1
|
Sirakanyan SN, Spinelli D, Mattioli EJ, Calvaresi M, Geronikaki A, Kartsev VG, Hakobyan EK, Yegoryan HA, Jughetsyan HV, Manukyan ME, Hovakimyan AA. Synthesis and Rearrangement of New 1,3-Diamino-2,7-naphthyridines and 1-Amino-3-oxo-2,7-naphthyridines. Int J Mol Sci 2024; 25:11977. [PMID: 39596048 PMCID: PMC11593454 DOI: 10.3390/ijms252211977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Herein we describe the synthesis and rearrangement of 1,3-diamino-2,7-naphthyridines and 1-amino-3-oxo-2,7-naphthyridines. In the case of 1,3-diamino-2,7-naphthyridines, it was found that the rearrangement reaction was influenced by both the substituent at the 7th position of the 2,7-naphthyridine ring and by the nature of the cyclic amine at the 1st position. The influence was mainly steric. The reaction of 1-amino-3-oxo-2,7-naphthyridines with amines was studied for the first time. It was revealed that for these substrates, the rearrangement occurs faster and without any influence of the alkyl and cyclic amine groups. We also observed the nucleophilic addition of the amine to the carbonyl group of the rearranged product with the formation of a Schiff base. The calculation of the ESP charges on these substrates indicates a considerable increase in the positive charge on the cyano group that suffers the nucleophilic attack during the rearrangement process, possibly explaining its increased tendency to react and to have a higher reaction velocity.
Collapse
Affiliation(s)
- Samvel N. Sirakanyan
- Institute of Fine Organic Chemistry of A. L. Mnjoyan, Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Ave. Azatutyan 26, Yerevan 0014, Armenia; (H.A.Y.); (H.V.J.); (M.E.M.); (A.A.H.)
| | - Domenico Spinelli
- Dipartimento di Chimica G. Ciamician, Alma Mater Studiorum-Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy; (D.S.); (E.J.M.); (M.C.)
| | - Edoardo Jun Mattioli
- Dipartimento di Chimica G. Ciamician, Alma Mater Studiorum-Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy; (D.S.); (E.J.M.); (M.C.)
| | - Matteo Calvaresi
- Dipartimento di Chimica G. Ciamician, Alma Mater Studiorum-Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy; (D.S.); (E.J.M.); (M.C.)
| | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | | | - Elmira K. Hakobyan
- Institute of Fine Organic Chemistry of A. L. Mnjoyan, Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Ave. Azatutyan 26, Yerevan 0014, Armenia; (H.A.Y.); (H.V.J.); (M.E.M.); (A.A.H.)
| | - Hasmik A. Yegoryan
- Institute of Fine Organic Chemistry of A. L. Mnjoyan, Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Ave. Azatutyan 26, Yerevan 0014, Armenia; (H.A.Y.); (H.V.J.); (M.E.M.); (A.A.H.)
| | - Hasmik V. Jughetsyan
- Institute of Fine Organic Chemistry of A. L. Mnjoyan, Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Ave. Azatutyan 26, Yerevan 0014, Armenia; (H.A.Y.); (H.V.J.); (M.E.M.); (A.A.H.)
| | - Mariam E. Manukyan
- Institute of Fine Organic Chemistry of A. L. Mnjoyan, Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Ave. Azatutyan 26, Yerevan 0014, Armenia; (H.A.Y.); (H.V.J.); (M.E.M.); (A.A.H.)
| | - Anush A. Hovakimyan
- Institute of Fine Organic Chemistry of A. L. Mnjoyan, Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Ave. Azatutyan 26, Yerevan 0014, Armenia; (H.A.Y.); (H.V.J.); (M.E.M.); (A.A.H.)
