1
|
Behroozi Z, Rahimi B, Motamednezhad A, Ghadaksaz A, Hormozi-Moghaddam Z, Moshiri A, Jafarpour M, Hajimirzaei P, Ataie A, Janzadeh A. Combined effect of Cerium oxide nanoparticles loaded scaffold and photobiomodulation therapy on pain and neuronal regeneration following spinal cord injury: an experimental study. Photochem Photobiol Sci 2024; 23:225-243. [PMID: 38300466 DOI: 10.1007/s43630-023-00501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/25/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Spinal cord injury (SCI) remained one of the challenges to treat due to its complicated mechanisms. Photobiomodulation therapy (PBMT) accelerates neuronal regeneration. Cerium oxide nanoparticles (CeONPs) also eliminate free radicals in the environment. The present study aims to introduce a combined treatment method of making PCL scaffolds as microenvironments, seeded with CeONPs and the PBMT technique for SCI treatment. METHODS The surgical hemi-section was used to induce SCI. Immediately after the SCI induction, the scaffold (Sc) was loaded with CeONPs implanted. PBMT began 30 min after SCI induction and lasted for up to 4 weeks. Fifty-six male rats were randomly divided into seven groups. Glial fibrillary acidic protein (GFAP) (an astrocyte marker), Connexin 43 (Con43) (a member of the gap junction), and gap junctions (GJ) (a marker for the transfer of ions and small molecules) expressions were evaluated. The behavioral evaluation was performed by BBB, Acetone, Von Frey, and radiant heat tests. RESULT The SC + Nano + PBMT group exhibited the most remarkable recovery outcomes. Thermal hyperalgesia responses were mitigated, with the combined approach displaying the most effective relief. Mechanical allodynia and cold allodynia responses were also attenuated by treatments, demonstrating potential pain management benefits. CONCLUSION These findings highlight the potential of PBMT, combined with CeONPs-loaded scaffolds, in promoting functional motor recovery and alleviating pain-related responses following SCI. The study underscores the intricate interplay between various interventions and their cumulative effects, informing future research directions for enhancing neural repair and pain management strategies in SCI contexts.
Collapse
Affiliation(s)
- Zahra Behroozi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, 7616913555, Iran
| | - Behnaz Rahimi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Ali Motamednezhad
- College of Veterinary Medicine, Islamic Azad University, Karaj, 3149968111, Alborz, Iran
| | - Alireza Ghadaksaz
- Department of Biophysics, Medical School, University of Pécs, Pécs, 7622, Hungary
| | - Zeinab Hormozi-Moghaddam
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Radiation Sciences, Allied Medicine Faculty, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | | | - Maral Jafarpour
- International Campus, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Pooya Hajimirzaei
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Radiation Sciences, Allied Medicine Faculty, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Ali Ataie
- Zanjan University of Medical Sciences, Zanjan, Iran
| | - Atousa Janzadeh
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran.
| |
Collapse
|
2
|
Wang X, Xu K, Mu L, Zhang X, Huang G, Xing M, Li Z, Wu J. Mussel-Derived Bioadaptive Artificial Tendon Facilitates the Cell Proliferation and Tenogenesis to Promote Tendon Functional Reconstruction. Adv Healthc Mater 2023; 12:e2203400. [PMID: 37462927 DOI: 10.1002/adhm.202203400] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/02/2023] [Indexed: 07/28/2023]
Abstract
Tendon injuries range from acute-related trauma to chronic-related injuries are prevalent and bring substantial pain, functional loss, and even disability to the patients. The management of tendon injuries is tricky due to the innate limited regenerative capability of the tendon. Currently, surgical intervention of tendon injuries with artificial tendons remains the standard of care. However, most of artificial tendons are manufactured with synthetic materials, which possess relatively poor biomimetic characteristics and inadequate inherent biodegradability, hence rendering limited cell proliferation and migration for tendon healing. To address these limitations, this work develops a mussel-derived artificial tendon based on double-cross-linked chitosan modification. In this design, decellularized artificial tendon serves as a natural biomimetic scaffold to facilitate the migration and adhesion of tendon repair cells. Additionally, as the cells proliferate, the artificial tendon can be degraded to facilitate tendon regeneration. Moreover, the chitosan cross-linking further enhances the mechanical strength of artificial tendon and offers a controllable degradation. The in vitro and in vivo experimental results demonstrate that mussel-derived artificial tendon not only accelerate the tendon functional reconstruction but also enable harmless clearance at postimplantation. The finding provides a promising alternative to conventional artificial tendons and spurs a new frontier to explore nature-derived artificial tendons.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
- Department of Burn Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Kaige Xu
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Lan Mu
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Xiaoqi Zhang
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Guangtao Huang
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Zhibin Li
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Jun Wu
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| |
Collapse
|
3
|
Zhu S, He Z, Ji L, Zhang W, Tong Y, Luo J, Zhang Y, Li Y, Meng X, Bi Q. Advanced Nanofiber-Based Scaffolds for Achilles Tendon Regenerative Engineering. Front Bioeng Biotechnol 2022; 10:897010. [PMID: 35845401 PMCID: PMC9280267 DOI: 10.3389/fbioe.2022.897010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/20/2022] [Indexed: 11/22/2022] Open
Abstract
The Achilles tendon (AT) is responsible for running, jumping, and standing. The AT injuries are very common in the population. In the adult population (21–60 years), the incidence of AT injuries is approximately 2.35 per 1,000 people. It negatively impacts people’s quality of life and increases the medical burden. Due to its low cellularity and vascular deficiency, AT has a poor healing ability. Therefore, AT injury healing has attracted a lot of attention from researchers. Current AT injury treatment options cannot effectively restore the mechanical structure and function of AT, which promotes the development of AT regenerative tissue engineering. Various nanofiber-based scaffolds are currently being explored due to their structural similarity to natural tendon and their ability to promote tissue regeneration. This review discusses current methods of AT regeneration, recent advances in the fabrication and enhancement of nanofiber-based scaffolds, and the development and use of multiscale nanofiber-based scaffolds for AT regeneration.
