1
|
Bello JLG, Luna TB, Lara Lafargue A, Ciria HMC, Zulueta YA. Bioimpedance formalism: A new approach for accessing the health status of cell and tissues. Bioelectrochemistry 2024; 160:108799. [PMID: 39173547 DOI: 10.1016/j.bioelechem.2024.108799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
This manuscript describes a novel methodology for studying relaxation dynamics in tissues and cells using characteristic frequency of bioimpedance spectroscopy measurements. The Bioimpedance Formalism allows for the simultaneous study of bioelectrical parameters in the frequency and time domains, providing insight into possible relaxation processes occurring in the tissue or cell of interest. Results from the Cole-Cole analysis showed no multiple relaxation processes associated with heterogeneity, with a visible age group separation in males compared with females. The study of the relaxation dynamic in the time domain revealed that the β parameter can be used to analyse the charge carriers in tissues, cells, or cancer cells, potentially leading to new diagnostic and therapeutic approaches for cancer and other diseases. Overall, this approach presents a promising area of research for gaining insights into the electrical properties of tissues and cells using bioimpedance methods.
Collapse
Affiliation(s)
- Jose Luis García Bello
- Autonomous University of Santo Domingo (UASD), San Francisco de Macorís Campus, Dominican Republic.
| | - Taira Batista Luna
- Autonomous University of Santo Domingo (UASD), UASD Nagua Center, Dominican Republic.
| | - Alcibíades Lara Lafargue
- National Center for Applied Electromagnetism (CNEA), Universidad de Oriente, CP 90500, Santiago de Cuba, Cuba.
| | - Héctor Manuel Camué Ciria
- National Center for Applied Electromagnetism (CNEA), Universidad de Oriente, CP 90500, Santiago de Cuba, Cuba.
| | - Yohandys A Zulueta
- Departamento de Física, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, CP 90500, Santiago de Cuba, Cuba.
| |
Collapse
|
2
|
Hong S, Coté G. Development of a Tetherless Bioimpedance Device That Uses Morphologic Changes to Predict Blood Flow Restrictions Mimicking Peripheral Artery Disease Progression. BIOSENSORS 2024; 14:286. [PMID: 38920590 PMCID: PMC11202059 DOI: 10.3390/bios14060286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024]
Abstract
A tetherless multi-targeted bioimpedance device was designed, modeled, built, and tested for measuring arterial pulse and, using morphological analysis, its potential for monitoring blood flow restrictions that mimic Peripheral Artery Disease (PAD) was assessed across multiple peripheral arteries. Specifically, we first developed a small form factor, tetherless, bioimpedance device, based on high-frequency structure simulator (HFSS) simulations. After designing and building the device we then tested it in vivo on human subjects on multiple arteries and found that we did not need to modify the gain on the device compared to the bench top system. Further, it was found that changes in the morphology of the bioimpedance signal over time, depicted through the ratio of the first and second harmonic in the signal frequency, could be used to predict blood flow restrictions that mimic peripheral artery disease (PAD). The HFSS simulations helped guide the modulation frequency selection and the placement of the bioimpedance electrodes. We built the device and compared it to two commercially available bioimpedance devices and it was shown to demonstrate a distinct advantage in its multi-target capability, enabling more accurate pulse measurements from different arteries without the need for tuning the circuit for each artery. Comparing the ratio of the 1st and 2nd harmonics as a function of the blood flow restriction, the two commercial devices showed a maximum error across arteries of between 22% and 27% depending on the measurement location, whereas our system consistently displayed a stable value of just below 4%. With this system, there is the potential for comprehensive and personalized medical examinations for PAD at the point of care (POC).
Collapse
Affiliation(s)
- Sungcheol Hong
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA;
| | - Gerard Coté
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA;
- Department of Electrical Engineering, Texas A&M University, College Station, TX 77843, USA
- Center for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
3
|
Maji D, Miguela V, Cameron AD, Campbell DA, Sasset L, Yao X, Thompson AT, Sussman C, Yang D, Miller R, Drozdz MM, Liberatore RA. Enhancing In Vivo Electroporation Efficiency through Hyaluronidase: Insights into Plasmid Distribution and Optimization Strategies. Pharmaceutics 2024; 16:547. [PMID: 38675208 PMCID: PMC11053992 DOI: 10.3390/pharmaceutics16040547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Electroporation (EP) stands out as a promising non-viral plasmid delivery strategy, although achieving optimal transfection efficiency in vivo remains a challenge. A noteworthy advancement in the field of in vivo EP is the application of hyaluronidase, an enzyme with the capacity to degrade hyaluronic acid in the extracellular matrix, which thereby enhances DNA transfer efficiency by 2- to 3-fold. This paper focuses on elucidating the mechanism of hyaluronidase's impact on transfection efficiency. We demonstrate that hyaluronidase promotes a more uniform distribution of plasmid DNA (pDNA) within skeletal muscle. Additionally, our study investigates the effect of the timing of hyaluronidase pretreatment on EP efficiency by including time intervals of 0, 5, and 30 min between hyaluronidase treatment and the application of pulses. Serum levels of the pDNA-encoded transgene reveal a minimal influence of the hyaluronidase pretreatment time on the final serum protein levels following delivery in both mice and rabbit models. Leveraging bioimpedance measurements, we capture morphological changes in muscle induced by hyaluronidase treatment, which result in a varied pDNA distribution. Subsequently, these findings are employed to optimize EP electrical parameters following hyaluronidase treatment in animal models. This paper offers novel insights into the potential of hyaluronidase in enhancing the effectiveness of in vivo EP, as well as guides optimized electroporation strategies following hyaluronidase use.