| |
Collapse
|
2
|
Mitku ML, Dagnaw AD, Geremew DT, Anagaw YK, Worku MC, Limenh LW, Tadesse YB, Ergena AE. In silico prediction of some pharmacokinetic, safety, biological activity and molecular docking studies of 1-piperazine indole hybrid with nicotinic amide and nicotinic acid and their analogues. SAGE Open Med 2024; 12:20503121241274212. [PMID: 39483628 PMCID: PMC11526151 DOI: 10.1177/20503121241274212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/22/2024] [Indexed: 11/03/2024] Open
Abstract
Background In silico predictions are now being utilized in drug discovery and design to assess the physicochemical, pharmacokinetics, and safety properties of compounds at the beginning of the drug discovery process. This early evaluation of the physicochemical, pharmacokinetics, and safety properties of compounds helps the researchers to invest their time and resources only in the best prospective lead compounds by eliminating compounds with a low chance of success. Objective The purpose of this study was to explore a promising lead compound designed from 1-piperazine indole hybrid with nicotinic amide and nicotinic acid analogs targeted on Trypanosoma brucei phosphofructokinase for Trypanosomiasis activity by using in silico predictions strategy. Results The physicochemical, safety, pharmacokinetic, and biological activity properties of those molecules were predicted by using ADMETlab 2.0, ACD labs Chem Sketch software version 14.0, Molinspiration software, and MolPredictX online tool. Our results indicate that several promising candidates exhibit favorable characteristics. Based on Molinspiration software both nicotinic acid and nicotinic amide derivatives showed higher kinase inhibitor activity and all nicotinic acid derivatives revealed enzyme inhibitors and GPCR ligand activity. According to the MolPredictX online tool, the most biologically active derivatives were NA-4, NA-11, and NAD-11. Conclusion Overall, our findings offer valuable insights into the potential efficacy and safety of these compounds. It appears that almost all of the compounds have successfully passed the pharmacokinetic evaluations and integration of nicotinic acid into indole appears to be more beneficial than nicotinic amide regarding certain biological activities.
Collapse
Affiliation(s)
- Melese Legesse Mitku
- Department of Pharmaceutical Chemistry, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Abera Dessie Dagnaw
- Department of Pharmaceutical Chemistry, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Derso Teju Geremew
- Department of Pharmaceutics, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Yeniewa Kerie Anagaw
- Department of Pharmaceutical Chemistry, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Minichil Chanie Worku
- Department of Pharmaceutical Chemistry, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Liknaw Workie Limenh
- Department of Pharmaceutics, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Yabibal Berie Tadesse
- Department of Pharmaceutical Chemistry, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Asrat Elias Ergena
- Department of Pharmaceutical Chemistry, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
3
|
Cooreman K, De Spiegeleer B, Van Poucke C, Vanavermaete D, Delbare D, Wynendaele E, De Witte B. Emerging pharmaceutical therapies of Ascidian-derived natural products and derivatives. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104254. [PMID: 37648122 DOI: 10.1016/j.etap.2023.104254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
In a growing multidrug-resistant environment, the identification of potential new drug candidates with an acceptable safety profile is a substantial crux in pharmaceutical discovery. This review discusses several aspects and properties of approved marine natural products derived from ascidian sources (phylum Chordata, subphylum Tunicata) and/or their deduced analogues including their biosynthetic origin, (bio)chemical preclinical assessments and known efficacy-safety profiles, clinical status in trials, but also translational developments, opportunities and final conclusions. The review also describes the preclinical assessments of a large number of other ascidian compounds that have not been involved in clinical trials yet. Finally, the emerging research on the connectivity of the ascidian hosts and their independent or obligate symbiotic guests is discussed. The review covers the latest information on the topic of ascidian-derived marine natural products over the last two decades including 2022, with the majority of publications published in the last decade.
Collapse
Affiliation(s)
- Kris Cooreman
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium
| | - Bart De Spiegeleer
- Faculty of Pharmaceutical Sciences, Drug Quality and Registration Group, Ghent University, Ottergemsesteenweg 460, BE-9000 Ghent, Belgium
| | - Christof Van Poucke
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Brusselsesteenweg 370, BE-9090 Melle, Belgium
| | - David Vanavermaete
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium
| | - Daan Delbare
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium
| | - Evelien Wynendaele
- Faculty of Pharmaceutical Sciences, Drug Quality and Registration Group, Ghent University, Ottergemsesteenweg 460, BE-9000 Ghent, Belgium
| | - Bavo De Witte
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium.
