Collapse
|
16
|
Roshani R, McCarthy F, Hagemann T. Inflammatory cytokines in human pancreatic cancer. Cancer Lett 2013; 345:157-63. [PMID: 23879960 DOI: 10.1016/j.canlet.2013.07.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 07/10/2013] [Accepted: 07/15/2013] [Indexed: 12/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal types of cancer with poor prognosis. Despite extensive efforts, the current treatment methods have limited success. Therefore, novel therapeutic approaches are required. The pancreatic tumor microenvironment is rich in growth factors and inflammatory cytokines that support tumor growth, and it is highly immunosuppressive. Up-regulation of cytokine pathways has been shown to modulate PDAC progression and immune evasion; therefore targeting cytokines may have therapeutic benefits. In this review we provide an overview of current understanding of pro- and anti-inflammatory cytokines in pancreatic cancer and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Rozita Roshani
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| | - Fiona McCarthy
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| | - Thorsten Hagemann
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|