Collapse
Affiliation(s)
- Debnath Maji
- RenBio Inc., Long Island City, New York, NY 11101, USA
| | - Verónica Miguela
- RenBio Inc., Long Island City, New York, NY 11101, USA
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas—Universidad Miguel Hernández de Elche, Sant Joan d’Alacant, 03550 Alicante, Spain
| | | | | | - Linda Sasset
- RenBio Inc., Long Island City, New York, NY 11101, USA
| | - Xin Yao
- RenBio Inc., Long Island City, New York, NY 11101, USA
| | | | | | - David Yang
- RenBio Inc., Long Island City, New York, NY 11101, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert Miller
- RenBio Inc., Long Island City, New York, NY 11101, USA
| | | | | |
Collapse
|
4
|
Ionescu CM, Copot D, Yumuk E, De Keyser R, Muresan C, Birs IR, Ben Othman G, Farbakhsh H, Ynineb AR, Neckebroek M. Development, Validation, and Comparison of a Novel Nociception/Anti-Nociception Monitor against Two Commercial Monitors in General Anesthesia. SENSORS (BASEL, SWITZERLAND) 2024; 24:2031. [PMID: 38610243 PMCID: PMC11013864 DOI: 10.3390/s24072031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024]
Abstract
In this paper, we present the development and the validation of a novel index of nociception/anti-nociception (N/AN) based on skin impedance measurement in time and frequency domain with our prototype AnspecPro device. The primary objective of the study was to compare the Anspec-PRO device with two other commercial devices (Medasense, Medstorm). This comparison was designed to be conducted under the same conditions for the three devices. This was carried out during total intravenous anesthesia (TIVA) by investigating its outcomes related to noxious stimulus. In a carefully designed clinical protocol during general anesthesia from induction until emergence, we extract data for estimating individualized causal dynamic models between drug infusion and their monitored effect variables. Specifically, these are Propofol hypnotic drug to Bispectral index of hypnosis level and Remifentanil opioid drug to each of the three aforementioned devices. When compared, statistical analysis of the regions before and during the standardized stimulus shows consistent difference between regions for all devices and for all indices. These results suggest that the proposed methodology for data extraction and processing for AnspecPro delivers the same information as the two commercial devices.
Collapse
Affiliation(s)
- Clara M. Ionescu
- Department of Electromechanics, System and Metal Engineering, Ghent University, 9052 Ghent, Belgium; (C.M.I.); (E.Y.); (R.D.K.); (I.R.B.); (G.B.O.); (H.F.); (A.R.Y.)
- Department of Automation, Technical University Cluj-Napoca, Memorandumului Street 20, 400114 Cluj, Romania;
| | - Dana Copot
- Department of Electromechanics, System and Metal Engineering, Ghent University, 9052 Ghent, Belgium; (C.M.I.); (E.Y.); (R.D.K.); (I.R.B.); (G.B.O.); (H.F.); (A.R.Y.)
| | - Erhan Yumuk
- Department of Electromechanics, System and Metal Engineering, Ghent University, 9052 Ghent, Belgium; (C.M.I.); (E.Y.); (R.D.K.); (I.R.B.); (G.B.O.); (H.F.); (A.R.Y.)
- Department of Control and Automation Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Robin De Keyser
- Department of Electromechanics, System and Metal Engineering, Ghent University, 9052 Ghent, Belgium; (C.M.I.); (E.Y.); (R.D.K.); (I.R.B.); (G.B.O.); (H.F.); (A.R.Y.)
| | - Cristina Muresan
- Department of Automation, Technical University Cluj-Napoca, Memorandumului Street 20, 400114 Cluj, Romania;
| | - Isabela Roxana Birs
- Department of Electromechanics, System and Metal Engineering, Ghent University, 9052 Ghent, Belgium; (C.M.I.); (E.Y.); (R.D.K.); (I.R.B.); (G.B.O.); (H.F.); (A.R.Y.)