| |
Collapse
|
4
|
Cadelis MM, Copp BR. Marine pyridoacridine, pyridoacridone and pyrroloacridine alkaloids. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2023; 90:97-157. [PMID: 37716797 DOI: 10.1016/bs.alkal.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
Abstract
The families of pyridoacridine, pyridoacridone, and pyrroloacridine alkaloids are fascinating classes of natural products that have attracted the attention of chemists for over 80 years. Since the first purification of a brightly colored molecule isolated from the sea anemone Calliactis parasitica in 1940, over 110 examples of these alkaloids have been reported from marine organisms. While the paucity of numbers of protons relative to carbons and nitrogens in these molecules presents challenges in structure solution, the chemist is rewarded by their bright pigmented colors and typically diverse biological activities. In the past, several authors have proposed biosynthetic relationships within the pyridoacridine family of alkaloids, formulating a family tree derived from the reaction of dopaminequinone and kynuramine to tie together over 75 alkaloids. Inclusion of two additional quinones, and one homologous diamine, building blocks, for which there is biomimetic synthesis support, is suggestive of a more expansive connected biogenesis that encompasses not only pyridoacridines, but also pyridoacridone, and pyrroloacridine alkaloids. This review covers the isolation, structure elucidation, and proposed biosynthesis and biogenesis of pyridoacridine, pyridoacridone and pyrroloacridine marine alkaloids published to the end of 2022. Biomimetic or bio-inspired syntheses of the compound classes are described and new biological activities reported since 2004 are updated.
Collapse
Affiliation(s)
- Melissa M Cadelis
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Brent R Copp
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
5
|
Vieira da Silva Torchelsen FK, Fernandes Pedrosa TC, Rodrigues MP, de Aguiar AR, de Oliveira FM, Amarante GW, Sales-Junior PA, Branquinho RT, Gomes da Silva SP, Talvani A, Fonseca Murta SM, Martins FT, Braun RL, Teixeira RR, Furtado Mosqueira VC, Lana MD. Novel diamides inspired by protein kinase inhibitors as anti- Trypanosoma cruzi agents: in vitro and in vivo evaluations. Future Med Chem 2023; 15:1469-1489. [PMID: 37650735 DOI: 10.4155/fmc-2023-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Background: Chagas disease is a life-threatening illness caused by Trypanosoma cruzi. The involvement of serine-/arginine-rich protein kinase in the T. cruzi life cycle is significant. Aims: To synthesize, characterize and evaluate the trypanocidal activity of diamides inspired by kinase inhibitor, SRPIN340. Material & Methods: Synthesis using a three-step process and characterization by infrared, nuclear magnetic resonance and high-resolution mass spectrometry were conducted. The selectivity index was obtained by the ratio of CC50/IC50 in two in vitro models. The most active compound, 3j, was evaluated using in vitro cytokine assays and assessing in vivo trypanocidal activity. Results: 3j activity in the macrophage J774 lineage showed an anti-inflammatory profile, and mice showed significantly reduced parasitemia and morbidity at low compound dosages. Conclusion: Novel diamide is active against T. cruzi in vitro and in vivo.
Collapse
Affiliation(s)
| | - Tamiles Caroline Fernandes Pedrosa
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | | | - Alex Ramos de Aguiar
- Departamento de Química, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 30130-171, Brazil
| | | | - Giovanni Wilson Amarante
- Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | | | - Renata Tupinambá Branquinho
- Programa de Pós-Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Sirlaine Pio Gomes da Silva
- Programa de pós-graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - André Talvani
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
- Programa de pós-graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | | | - Felipe Terra Martins
- Departamento de Química, Universidade Federal de Goiás, Goiânia, Goiás, 74001-970, Brazil
| | - Rodrigo Ligabue Braun
- Departamento de Ciências Farmacêuticas, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Róbson Ricardo Teixeira
- Departamento de Química, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 30130-171, Brazil
| | - Vanessa Carla Furtado Mosqueira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Marta de Lana
- Programa de Pós-Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| |
Collapse
|
6
|
Swain SS, Pati S, Hussain T. Quinoline heterocyclic containing plant and marine candidates against drug-resistant Mycobacterium tuberculosis: A systematic drug-ability investigation. Eur J Med Chem 2022; 232:114173. [DOI: 10.1016/j.ejmech.2022.114173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 12/22/2022]
|
7
|
Kumar D, Sharma P, Mahajan A, Dhawan R, Dua K. Pharmaceutical interest of in-silico approaches. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2018-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The virtual environment within the computer using software performed on the computer is known as in-silico studies. These drugs designing software play a vital task in discovering new drugs in the field of pharmaceuticals. These designing programs and software are employed in gene sequencing, molecular modeling, and in assessing the three-dimensional structure of the molecule, which can further be used in drug designing and development. Drug development and discovery is not only a powerful, extensive, and an interdisciplinary system but also a very complex and time-consuming method. This book chapter mainly focused on different types of in-silico approaches along with their pharmaceutical applications in numerous diseases.