Collapse
Affiliation(s)
- Senbo Zhu
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zeju He
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lichen Ji
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Zhang
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yu Tong
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Junchao Luo
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yin Zhang
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yong Li
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xiang Meng
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Qing Bi
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qing Bi,
| |
Collapse
|
4
|
Russo V, El Khatib M, Prencipe G, Cerveró-Varona A, Citeroni MR, Mauro A, Berardinelli P, Faydaver M, Haidar-Montes AA, Turriani M, Di Giacinto O, Raspa M, Scavizzi F, Bonaventura F, Liverani L, Boccaccini AR, Barboni B. Scaffold-Mediated Immunoengineering as Innovative Strategy for Tendon Regeneration. Cells 2022; 11:cells11020266. [PMID: 35053383 PMCID: PMC8773518 DOI: 10.3390/cells11020266] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
Tendon injuries are at the frontier of innovative approaches to public health concerns and sectoral policy objectives. Indeed, these injuries remain difficult to manage due to tendon’s poor healing ability ascribable to a hypo-cellularity and low vascularity, leading to the formation of a fibrotic tissue affecting its functionality. Tissue engineering represents a promising solution for the regeneration of damaged tendons with the aim to stimulate tissue regeneration or to produce functional implantable biomaterials. However, any technological advancement must take into consideration the role of the immune system in tissue regeneration and the potential of biomaterial scaffolds to control the immune signaling, creating a pro-regenerative environment. In this context, immunoengineering has emerged as a new discipline, developing innovative strategies for tendon injuries. It aims at designing scaffolds, in combination with engineered bioactive molecules and/or stem cells, able to modulate the interaction between the transplanted biomaterial-scaffold and the host tissue allowing a pro-regenerative immune response, therefore hindering fibrosis occurrence at the injury site and guiding tendon regeneration. Thus, this review is aimed at giving an overview on the role exerted from different tissue engineering actors in leading immunoregeneration by crosstalking with stem and immune cells to generate new paradigms in designing regenerative medicine approaches for tendon injuries.
Collapse
Affiliation(s)
- Valentina Russo
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Giuseppe Prencipe
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
- Correspondence:
| | - Adrián Cerveró-Varona
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Maria Rita Citeroni
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Annunziata Mauro
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Melisa Faydaver
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Arlette A. Haidar-Montes
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Maura Turriani
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Oriana Di Giacinto
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Marcello Raspa
- Institute of Biochemistry and Cellular Biology (IBBC), Council of National Research (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cellular Biology (IBBC), Council of National Research (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Fabrizio Bonaventura
- Institute of Biochemistry and Cellular Biology (IBBC), Council of National Research (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Liliana Liverani
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (L.L.); (A.R.B.)
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (L.L.); (A.R.B.)
| | - Barbara Barboni
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (A.C.-V.); (M.R.C.); (A.M.); (P.B.); (M.F.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| |
Collapse
|
5
|
Investigating the histological and structural properties of tendon gel as an artificial biomaterial using the film model method in rabbits. J Exp Orthop 2022; 9:1. [PMID: 34978637 PMCID: PMC8724385 DOI: 10.1186/s40634-021-00434-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/23/2021] [Indexed: 11/10/2022] Open
Abstract
Purpose This study aimed to evaluate the properties of tendon gel by investigating the histological and structural differences among tendon gels under different preservation periods using a rabbit model. Methods Forty mature female rabbits were divided into four groups, each containing ten rabbits, on the basis of in-vivo preservation periods of tendon gels (3, 5, 10, and 15 days). We created the Achilles tendon rupture models using the film model method to obtain tendon gels. Tensile stress was applied to the tendon gel to promote maturation. Histological and structural evaluations of the tendon gel were performed before and after applying the tensile force, and the results obtained from the four groups were compared. Results Although the day-3 and day-5 tendon gels before applying tensile stress were histologically more immature than the day-10 and day-15 gels, type I collagen fibers equivalent to those of normal tendons were observed in all groups after the tensile process. Based on the surface and molecular structural evaluations, the day-3 tendon gels after the tensile process were molecularly cross-linked, and thick collagen fibers similar to those present in normal tendons were observed. Structural maturation observed in the day-3 tendon gels caused by traction was hardly observed in the day-5, -10, and -15 tendon gels. Conclusions The day-3 tendon gel had the highest regenerative potential to become a normal tendon by applying a traction force. Supplementary Information The online version contains supplementary material available at 10.1186/s40634-021-00434-y.
Collapse
|
6
|
Khajeh A, Baniadam A, Oryan A, Ghadiri A, Naddaf H. Effectiveness of nuchal ligament autograft in the healing of an experimental superficial digital flexor tendon defect in equid. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2021; 12:53-61. [PMID: 33953874 PMCID: PMC8094152 DOI: 10.30466/vrf.2019.97919.2330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/02/2019] [Indexed: 12/03/2022]
Abstract
This study aimed to investigate nuchal ligament (NL) autograft on experimental tendon defect healing in donkeys. Eight healthy donkeys were used. The left forelimb’s superficial digital flexor (SDF) tendon was assigned as treatment, and the right forelimb was allocated as the control group (without surgical intervention). A 3×1.5 cm segment of the funicular part of the NL was excised. A full thickness defect created in the treatment tendon and was grafted with the excised NL. The following parameters were evaluated in 120 days postoperatively: clinical, ultrasonography, radiography, histopathology, biomechanical properties, and scanning and electronic transmission microscopy. There were no significant changes observed in the neck angle so that it was confirmed this treatment regimen preserved the head and neck situation without any considerable neck swelling. Weight-bearing in gait and trot was similar between both forelimbs at the end of the study. Mild to moderate adhesion was detected in the dorsal surface of the SDF tendon. There was no significant difference in the echogenicity and fiber alignment, respectively, on days 90 and 120 after surgery. Treatment significantly amplified the collagen diameter and enhanced the collagen fibril diameter and density considerably compared to the NL. The transplanted tissue was mostly in the remodeling or maturation phase, on day 120 postoperatively. It seems that the NL is biocompatible, almost biodegradable, and effective in tendon healing without metaplasia or tissue rejection.