- Department of Automation, Technical University Cluj-Napoca, Memorandumului Street 20, 400114 Cluj, Romania;
| | - Ghada Ben Othman
- Department of Electromechanics, System and Metal Engineering, Ghent University, 9052 Ghent, Belgium; (C.M.I.); (E.Y.); (R.D.K.); (I.R.B.); (G.B.O.); (H.F.); (A.R.Y.)
| | - Hamed Farbakhsh
- Department of Electromechanics, System and Metal Engineering, Ghent University, 9052 Ghent, Belgium; (C.M.I.); (E.Y.); (R.D.K.); (I.R.B.); (G.B.O.); (H.F.); (A.R.Y.)
| | - Amani R. Ynineb
- Department of Electromechanics, System and Metal Engineering, Ghent University, 9052 Ghent, Belgium; (C.M.I.); (E.Y.); (R.D.K.); (I.R.B.); (G.B.O.); (H.F.); (A.R.Y.)
| | - Martine Neckebroek
- Department of Anesthesia, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium;
| |
Collapse
|
5
|
Wohlgemuth KJ, Freeborn TJ, Southall KE, Hare MM, Mota JA. Can segmental bioelectrical impedance be used as a measure of muscle quality? Med Eng Phys 2024; 124:104103. [PMID: 38418031 DOI: 10.1016/j.medengphy.2024.104103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/11/2023] [Accepted: 01/08/2024] [Indexed: 03/01/2024]
Abstract
Recent works have shown bioelectrical impedance spectroscopy (BIS) may assess tissue quality. The purpose of this project was to examine associations between ultrasound echo intensity (EI) of quadriceps muscles (vastus lateralis [VL], vastus medialis [VM], vastus intermedius [VI], rectus femoris [RF]) and BIS parameters (R0, R1, C, α, fp), and if the associations are specific to individual muscles or associated with a representation of the entire quadriceps. Twenty-two participants (age: 22 ± 4 years; BMI: 25.47 ± 3.26 kg/m2) participated in all study activities. Participants had transverse ultrasound scans of each individual quadriceps muscle taken at 25, 50, and 75 % of the muscle length to generate an average EI for the VL, VM, VI, and RF, which were further averaged to generate an EI for the entire quadriceps. For BIS, participants were seated with electrodes placed on the thigh to measure the segmental quadriceps. The Cole-impedance model parameters that best fit the BIS data for each participant was used for all analyses. Pearson's correlation coefficient (r) were calculated to determine associations between muscles' EI and BIS parameters. The results suggest averaged EI of individual VL, VM, VI, RF muscles and the average EI of the segmental quadriceps were significantly related to the R0, C, α metrics of the Cole-impedance model representing quadriceps segmental tissues. This supports that segmental BIS may be an appropriate technique for rapid evaluation of segmental muscle quality.
Collapse
Affiliation(s)
- Kealey J Wohlgemuth
- Neuromuscular and Occupational Performance Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, US
| | - Todd J Freeborn
- Electrical and Computer Engineering, Integrative Center for Athletic and Sport Technology, College of Engineering, University of Alabama, Tuscaloosa, AL, US
| | - Kathyrn E Southall
- Neuromuscular and Occupational Performance Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, US
| | - McKenzie M Hare
- Neuromuscular and Occupational Performance Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, US
| | - Jacob A Mota
- Neuromuscular and Occupational Performance Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, US.
| |
Collapse
|
6
|
Bello JLG, Lafargue AL, Ciria HC, Luna TB, Leyva YZ. Methodology for integrated analysis of vector- and spectroscopic bioimpedance methods. JOURNAL OF ELECTRICAL BIOIMPEDANCE 2024; 15:154-161. [PMID: 39717622 PMCID: PMC11665879 DOI: 10.2478/joeb-2024-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Indexed: 12/25/2024]
Abstract
Electrical bioimpedance is based on the opposition exerted by body tissues to the passage of an electrical current. This characteristic allows the assessment of the individual's body composition, nutritional status, and hydration status. Electrical bioimpedance can be used to estimate body composition, health-related markers, general health status, diagnosis and prognostic of diseases, evaluation of treatment progress, and others. The aim of this study is to propose a methodology that allows us to integrate two methods of electrical bioimpedance analysis: bioelectrical impedance vector analysis, and bioelectrical impedance spectroscopy to evaluate the health of individuals. For methodology validation a retrospective clinical investigation was carried out where the data of healthy individuals and cancer patients included in the Database of the characterization of bioelectrical parameters by electrical Bioimpedance methods were analyzed. The values of electrical resistance and electrical reactance are higher in cancer patients compared to healthy individuals. However, the phase angle is lower in these patients. In the advanced stages of the disease, patients are located outside the tolerance ellipses. All these results are obtained at the characteristic frequency. The integration of bioelectrical impedance vector analysis, and bioelectrical impedance spectroscopy can be a sensitive complementary tool, capable of establishing differences between healthy individuals and cancer patients. Enrichment could be achieved by including the analysis of different physiological parameters through estimation equations validated by BIS parameters.