Collapse
Affiliation(s)
- Dinesh Kumar
- Sri Sai College of Pharmacy , Manawala , Amritsar 143001 , Punjab , India
| | - Pooja Sharma
- Department of Pharmaceutical Sciences and Drug Research , Punjabi University , Patiala 147002 , Punjab , India
- Khalsa College of Pharmacy , Amritsar 143001 , Punjab , India
| | - Ayush Mahajan
- Sri Sai College of Pharmacy , Manawala , Amritsar 143001 , Punjab , India
| | - Ravi Dhawan
- Khalsa College of Pharmacy , Amritsar 143001 , Punjab , India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney , Ultimo 2007 , NSW , Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney , Ultimo 2007 , New South Wales , Australia
| |
Collapse
|
8
|
Xie RR, Su CL, Li W, Zou XY, Chen YS, Tang H. Synthesis and biological evaluation of novel 8- substituted sampangine derivatives as potent inhibitor of Zn 2+-Aβ complex mediated toxicity, oxidative stress and inflammation. Bioorg Chem 2021; 109:104710. [PMID: 33611137 DOI: 10.1016/j.bioorg.2021.104710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/19/2020] [Accepted: 01/28/2021] [Indexed: 12/17/2022]
Abstract
A series of 8-substituted sampangine derivatives have been designed, synthesized and tested for their ability to inhibit cholinesterase and penetrate the blood-brain barrier. Their chelating ability toward Zn2+ and other biologically relevant metal ions was also demonstrated by isothermal titration calorimetry. The new derivatives exhibited high acetylcholinesterase inhibitory activity, high blood-brain barrier penetration ability and high chelating selectivity for Zn2+. Moreover, compound 10 with the strongest binding affinity to Zn2+ was selected for further research. Western blotting analysis, transmission electron microscopy, DCFH-DA assay and paralysis experiment indicated that compound 10 suppressed the formation of Zn2+-Aβ complexes, alleviated the Zn2+ induced neurotoxicity and inhibited the production of ROS catalyzed by Zn2+ in Aβ42 transgenic C. elegans. Furthermore, compound 10 also inhibited the expressions of pro-inflammatory cytokines, such as NO, TNF-α, IL-6 and IL-1β, induced by Zn2+ + Aβ1-42 in BV2 microglial cells. In general, this work provided new insights into the design and development of potent metal-chelating agents for Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Ren-Ren Xie
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin City, Guangxi, China
| | - Chun-Ling Su
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin City, Guangxi, China
| | - Wei Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin City, Guangxi, China
| | - Xiao-Yan Zou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin City, Guangxi, China
| | - Yu-Si Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin City, Guangxi, China
| | - Huang Tang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin City, Guangxi, China.
| |
Collapse
|
9
|
Paliwal D, Srivastava S, Sharma PK, Ahmad I. Marine Originated Fused Heterocyclic: Prospective Bioactivity against Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083805666190328205729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The deep Sea has several herbal sources such as marine organisms. These marine
sources possibly have effective anticancer properties. The fused heterocyclic ring with marine
source has special characteristics with minimum toxicity and with maximum anticancer
effects. The review focused on and classified the prospective lead compounds which have
shown a promising therapeutic range as anticancer agents in clinical and preclinical trials.
Collapse
Affiliation(s)
- Deepika Paliwal
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida, 201310, India
| | - Saurabh Srivastava
- Department of Oral & Maxillofacial Surgery, King George’s Medical University, Lucknow, UP 226003, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida, 201310, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
10
|
Zou XY, Xie RR, Li W, Su CL, Chen YS, Tang H. Novel sampangine derivatives as potent inhibitors of Cu 2+-mediated amyloid-β protein aggregation, oxidative stress and inflammation. Int J Biol Macromol 2021; 174:1-10. [PMID: 33476619 DOI: 10.1016/j.ijbiomac.2021.01.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/19/2020] [Accepted: 01/14/2021] [Indexed: 10/22/2022]
Abstract
A series of 11-substituted sampangine derivatives have been designed, synthesized, and tested for their ability to inhibit cholinesterase. Their chelating ability and selectivity for Cu2+ over other biologically relevant metal ions were demonstrated by isothermal titration calorimetry. Their blood-brain barrier permeability was also tested by parallel artificial membrane permeation assay. Among the synthesized derivatives, compound 11 with the strong anti-acetylcholinesterase activity, high blood-brain barrier penetration ability and high binding affinity to Cu2+ was selected for further research. Western blotting analysis, transmission electron microscopy, DCFH-DA assay and paralysis experiment indicated that compound 11 suppressed the formation of Cu2+-Aβ complexes, alleviated the Cu2+ induced neurotoxicity and inhibited the production of ROS catalyzed by Cu2+ in Aβ42 transgenic C. elegans. Moreover, compound 11 also inhibited the expressions of proinflammatory cytokines, such as NO, TNF-α, IL-6 and IL-1β, induced by Cu2+ + Aβ1-42 in BV2 microglial cells. In general, this work provided new insights into the design and development of potent metal-chelating agents for AD treatment.