Collapse
Affiliation(s)
- Ahmad Khajeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ali Baniadam
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Alireza Ghadiri
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Hadi Naddaf
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
7
|
Sahvieh S, Oryan A, Hassanajili S, Kamali A. Role of bone 1stem cell-seeded 3D polylactic acid/polycaprolactone/hydroxyapatite scaffold on a critical-sized radial bone defect in rat. Cell Tissue Res 2021; 383:735-750. [PMID: 32924069 DOI: 10.1007/s00441-020-03284-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/14/2020] [Indexed: 01/07/2023]
Abstract
Osteoconductive biomaterials were used to find the most reliable materials in bone healing. Our focus was on the bone healing capacity of the stem cell-loaded and unloaded PLA/PCL/HA scaffolds. The 3D scaffold of PLA/PCL/HA was characterized by scanning electron microscopy (SEM), rheology, X-ray diffraction (XRD), and Fourier transform-infrared (FT-IR) spectroscopy. Bone marrow stem cells (BMSCs) have multipotential differentiation into osteoblasts. Forty Wistar male rats were used to organize four experimental groups: control, autograft, scaffold, and BMSCs-loaded scaffold groups. qRT-PCR showed that the BMSCs-loaded scaffold had a higher expression level of CD31 and osteogenic markers compared with the control group (P < 0.05). Radiology and computed tomography (CT) scan evaluations showed significant improvement in the BMSCs-loaded scaffold compared with the control group (P < 0.001). Biomechanical estimation demonstrated significantly higher stress (P < 0.01), stiffness (P < 0.001), and ultimate load (P < 0.01) in the autograft and BMSCs-loaded scaffold groups compared with the untreated group and higher strain was seen in the control group than the other groups (P < 0.01). Histomorphometric and immunohistochemical (IHC) investigations showed significantly improved regeneration scores in the autograft and BMSCs-loaded scaffold groups compared with the control group (P < 0.05). Also, there was a significant difference between the scaffold and control groups in all tests (P < 0.05). The results depicted that our novel approach will allow to develop PLA/PCL/HA 3D scaffold in bone healing via BMSC loading.
Collapse
Affiliation(s)
- Sonia Sahvieh
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Shadi Hassanajili
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Amir Kamali
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
8
|
Oryan A, Sahvieh S. Effects of bisphosphonates on osteoporosis: Focus on zoledronate. Life Sci 2020; 264:118681. [PMID: 33129881 DOI: 10.1016/j.lfs.2020.118681] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022]
Abstract
Osteoporosis is a bone disease that mainly affects older people and postmenopausal women. Lack of proper treatment for this disease gives rise to many problems in patients and occasionally leads to death. Many drugs have been utilized to treat osteoporosis but the most effective one is the bisphosphonates (BPs) family. This family has several positive effects on bone tissue, including promoting bone healing, enhancing bone mineral density, reducing bone resorption, preventing pathologic fractures, suppressing bone turnover, and modulating bone remodeling. On the other hand, there have also been inconclusive reports that BPs might have a desirable or even adverse impact on osteoporotic patients. Therefore, we set out to examine the positive and negative effects of this family, with a focus on the most potent one that is zoledronate (Zol), in clinical usage. Zoledronate is an amino-BPs and nitrogen-containing drug which is the most powerful BPs on osteoporosis treatment or prevention. Many studies showed its effectiveness in the treatment of osteoporosis and bone healing. As Zol enjoys a considerable potential in treating and preventing osteoporosis, it can be used as one of the effective treatments in this field.
Collapse
Affiliation(s)
- Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Sonia Sahvieh
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
9
|
Guner MB, Dalgic AD, Tezcaner A, Yilanci S, Keskin D. A dual-phase scaffold produced by rotary jet spinning and electrospinning for tendon tissue engineering. Biomed Mater 2020; 15:065014. [PMID: 32438362 DOI: 10.1088/1748-605x/ab9550] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tendon is a highly hierarchical and oriented tissue that provides high mechanical strength. Tendon injuries lead to loss of function, disability, and a decrease in quality of life. The limited healing capacity of tendon tissue leads to scar tissue formation, which can affect mechanical strength and cause a re-tear. Tissue engineering can be the solution to achieving complete and proper healing of tendon. The developed constructs should be mechanically strong while maintaining a suitable environment for cell proliferation. In this study, a dual-phase fibrous scaffold was produced by combining fibrous mats produced by rotary jet spinning (RJS) and wet electrospinning (WES), with the intent of improving the healing capacity of the construct. Dual-phase scaffolds were formed from aligned poly(ϵ-caprolactone) (PCL) fibers (Shell) produced by RJS and randomly oriented PCL or PCL/gelatin fibers (Core) produced by WES systems. The scaffolds mimicked i) the repair phase of tendon healing, in which randomly-oriented collagen type III is deposited by randomly-oriented WES fibers and ii) the remodeling stage, in which aligned collagen type I fibers are deposited by aligned RJS fibers. In vitro studies showed that the presence of randomly-oriented core fibers inside the aligned PCL fiber shell of the dual-phase scaffold increased the initial attachment and viability of cells. Scanning electron microscopy and confocal microscopy analysis showed that the presence of aligned RJS fibers supported the elongation of cells through aligned fibers which improves tendon tissue healing by guiding oriented cell proliferation and extracellular matrix deposition. Tenogenic differentiation of human adipose-derived mesenchymal stem cells on scaffolds was studied when supplemented with growth differentiation factor 5 (GDF-5). GDF-5 treatment improved the viability, collagen type III deposition and scaffold penetration of human adipose derived stem cells. The developed FSPCL/ESPCL-Gel 3:1 scaffold (FS = centrifugal force spinning/RJS, ES = wet electrospinning, Gel = gelatin) sustained high mechanical strength, and improved cell viability and orientation while supporting tenogenic differentiation.
Collapse
Affiliation(s)
- Mustafa Bahadir Guner
- Graduate Department of Biomedical Engineering, Middle East Technical University, Ankara, Turkey
- MODSIMMER, Modeling and Simulation Research & Development Center, Middle East Technical University, Ankara, Turkey
| | - Ali Deniz Dalgic
- Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
- MODSIMMER, Modeling and Simulation Research & Development Center, Middle East Technical University, Ankara, Turkey
| | - Aysen Tezcaner
- Graduate Department of Biomedical Engineering, Middle East Technical University, Ankara, Turkey
- Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering Research Center, Middle East Technical University, Ankara, Turkey
- MODSIMMER, Modeling and Simulation Research & Development Center, Middle East Technical University, Ankara, Turkey
| | - Sedat Yilanci
- Department of Plastic Reconstructive and Aesthetics Surgery, Liv Hospital, Ankara, Turkey
| | - Dilek Keskin
- Graduate Department of Biomedical Engineering, Middle East Technical University, Ankara, Turkey
- Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering Research Center, Middle East Technical University, Ankara, Turkey
- MODSIMMER, Modeling and Simulation Research & Development Center, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
10
|
Kim IB, Kim EY, Lim KP, Heo KS. Does the Use of Injectable Atelocollagen during Arthroscopic Rotator Cuff Repair Improve Clinical and Structural Outcomes? Clin Shoulder Elb 2019; 22:183-189. [PMID: 33330217 PMCID: PMC7714314 DOI: 10.5397/cise.2019.22.4.183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 01/08/2023] Open
Abstract
Background Since the establishment of biological augmentation to improve the treatment of rotator cuff tears, it is imperative to explore newer techniques to reduce the retear rate and improve long-term shoulder function after rotator cuff repair. This study was undertaken to determine the consequences of a gel-type atelocollagen injection during arthroscopic rotator cuff repair on clinical outcomes, and evaluate its effect on structural integrity. Methods Between January 2014 and June 2015, 121 patients with full thickness rotator cuff tears underwent arthroscopic rotator cuff repair. Of these, 61 patients were subjected to arthroscopic rotator cuff repair in combination with an atelocollagen injection (group I), and 60 patients underwent arthroscopic rotator cuff repair alone (group II). The visual analogue scale (VAS) for pain and the Korean Shoulder Society (KSS) scores were evaluated preoperatively and postoperatively. Magnetic resonance imaging (MRI) was performed at 6 months postoperatively, to assess the integrity of the repair. Results VAS scores were significantly lower in group I than in group II at 3, 7, and 14 days after surgery. KSS scores showed no significant difference between groups in the 24 months period of follow-up. No significant difference was obtained in the healing rate of the rotator cuff tear at 6 months postoperatively (p=0.529). Conclusions Although a gel-type atelocollagen injection results in reduced pain in patients at 2 weeks after surgery, our study does not substantiate the administration of atelocollagen during rotator cuff repair to improve the clinical outcomes and healing of the rotator cuff.
Collapse
Affiliation(s)
- In Bo Kim
- Department of Orthopedic Surgery, Busan Bumin Hospital, Busan, Korea
| | - Eun Yeol Kim
- Department of Orthopedic Surgery, Busan Bumin Hospital, Busan, Korea
| | - Kuk Pil Lim
- Department of Orthopedic Surgery, Busan Bumin Hospital, Busan, Korea
| | - Ki Seong Heo
- Department of Orthopedic Surgery, Busan Bumin Hospital, Busan, Korea
| |
Collapse
|
11
|
Baldwin M, Snelling S, Dakin S, Carr A. Augmenting endogenous repair of soft tissues with nanofibre scaffolds. J R Soc Interface 2019; 15:rsif.2018.0019. [PMID: 29695606 DOI: 10.1098/rsif.2018.0019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/04/2018] [Indexed: 12/21/2022] Open
Abstract
As our ability to engineer nanoscale materials has developed we can now influence endogenous cellular processes with increasing precision. Consequently, the use of biomaterials to induce and guide the repair and regeneration of tissues is a rapidly developing area. This review focuses on soft tissue engineering, it will discuss the types of biomaterial scaffolds available before exploring physical, chemical and biological modifications to synthetic scaffolds. We will consider how these properties, in combination, can provide a precise design process, with the potential to meet the requirements of the injured and diseased soft tissue niche. Finally, we frame our discussions within clinical trial design and the regulatory framework, the consideration of which is fundamental to the successful translation of new biomaterials.
Collapse
Affiliation(s)
- Mathew Baldwin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Sarah Snelling
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Stephanie Dakin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Andrew Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Meng J, Yu P, Tong J, Sun W, Jiang H, Wang Y, Xue K, Xie F, Qian H, Liu N, Zhao J, Bao N. Hydrogen treatment reduces tendon adhesion and inflammatory response. J Cell Biochem 2019; 120:1610-1619. [PMID: 30367509 DOI: 10.1002/jcb.27441] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/16/2018] [Indexed: 01/24/2023]
Abstract
A rat model of tendon repair was established to investigate the effects of hydrogen water on tendon adhesion reduction. Thirty-six Sprague Dawley rats were randomly divided into a normal saline (NS) group and a hydrogen water (HS) group according to the processing reagents after a tendon repairing operation. Pre- and postoperative superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) in subjects' serum were observed. Skin fibroblasts were grouped into an NS group, H2 O2 group, H2 group, and H2 O2 H2 group. Expressions of Nrf2, CATA, and γ-GCS were also tested by Western blot analysis. 8-OHdG, GSH, MDA, and SOD of the cells were analyzed by the enzyme-linked immunosorbent assay method. The postoperative SOD activity and GSH contents were significantly reduced (P < 0.05), whereas the postoperative MDA level was significantly increased (P < 0.05). Similarly, the postoperative HS group showed significantly higher SOD activity and GSH contents (P < 0.05) but lower MDA (P < 0.05) compared with the postoperative NS group. MDA and 8-OHdG were significantly decreased in hydrogen-rich medium, while SOD and GSH were increased. The expression of Nrf2, CATA, and γ-GCS in antioxidant system were reduced after H2 O2 processing, which were restored after the application of hydrogen-rich medium. Hydrogen water can reduce tendon adhesion after tendon repairing and prohibit excessive inflammatory response, which could be associated with the activation of the Nrf2 pathway.
Collapse
Affiliation(s)
- Jia Meng
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Pan Yu
- Department of Burn and Plastic Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Jian Tong
- Orthopedic Department, The Affiliated Taizhou people's Hospital of Nantong University, Taizhou, Jiangsu, China
| | - Wenshuang Sun
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Hui Jiang
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Yicun Wang
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Kaiwen Xue
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Farong Xie
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Hong Qian
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Naicheng Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jianning Zhao
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Nirong Bao
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Oryan A, Alemzadeh E, Tashkhourian J, Nami Ana SF. Topical delivery of chitosan-capped silver nanoparticles speeds up healing in burn wounds: A preclinical study. Carbohydr Polym 2018; 200:82-92. [PMID: 30177212 DOI: 10.1016/j.carbpol.2018.07.077] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/08/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
Abstract
This study investigated the effects of topical application of chitosan-capped silver nanoparticles (Ch/AgNPs) on burn wound healing. The chitosan-capped silver nanoparticles were synthesized in one step from the silver nitrate, sodium borohydride, and chitosan and were characterized using transmission electron microscopy, fourier transform infrared spectroscopy, and X-ray diffraction methods. The antioxidant assay was performed to evaluate the scavenging rate. The effects of Ch/AgNPs on burn wound healing was also evaluated by histopathological, molecular, and biochemical evaluations after 7, 14 and 28 days of treatment in a rat model. In comparison to the negative control and silver sulfadiazine groups, the Ch/AgNPs treated wounds exhibited significantly lower inflammatory reaction as determined by the reduced level of interleukin-1β (IL-1β) and neutrophil counts. Treatment by Ch/AgNPs also significantly enhanced re-epithelialization, so that complete epithelialization was achieved in the lesions of the animals of this group, at the 7th day post-wounding. Rapid re-epithelialization, improved granulation tissue formation, reduced IL-1β expression, mild inflammation, and increased transforming growth factor-β1 and basic fibroblast growth factor, at 7 days post-wounding, are convincing reasons to confirm this idea that Ch/AgNPs are effective in speeding up the wound healing stages. Our histopathological findings are in agreement with the molecular and biochemical results and strongly demonstrate that Ch/AgNPs stimulate burn wound healing by decreasing the length of repair phases. Therefore, on the basis of our findings, Ch/AgNPs can be a promising candidate in stimulating wound repair and regeneration.