Collapse
Affiliation(s)
- Xiao-Yan Zou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin City, Guangxi, China
| | - Ren-Ren Xie
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin City, Guangxi, China
| | - Wei Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin City, Guangxi, China
| | - Chun-Ling Su
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin City, Guangxi, China
| | - Yu-Si Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin City, Guangxi, China
| | - Huang Tang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin City, Guangxi, China.
| |
Collapse
|
11
|
Kim SH, Söhnel T, Sperry J. Structural Revision of Pseudocerosine and Validation of a Biosynthetic Proposal for E-ring Formation in Pyridoacridine Alkaloids. Org Lett 2020; 22:3495-3498. [PMID: 32283031 DOI: 10.1021/acs.orglett.0c00953] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pseudocerosine is the pigment responsible for the bright blue color of the rim on the marine flatworm Pseudoceros indicus. Compelling evidence is provided herein that pseudocerosine is actually a pyridoacridine, not an azepinoindole as initially proposed. This study also validates a biosynthesis proposal for E-ring formation in this revered class of alkaloids, and pseudocerosine (along with its intermediates described herein) is a new branch on the pyridoacridine family tree.
Collapse
Affiliation(s)
- Se Hun Kim
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Tilo Söhnel
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Jonathan Sperry
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
12
|
Synthesis, antibacterial evaluation and molecular docking studies of novel series of acridone- 1,2,3-triazole derivatives. Struct Chem 2020. [DOI: 10.1007/s11224-020-01512-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Ghobadi N, Nazari N, Gholamzadeh P. The Friedländer reaction: A powerful strategy for the synthesis of heterocycles. ADVANCES IN HETEROCYCLIC CHEMISTRY 2020. [DOI: 10.1016/bs.aihch.2020.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Rodríguez-Arce E, Cancino P, Arias-Calderón M, Silva-Matus P, Saldías M. Oxoisoaporphines and Aporphines: Versatile Molecules with Anticancer Effects. Molecules 2019; 25:E108. [PMID: 31892146 PMCID: PMC6983244 DOI: 10.3390/molecules25010108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer is a disease that involves impaired genome stability with a high mortality index globally. Since its discovery, many have searched for effective treatment, assessing different molecules for their anticancer activity. One of the most studied sources for anticancer therapy is natural compounds and their derivates, like alkaloids, which are organic molecules containing nitrogen atoms in their structure. Among them, oxoisoaporphine and sampangine compounds are receiving increased attention due to their potential anticancer effects. Boldine has also been tested as an anticancer molecule. Boldine is the primary alkaloid extract from boldo, an endemic tree in Chile. These compounds and their derivatives have unique structural properties that potentially have an anticancer mechanism. Different studies showed that this molecule can target cancer cells through several mechanisms, including reactive oxygen species generation, DNA binding, and telomerase enzyme inhibition. In this review, we summarize the state-of-art research related to oxoisoaporphine, sampangine, and boldine, with emphasis on their structural characteristics and the relationship between structure, activity, methods of extraction or synthesis, and anticancer mechanism. With an effective cancer therapy still lacking, these three compounds are good candidates for new anticancer research.
Collapse
Affiliation(s)
- Esteban Rodríguez-Arce
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8370178, Chile;
| | - Patricio Cancino
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380544, Chile;
| | - Manuel Arias-Calderón
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Paul Silva-Matus
- Departamento de Ciencias de la Salud, Universidad de Aysén, Coyhaique 5951537, Chile;
| | - Marianela Saldías
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8370178, Chile;
| |
Collapse
|
15
|
Sarkar P, Sarkar S, Ghosh P. A heteroditopic macrocycle as organocatalytic nanoreactor for pyrroloacridinone synthesis in water. Beilstein J Org Chem 2019; 15:1505-1514. [PMID: 31354868 PMCID: PMC6632221 DOI: 10.3762/bjoc.15.152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022] Open
Abstract
A heteroditopic macrocycle is reported as an efficient organocatalytic nanoreactor for the synthesis of diversely functionalized pyrroloacridinones in aqueous medium. A library of compounds was synthesized in a one-step pathway utilizing 10 mol % of the nanoreactor following a sustainable methodology in water with high yields.