Collapse
Affiliation(s)
- Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Esmat Alemzadeh
- Department of Biotechnology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Javad Tashkhourian
- Department of Chemistry, Collage of Science, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
14
|
Shahrezaie M, Moshiri A, Shekarchi B, Oryan A, Maffulli N, Parvizi J. Effectiveness of tissue engineered three‐dimensional bioactive graft on bone healing and regeneration: an
in vivo
study with significant clinical value. J Tissue Eng Regen Med 2017; 12:936-960. [DOI: 10.1002/term.2510] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/03/2017] [Accepted: 06/20/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Mostafa Shahrezaie
- Department of Orthopedic Surgery, Faculty of MedicineAJA University of Medical Science Tehran Iran
| | - Ali Moshiri
- Department of Orthopedic Surgery, Faculty of MedicineAJA University of Medical Science Tehran Iran
- Department of Surgery and RadiologyDr. Moshiri Veterinary Clinic Tehran Iran
| | - Babak Shekarchi
- Department of Radiology, Faculty of MedicineAJA University of Medical Science Tehran Iran
| | - Ahmad Oryan
- Department of Pathology, School of Veterinary MedicineShiraz University Shiraz Iran
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, School of Medicine and SurgeryUniversity of Salerno Salerno Italy
- Centre for Sports and Exercise MedicineQueen Mary University of London, Barts and the London School of Medicine and Dentistry, Mile End Hospital London UK
| | - Javad Parvizi
- Department of OrthopaedicsThe Rothman Institute at Thomas Jefferson University Hospital Philadelphia PA USA
| |
Collapse
|
15
|
Oryan A, Sharifi P, Moshiri A, Silver IA. The role of three-dimensional pure bovine gelatin scaffolds in tendon healing, modeling, and remodeling: an in vivo investigation with potential clinical value. Connect Tissue Res 2017; 58:424-437. [PMID: 27662266 DOI: 10.1080/03008207.2016.1238468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM OF THE STUDY Large tendon defects involving extensive tissue loss present complex clinical problems. Surgical reconstruction of such injuries is normally performed by transplanting autogenous and allogenous soft tissues that are expected to remodel to mimic a normal tendon. However, the use of grafts has always been associated with significant limitations. Tissue engineering employing artificial scaffolds may provide acceptable alternatives. Gelatin is a hydrolyzed form of collagen that is bioactive, biodegradable, and biocompatible. The present study has investigated the suitability of gelatin scaffold for promoting healing of a large tendon-defect model in rabbits. MATERIALS AND METHODS An experimental model of a large tendon defect was produced by partial excision of the Achilles tendon of the left hind leg in adult rabbits. To standardize and stabilize the length of the tendon defect a modified Kessler core suture was anchored in the sectioned tendon ends. The defects were either left untreated or filled with three-dimensional gelatin scaffold. Before euthanasia 60 days after injury, the progress of healing was evaluated clinically. Samples of healing tendon were harvested at autopsy and evaluated by gross, histopathologic, scanning, and transmission electron microscopy, and by biomechanical testing. RESULTS The treated animals showed superior weight-bearing and physical activity compared with those untreated, while frequency of peritendinous adhesions around the healing site was reduced. The gelatin scaffold itself was totally degraded and replaced by neo-tendon that morphologically had significantly greater numbers, diameters, density, and maturation of collagen fibrils, fibers, and fiber bundles than untreated tendon scar tissue. It also had mechanically higher ultimate load, yield load, stiffness, maximum stress and elastic modulus, when compared to the untreated tendons. CONCLUSION Gelatin scaffold may be a valuable option in surgical reconstruction of large tendon defects.
Collapse
Affiliation(s)
- Ahmad Oryan
- a Department of Pathology, School of Veterinary Medicine , Shiraz University , Shiraz , Iran
| | - Pardis Sharifi
- a Department of Pathology, School of Veterinary Medicine , Shiraz University , Shiraz , Iran
| | - Ali Moshiri
- b RAZI Drug Research Center , Iran University of Medical Sciences , Tehran , Iran
| | - Ian A Silver
- c Department of Anatomy, Center for Comparative and Clinical Anatomy , School of Veterinary Science , Bristol , UK
| |
Collapse
|
16
|
Oryan A, Alidadi S, Bigham-Sadegh A, Moshiri A. Comparative study on the role of gelatin, chitosan and their combination as tissue engineered scaffolds on healing and regeneration of critical sized bone defects: an in vivo study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:155. [PMID: 27590825 DOI: 10.1007/s10856-016-5766-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
Gelatin and chitosan are natural polymers that have extensively been used in tissue engineering applications. The present study aimed to evaluate the effectiveness of chitosan and gelatin or combination of the two biopolymers (chitosan-gelatin) as bone scaffold on bone regeneration process in an experimentally induced critical sized radial bone defect model in rats. Fifty radial bone defects were bilaterally created in 25 Wistar rats. The defects were randomly filled with chitosan, gelatin and chitosan-gelatin and autograft or left empty without any treatment (n = 10 in each group). The animals were examined by radiology and clinical evaluation before euthanasia. After 8 weeks, the rats were euthanized and their harvested healing bone samples were evaluated by radiology, CT-scan, biomechanical testing, gross pathology, histopathology, histomorphometry and scanning electron microscopy. Gelatin was biocompatible and biodegradable in vivo and showed superior biodegradation and biocompatibility when compared with chitosan and chitosan-gelatin scaffolds. Implantation of both the gelatin and chitosan-gelatin scaffolds in bone defects significantly increased new bone formation and mechanical properties compared with the untreated defects (P < 0.05). Combination of the gelatin and chitosan considerably increased structural and functional properties of the healing bones when compared to chitosan scaffold (P < 0.05). However, no significant differences were observed between the gelatin and gelatin-chitosan groups in these regards (P > 0.05). In conclusion, application of the gelatin alone or its combination with chitosan had beneficial effects on bone regeneration and could be considered as good options for bone tissue engineering strategies. However, chitosan alone was not able to promote considerable new bone formation in the experimentally induced critical-size radial bone defects.