Collapse
Affiliation(s)
- Piyali Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C Mullick Road, Kolkata-700032, India
| | - Sayan Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C Mullick Road, Kolkata-700032, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C Mullick Road, Kolkata-700032, India
| |
Collapse
|
16
|
Affiliation(s)
- John A. Joule
- Chemistry Department; The University of Manchester; Manchester M13 9PL UK
| | - Mercedes Álvarez
- Pharmacology; Toxicology and Medicinal Chemistry; Universitat de Barcelona; Joan XXIII, s/n E-08028 Barcelona Spain
| |
Collapse
|
17
|
Novel Deep Eutectic Solvent Based on Levulinic Acid and 1,4-Butanediol as an Extraction Media for Bioactive Alkaloid Rutaecarpine. Processes (Basel) 2019. [DOI: 10.3390/pr7030171] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Deep eutectic solvents (DESs) are increasingly receiving interest as a new type of green and sustainable alternative to hazardous organic solvents. In this work, a novel DES based on levulinic acid (La) and 1,4-butanediol (Buta) as an extraction media was developed for extracting the bioactive alkaloid rutaecarpine from the unripe fruits of Tetradium ruticarpum. 24 different DESs consisting of choline chloride, betaine, sugar alcohols, organic acids, amides, and sugars were prepared and tailored to test their extraction efficiency. After initial screening, a hydrophilic DES composed of La and Buta with 1:0.5 molar ratio containing 25% water was tailored for the highest extraction efficiency, followed by the optimizations of molar ratio and water content. The interaction between the molecules of La-Buta DES was investigated by nuclear magnetic resonance spectroscopy in order to confirm its deep eutectic supermolecular structure feature. The extraction conditions were optimized by single-factor experiments, including extraction temperature, extraction time, and solid-liquid ratio. The developed La-Buta DES extraction procedure was successfully applied for the analysis of rutaecarpine in Chinese patent medicines containing the unripe fruits of T. ruticarpum. The excellent property of La-Buta DES indicated its potential as a promising green solvent instead of conventional organic solvent for the extraction of rutaecarpine from the unripe fruits of T. ruticarpum, and that it can used as a sustainable and safe extraction media for other applications.
Collapse
|
18
|
4- Substituted sampangine derivatives: Novel acetylcholinesterase and β-myloid aggregation inhibitors. Int J Biol Macromol 2018; 107:2725-2729. [DOI: 10.1016/j.ijbiomac.2017.10.157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 01/06/2023]
|
19
|
Stępień M, Gońka E, Żyła M, Sprutta N. Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds: Synthetic Routes, Properties, and Applications. Chem Rev 2016; 117:3479-3716. [PMID: 27258218 DOI: 10.1021/acs.chemrev.6b00076] [Citation(s) in RCA: 900] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Two-dimensionally extended, polycyclic heteroaromatic molecules (heterocyclic nanographenes) are a highly versatile class of organic materials, applicable as functional chromophores and organic semiconductors. In this Review, we discuss the rich chemistry of large heteroaromatics, focusing on their synthesis, electronic properties, and applications in materials science. This Review summarizes the historical development and current state of the art in this rapidly expanding field of research, which has become one of the key exploration areas of modern heterocyclic chemistry.