Collapse
Affiliation(s)
- Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Soodeh Alidadi
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Amin Bigham-Sadegh
- Department of Clinical Sciences, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Ali Moshiri
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Oryan A, Alidadi S, Moshiri A. Platelet-rich plasma for bone healing and regeneration. Expert Opin Biol Ther 2015; 16:213-32. [DOI: 10.1517/14712598.2016.1118458] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
18
|
Mobini S, Taghizadeh-Jahed M, Khanmohammadi M, Moshiri A, Naderi MM, Heidari-Vala H, Ashrafi Helan J, Khanjani S, Springer A, Akhondi MM, Kazemnejad S. Comparative evaluation of in vivo biocompatibility and biodegradability of regenerated silk scaffolds reinforced with/without natural silk fibers. J Biomater Appl 2015; 30:793-809. [DOI: 10.1177/0885328215601925] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nowadays, exceptional advantages of silk fibroin over synthetic and natural polymers have impelled the scientists to application of this biomaterial for tissue engineering purposes. Recently, we showed that embedding natural degummed silk fibers in regenerated Bombyx mori silk-based scaffold significantly increases the mechanical stiffness, while the porosity of the scaffolds remains the same. In the present study, we evaluated degradation rate, biocompatibility and regenerative properties of the regenerated 2% and 4% wt silk-based composite scaffolds with or without embedded natural degummed silk fibers within 90 days in both athymic nude and wild-type C57BL/6 mice through subcutaneous implantation. In all scaffolds, a suitable interconnected porous structure for cell penetration was seen under scanning electron microscopy. Compressive tests revealed a functional relationship between fiber reinforcement and compressive modulus. In addition, the fiber/fibroin composite scaffolds support cell attachment and proliferation. On days 30 to 90 after subcutaneous implantation, the retrieved tissues were examined via gross morphology, histopathology, immunofluorescence staining and reverse transcription-polymerase chain reaction as shown in Figure 1 . Results showed that embedding the silk fibers within the matrix enhances the biodegradability of the matrix resulting in replacement of the composite scaffolds with the fresh connective tissue. Fortification of the composites with degummed fibers not only regulates the degradation profile but also increases the mechanical performance of the scaffolds. This report also confirmed that pore size and structure play an important role in the degradation rate. In conclusion, the findings of the present study narrate key role of additional surface area in improving in vitro and in vivo biological properties of the scaffolds and suggest the potential ability of these fabricated composite scaffolds for connective tissue regeneration. [Figure: see text]
Collapse
Affiliation(s)
- Sahba Mobini
- Department of Tissue Engineering, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Masoud Taghizadeh-Jahed
- Department of Tissue Engineering, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Manijeh Khanmohammadi
- Department of Tissue Engineering, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ali Moshiri
- Department of Tissue Engineering, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad-Mehdi Naderi
- Department of Tissue Engineering, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Hamed Heidari-Vala
- Department of Tissue Engineering, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Javad Ashrafi Helan
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sayeh Khanjani
- Department of Tissue Engineering, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Armin Springer
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Medical Faculty of Technische Universität Dresden, Dresden, Germany
| | - Mohammad-Mehdi Akhondi
- Department of Tissue Engineering, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Somaieh Kazemnejad
- Department of Tissue Engineering, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
19
|
Oryan A, Kamali A, Moshiri A. Potential mechanisms and applications of statins on osteogenesis: Current modalities, conflicts and future directions. J Control Release 2015; 215:12-24. [DOI: 10.1016/j.jconrel.2015.07.022] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 12/15/2022]
|
20
|
Moshiri A, Oryan A, Meimandi-Parizi A. Synthesis, development, characterization and effectiveness of bovine pure platelet gel-collagen-polydioxanone bioactive graft on tendon healing. J Cell Mol Med 2015; 19:1308-32. [PMID: 25702535 PMCID: PMC4459846 DOI: 10.1111/jcmm.12511] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 11/06/2014] [Indexed: 01/21/2023] Open
Abstract
Bovine platelet gel (BPG) is an accessible and cost-effective source of growth factors which may have a value in tendon regenerative medicine. We produced a collagen implant (CI) as a tendon proper, covered it with polydioxanone (PDS) sheath to simulate paratenon and finally embedded the BPG as an active source of growth factor within the bioimplant to test whether BPG would be able to accelerate and enhance tendon regeneration and repair. After in vitro characterization of the bioactive grafts, the grafts were implanted in rabbit large tendon defect model. Untreated tendons and tendons treated with either CI or CI-PDS were served as controls for the CI-PDS-BPG. The animals were investigated clinically, ultrasonographically and haematologically for 120 days. After euthanasia, dry matter content, water uptake and delivery characteristics and also gross morphological, histopathological and scanning electron microscopic features of the healing tendons were assessed. In vitro, the activated platelets in the scaffold, released their growth factors significantly more than the controls. BPG also increased cell viability, and enhanced cellular differentiation, maturation and proliferation inside the CI-PDS compared with the controls. In vivo, the BPG modulated inflammation, increased quality and rate of fibroplasia and produced a remodelled tendon that had significantly higher collagen content and superior collagen fibril and fibre differentiation than controls. Treatment also significantly improved tendon water uptake and delivery characteristics, animals' serum PDGF level, CI-PDS biocompatibility and biodegradability and reduced peritendinous adhesions, muscle fibrosis and atrophy. BPG was effective on tendon healing and CI-PDS-BPG may be a valuable bioscaffold in tendon reconstructive surgery.
Collapse
Affiliation(s)
- Ali Moshiri
- Division of Surgery and Radiology, Department of Clinical Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Abdolhamid Meimandi-Parizi
- Division of Surgery and Radiology, Department of Clinical Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
21
|
Oryan A, Moshiri A, Meimandi-Parizi A, Maffulli N. Role of xenogenous bovine platelet gel embedded within collagen implant on tendon healing: an in vitro and in vivo study. Exp Biol Med (Maywood) 2014; 240:194-210. [PMID: 25341879 DOI: 10.1177/1535370214554532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Surgical reconstruction of large Achilles tendon defects is demanding. Platelet concentrates may be useful to favor healing in such conditions. The characteristics of bovine platelet-gel embedded within a collagen-implant were determined in vitro, and its healing efficacy was examined in a large Achilles tendon defect in rabbits. Two cm of the left Achilles tendon of 60 rabbits were excised, and the animals were randomly assigned to control (no implant), collagen-implant, or bovine-platelet-gel-collagen-implant groups. The tendon edges were maintained aligned using a Kessler suture. No implant was inserted in the control group. In the two other groups, a collagen-implant or bovine-platelet-gel-collagen-implant was inserted in the defect. The bioelectricity and serum platelet-derived growth factor levels were measured weekly and at 60 days post injury, respectively. After euthanasia at 60 days post injury, the tendons were tested at macroscopic, microscopic, and ultrastructural levels, and their dry matter and biomechanical performances were also assessed. Another 60 rabbits were assigned to receive no implant, a collagen-implant, or a bovine-platelet-gel-collagen-implant, euthanized at 10, 20, 30, and 40 days post injury, and their tendons were evaluated grossly and histologically to determine host-graft interactions. Compared to the control and collagen-implant, treatment with bovine-platelet-gel-collagen-implant improved tissue bioelectricity and serum platelet-derived growth factor levels, and increased cell proliferation, differentiation, and maturation. It also increased number, diameter, and density of the collagen fibrils, alignment and maturation of the collagen fibrils and fibers, biomechanical properties and dry matter content of the injured tendons at 60 days post injury. The bovine-platelet-gel-collagen-implant also increased biodegradability, biocompatibility, and tissue incorporation behavior of the implant compared to the collagen-implant alone. This treatment also decreased tendon adhesion, muscle fibrosis, and atrophy, and improved the physical activity of the animals. The bovine-platelet-gel-collagen-implant was effective in neotenon formation in vivo, which may be valuable in the clinical setting.
Collapse
Affiliation(s)
- Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, 71345, Iran
| | - Ali Moshiri
- Division of Surgery and Radiology, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, 71345, Iran
| | - Abdolhamid Meimandi-Parizi
- Division of Surgery and Radiology, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, 71345, Iran
| | - Nicola Maffulli
- University of Salerno, Faculty of Medicine and Surgery, Department of Musculoskeletal Medicine and Surgery, and Centre for Sport and Exercise Medicine, Barts and the London School of Medicine and Dentistry, University of London, Queen Mary, E1 4DG, UK
| |
Collapse
|
22
|
Wang Z, Zhang Y, Zhu J, Dong S, Jiang T, Zhou Y, Zhang X. In vitro investigation of a tissue-engineered cell-tendon complex mimicking the transitional architecture at the ligament-bone interface. J Biomater Appl 2014; 29:1180-92. [PMID: 25311754 DOI: 10.1177/0885328214555168] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Restoration of the transitional ligament-bone interface is critical for graft-bone integration. We postulated that an allogenic scaffold mimicking the fibrogenic, chondrogenic, and osteogenic transition gradients could physiologically promote ligament-bone incorporation. The aim of this study was to construct and characterize a composite tendon scaffold with a continuous and heterogeneous transition region mimicking a native ligament insertion site. Genetically modified heterogeneous cell populations were seeded within specific regions of decellularized rabbit Achilles tendons to fabricate a stratified scaffold containing three biofunctional regions supporting fibrogenesis, chondrogenesis, and osteogenesis. The observed morphology, architecture, cytocompatibility, and biomechanics of the scaffolds demonstrated their improved bio-physico-chemical properties. The formation of the transitional regions was augmented via enhanced delivery of two transcription factors, sex determining region Y-box 9 and runt-related transcription factor 2, which also triggered early up-regulated expression of cartilage- and bone-relevant markers, according to quantitative PCR and immunoblot analyses. Gradient tissue-specific matrix formation was also confirmed within the predesignated regions via histological staining and immunofluorescence assays. These results suggest that a transitional interface could be replicated on an engineered tendon through stratified tissue integration. The scaffold offers the advantages of a multitissue transition involving controlled cellular interactions and matrix heterogeneity, which can be applied for the regeneration of the ligament-bone interface.
Collapse
Affiliation(s)
- Zhibing Wang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Xinqiao Street, Chongqing, PR China
| | - Yuan Zhang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Xinqiao Street, Chongqing, PR China
| | - Jie Zhu
- Department of Neurology, Daping Hospital, Third Military Medical University, Changjiang Street, Chongqing, PR China
| | - Shiwu Dong
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Biomedical Materials Science, Third Military Medical University, Gaotanyan Street, Chongqing, PR China
| | - Tao Jiang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Xinqiao Street, Chongqing, PR China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Xinqiao Street, Chongqing, PR China
| | - Xia Zhang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Xinqiao Street, Chongqing, PR China
| |
Collapse
|
23
|
Ho JO, Sawadkar P, Mudera V. A review on the use of cell therapy in the treatment of tendon disease and injuries. J Tissue Eng 2014; 5:2041731414549678. [PMID: 25383170 PMCID: PMC4221986 DOI: 10.1177/2041731414549678] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/28/2014] [Indexed: 12/28/2022] Open
Abstract
Tendon disease and injuries carry significant morbidity worldwide in both athletic and non-athletic populations. It is estimated that tendon injuries account for 30%−50% of all musculoskeletal injuries globally. Current treatments have been inadequate in providing an accelerated process of repair resulting in high relapse rates. Modern concepts in tissue engineering and regenerative medicine have led to increasing interest in the application of cell therapy for the treatment of tendon disease. This review will explore the use of cell therapy, by bringing together up-to-date evidence from in vivo human and animal studies, and discuss the issues surrounding the safety and efficacy of its use in the treatment of tendon disease.
Collapse
Affiliation(s)
- Jasmine Oy Ho
- Institute of Orthopaedics and Musculoskeletal Science (IOMS), Division of Surgery and Interventional Science, University College London, London, UK
| | - Prasad Sawadkar
- Institute of Orthopaedics and Musculoskeletal Science (IOMS), Division of Surgery and Interventional Science, University College London, London, UK
| | - Vivek Mudera
- Institute of Orthopaedics and Musculoskeletal Science (IOMS), Division of Surgery and Interventional Science, University College London, London, UK
| |
Collapse
|
24
|
Oryan A, Alidadi S, Moshiri A, Bigham-Sadegh A. Bone morphogenetic proteins: a powerful osteoinductive compound with non-negligible side effects and limitations. Biofactors 2014; 40:459-81. [PMID: 25283434 DOI: 10.1002/biof.1177] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/21/2014] [Accepted: 07/26/2014] [Indexed: 12/29/2022]
Abstract
Healing and regeneration of large bone defects leading to non-unions is a great concern in orthopedic surgery. Since auto- and allografts have limitations, bone tissue engineering and regenerative medicine (TERM) has attempted to solve this issue. In TERM, healing promotive factors are necessary to regulate the several important events during healing. An ideal treatment strategy should provide osteoconduction, osteoinduction, osteogenesis, and osteointegration of the graft or biomaterials within the healing bone. Since many materials have osteoconductive properties, only a few biomaterials have osteoinductive properties which are important for osteogenesis and osteointegration. Bone morphogenetic proteins (BMPs) are potent inductors of the osteogenic and angiogenic activities during bone repair. The BMPs can regulate the production and activity of some growth factors which are necessary for the osteogenesis. Since the introduction of BMP, it has added a valuable tool to the surgeon's possibilities and is most commonly used in bone defects. Despite significant evidences suggesting their potential benefit on bone healing, there are some evidences showing their side effects such as ectopic bone formation, osteolysis and problems related to cost effectiveness. Bone tissue engineering may create a local environment, using the delivery systems, which enables BMPs to carry out their activities and to lower cost and complication rate associated with BMPs. This review represented the most important concepts and evidences regarding the role of BMPs on bone healing and regeneration from basic to clinical application. The major advantages and disadvantages of such biologic compounds together with the BMPs substitutes are also discussed.