Collapse
Affiliation(s)
- Marcin Stępień
- Wydział Chemii, Uniwersytet Wrocławski , ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Elżbieta Gońka
- Wydział Chemii, Uniwersytet Wrocławski , ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Marika Żyła
- Wydział Chemii, Uniwersytet Wrocławski , ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Natasza Sprutta
- Wydział Chemii, Uniwersytet Wrocławski , ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
20
|
Affinity purification-mass spectrometry analysis of bcl-2 interactome identified SLIRP as a novel interacting protein. Cell Death Dis 2016; 7:e2090. [PMID: 26866271 PMCID: PMC4849145 DOI: 10.1038/cddis.2015.357] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 02/06/2023]
Abstract
Members of the bcl-2 protein family share regions of sequence similarity, the bcl-2 homology (BH) domains. Bcl-2, the most studied member of this family, has four BH domains, BH1–4, and has a critical role in resistance to antineoplastic drugs by regulating the mitochondrial apoptotic pathway. Moreover, it is also involved in other relevant cellular processes such as tumor progression, angiogenesis and autophagy. Deciphering the network of bcl-2-interacting factors should provide a critical advance in understanding the different functions of bcl-2. Here, we characterized bcl-2 interactome by mass spectrometry in human lung adenocarcinoma cells. In silico functional analysis associated most part of the identified proteins to mitochondrial functions. Among them we identified SRA stem–loop interacting RNA-binding protein, SLIRP, a mitochondrial protein with a relevant role in regulating mitochondrial messenger RNA (mRNA) homeostasis. We validated bcl-2/SLIRP interaction by immunoprecipitation and immunofluorescence experiments in cancer cell lines from different histotypes. We showed that, although SLIRP is not involved in mediating bcl-2 ability to protect from apoptosis and oxidative damage, bcl-2 binds and stabilizes SLIRP protein and regulates mitochondrial mRNA levels. Moreover, we demonstrated that the BH4 domain of bcl-2 has a role in maintaining this binding.
Collapse
|
21
|
Plodek A, Bracher F. New Perspectives in the Chemistry of Marine Pyridoacridine Alkaloids. Mar Drugs 2016; 14:md14020026. [PMID: 26821033 PMCID: PMC4771979 DOI: 10.3390/md14020026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 01/09/2016] [Accepted: 01/15/2016] [Indexed: 12/11/2022] Open
Abstract
Secondary metabolites from marine organisms are a rich source of novel leads for drug development. Among these natural products, polycyclic aromatic alkaloids of the pyridoacridine type have attracted the highest attention as lead compounds for the development of novel anti-cancer and anti-infective drugs. Numerous sophisticated total syntheses of pyridoacridine alkaloids have been worked out, and many of them have also been extended to the synthesis of libraries of analogues of the alkaloids. This review summarizes the progress in the chemistry of pyridoacridine alkaloids that was made in the last one-and-a-half decades.
Collapse
Affiliation(s)
- Alois Plodek
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians University, Butenandtstr. 5-13, 81377 Munich, Germany.
| | - Franz Bracher
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians University, Butenandtstr. 5-13, 81377 Munich, Germany.
| |
Collapse
|
22
|
Sandjo LP, Kuete V, Biavatti MW. Pyridinoacridine alkaloids of marine origin: NMR and MS spectral data, synthesis, biosynthesis and biological activity. Beilstein J Org Chem 2015; 11:1667-99. [PMID: 26664587 PMCID: PMC4660921 DOI: 10.3762/bjoc.11.183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/27/2015] [Indexed: 11/23/2022] Open
Abstract
This review focuses on pyridoacridine-related metabolites as one biologically interesting group of alkaloids identified from marine sources. They are produced by marine sponges, ascidians and tunicates, and they are structurally comprised of four to eight fused rings including heterocycles. Acridine, acridone, dihydroacridine, and quinolone cores are features regularly found in these alkaloid skeletons. The lack of hydrogen atoms next to quaternary carbon atoms for two or three rings makes the chemical shift assignment a difficult task. In this regard, one of the aims of this review is the compilation of previously reported, pyridoacridine (13)C NMR data. Observations have been made on the delocalization of electrons and the presence of some functional groups that lead to changes in the chemical shift of some carbon resonances. The lack of mass spectra information for these alkaloids due to the compactness of their structures is further discussed. Moreover, the biosynthetic pathways of some of these metabolites have been shown since they could inspire biomimetic synthesis. The synthesis routes used to prepare members of these marine alkaloids (as well as their analogues), which are synthesized for biological purposes are also discussed. Pyridoacridines were found to have a large spectrum of bioactivity and this review highlights and compares the pharmacophores that are responsible for the observed bioactivity.
Collapse
Affiliation(s)
- Louis P Sandjo
- Department of Pharmaceutical Sciences, CCS, Universidade Federal de Santa Catarina, Florianopolis 88040-900, SC, Brazil
| | - Victor Kuete
- Department of Biochemistry, Faculty of Sciences, University of Dschang, Cameroon
| | - Maique W Biavatti
- Department of Pharmaceutical Sciences, CCS, Universidade Federal de Santa Catarina, Florianopolis 88040-900, SC, Brazil
| |
Collapse
|