Collapse
Affiliation(s)
- Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | | | | |
Collapse
|
25
|
Moshiri A, Oryan A, Meimandi-Parizi A, Koohi-Hosseinabadi O. Effectiveness of xenogenous-based bovine-derived platelet gel embedded within a three-dimensional collagen implant on the healing and regeneration of the Achilles tendon defect in rabbits. Expert Opin Biol Ther 2014; 14:1065-89. [PMID: 24840092 PMCID: PMC4743604 DOI: 10.1517/14712598.2014.915305] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND OBJECTIVE Tissue engineering is an option in reconstructing large tendon defects and managing their healing and regeneration. We designed and produced a novel xenogeneic-based bovine platelet, embedded it within a tissue-engineered collagen implant (CI) and applied it in an experimentally induced large tendon defect model in rabbits to test whether bovine platelets could stimulate tendon healing and regeneration in vivo. METHODS One hundred twenty rabbits were randomly divided into two experimental and pilot groups. In all the animals, the left Achilles tendon was surgically excised and the tendon edges were aligned by Kessler suture. Each group was then divided into three groups of control (no implant), treated with CI and treated with collagen-platelet implant. The pilot groups were euthanized at 10, 15, 30 and 40 days post-injury (DPI), and their gross and histologic characteristics were evaluated to study host-graft interaction mechanism. To study the tendon healing and its outcome, the experimental animals were tested during the experiment using hematologic, ultrasonographic and various methods of clinical examinations and then euthanized at 60 DPI and their tendons were evaluated by gross pathologic, histopathologic, scanning electron microscopic, biophysical and biochemical methods. RESULTS Bovine platelets embedded within a CI increased inflammation at short term while it increased the rate of implant absorption and matrix replacement compared with the controls and CI alone. Treatment also significantly increased diameter, density, amount, alignment and differentiation of the collagen fibrils and fibers and approximated the water uptake and delivery behavior of the healing tendons to normal contralaterals (p < 0.05). Treatment also improved echogenicity and homogenicity of the tendons and reduced peritendinous adhesion, muscle fibrosis and atrophy, and therefore, it improved the clinical scores and physical activity related to the injured limb when compared with the controls (p < 0.05). CONCLUSION The bovine platelet gel embedded within the tissue-engineered CI was effective in healing, modeling and remodeling of the Achilles tendon in rabbit. This strategy may be a valuable option in the clinical setting.
Collapse
Affiliation(s)
- Ali Moshiri
- Division of Surgery and Radiology, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University , Shiraz , Iran +98 9123409835 ;
| | | | | | | |
Collapse
|
26
|
Buschmann J, Puippe G, Bürgisser GM, Bonavoglia E, Giovanoli P, Calcagni M. Correspondence of high-frequency ultrasound and histomorphometry of healing rabbit Achilles tendon tissue. Connect Tissue Res 2014; 55:123-31. [PMID: 24283274 DOI: 10.3109/03008207.2013.870162] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Static and dynamic high-frequency ultrasound of healing rabbit Achilles tendons were set in relationship to histomorphometric analyses at three and six weeks post-surgery. MATERIALS AND METHODS Twelve New Zealand White rabbits received a clean-cut Achilles tendon laceration (the medial and lateral Musculus gastrocnemius) and were repaired with a four-strand Becker suture. Six rabbits got additionally a tight polyester urethane tube at the repair site in order to vary the adhesion extent. Tendons were analysed by static and dynamic ultrasound (control: healthy contralateral legs). The ultrasound outcome was corresponded to the tendon shape, tenocyte and tenoblast density, tenocyte and tenoblast nuclei width, collagen fibre orientation and adhesion extent. RESULTS The spindle-like morphology of healing tendons (ultrasound) was confirmed by the swollen epitenon (histology). Prediction of adhesion formation by dynamic ultrasound assessment was confirmed by histology (contact region to surrounding tissue). Hyperechogenic areas corresponded to acellular zones with aligned fibres and hypoechogenic zones to not yet oriented fibres and to cell-rich areas. CONCLUSIONS These findings add new in-depth structural knowledge to the established non-invasive analytical tool, ultrasound.
Collapse
Affiliation(s)
- Johanna Buschmann
- Department for Plastic Surgery and Hand Surgery, University Hospital Zurich , Zurich , Switzerland
| | | | | | | | | | | |
Collapse
|
27
|
Correia SI, Pereira H, Silva-Correia J, Van Dijk CN, Espregueira-Mendes J, Oliveira JM, Reis RL. Current concepts: tissue engineering and regenerative medicine applications in the ankle joint. J R Soc Interface 2013; 11:20130784. [PMID: 24352667 PMCID: PMC3899856 DOI: 10.1098/rsif.2013.0784] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering and regenerative medicine (TERM) has caused a revolution in present and future trends of medicine and surgery. In different tissues, advanced TERM approaches bring new therapeutic possibilities in general population as well as in young patients and high-level athletes, improving restoration of biological functions and rehabilitation. The mainstream components required to obtain a functional regeneration of tissues may include biodegradable scaffolds, drugs or growth factors and different cell types (either autologous or heterologous) that can be cultured in bioreactor systems (in vitro) prior to implantation into the patient. Particularly in the ankle, which is subject to many different injuries (e.g. acute, chronic, traumatic and degenerative), there is still no definitive and feasible answer to ‘conventional’ methods. This review aims to provide current concepts of TERM applications to ankle injuries under preclinical and/or clinical research applied to skin, tendon, bone and cartilage problems. A particular attention has been given to biomaterial design and scaffold processing with potential use in osteochondral ankle lesions.
Collapse
Affiliation(s)
- S I Correia
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, , Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, S. Cláudio de Barco, Taipas, Guimarães 4806-909, Portugal
| | | | | | | | | | | | | |
Collapse
|