Collapse
Affiliation(s)
- José Luis García Bello
- Autonomous University of Santo Domingo (UASD) Dominican Republic, Santo Domingo, Dominican Republic
| | - Alcibiades Lara Lafargue
- National Center for Applied Electromagnetism (CNEA). Universidad de Oriente. Santiago de Cuba, Cuba
| | - Héctor Camué Ciria
- National Center for Applied Electromagnetism (CNEA). Universidad de Oriente. Santiago de Cuba, Cuba
| | - Taira Batista Luna
- Autonomous University of Santo Domingo (UASD) Dominican Republic, Santo Domingo, Dominican Republic
| | - Yohandys Zulueta Leyva
- Departamento de Física, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente. Santiago de Cuba, Cuba
| |
Collapse
|
7
|
Ozmen GC, Mabrouk S, Nichols C, Berkebile J, Goossens Q, Gazi AH, Inan OT. Mid-Activity and At-Home Wearable Bioimpedance Elucidates an Interpretable Digital Biomarker of Muscle Fatigue. IEEE Trans Biomed Eng 2023; 70:3513-3524. [PMID: 37405890 PMCID: PMC11092386 DOI: 10.1109/tbme.2023.3290530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
OBJECTIVE Muscle health and decreased muscle performance (fatigue) quantification has proven to be an invaluable tool for both athletic performance assessment and injury prevention. However, existing methods estimating muscle fatigue are infeasible for everyday use. Wearable technologies are feasible for everyday use and can enable discovery of digital biomarkers of muscle fatigue. Unfortunately, the current state-of-the-art wearable systems for muscle fatigue tracking suffer from either low specificity or poor usability. METHODS We propose using dual-frequency bioimpedance analysis (DFBIA) to non-invasively assess intramuscular fluid dynamics and thereby muscle fatigue. A wearable DFBIA system was developed to measure leg muscle fatigue of 11 individuals during a 13-day protocol consisting of exercise and unsupervised at-home portions. RESULTS We derived a digital biomarker of muscle fatigue, fatigue score, from the DFBIA signals that was able to estimate the percent reduction in muscle force during exercise with repeated-measures Pearson's r = 0.90 and mean absolute error (MAE) of 3.6%. This fatigue score also estimated delayed onset muscle soreness with repeated-measures Pearson's r = 0.83 and MAE = 0.83. Using at-home data, DFBIA was strongly associated with absolute muscle force of participants (n = 198, p < 0.001). CONCLUSION These results demonstrate the utility of wearable DFBIA for non-invasively estimating muscle force and pain through the changes in intramuscular fluid dynamics. SIGNIFICANCE The presented approach may inform development of future wearable systems for quantifying muscle health and provide a novel framework for athletic performance optimization and injury prevention.
Collapse
|
8
|
Nichols CJ, Mabrouk SA, Ozmen GC, Gazi AH, Inan OT. Validating Adhesive-Free Bioimpedance of the Leg in Mid-Activity and Uncontrolled Settings. IEEE Trans Biomed Eng 2023; 70:2679-2689. [PMID: 37027282 DOI: 10.1109/tbme.2023.3262206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
OBJECTIVE Musculoskeletal health monitoring is limited in everyday settings where patient symptoms can substantially change - delaying treatment and worsening patient outcomes. Wearable technologies aim to quantify musculoskeletal health outside clinical settings but sensor constraints limit usability. Wearable localized multi-frequency bioimpedance assessment (MFBIA) shows promise for tracking musculoskeletal health but relies on gel electrodes, hindering extended at-home use. Here, we address this need for usable technologies for at-home musculoskeletal health assessment by designing a wearable adhesive-free MFBIA system using textile electrodes in extended uncontrolled mid-activity settings. METHODS An adhesive-free multimodal wearable leg MFBIA system was developed in-lab under realistic conditions (5 participants, 45 measurements). Mid-activity textile and gel electrode MFBIA was compared across multiple compound movements (10 participants). Accuracy in tracking long-term changes in leg MFBIA was assessed by correlating gel and textile MFBIA simultaneously recorded in uncontrolled settings (10 participants, 80+ measurement hours). RESULTS Mid-activity MFBIA measurements with textile electrodes agreed highly with (ground truth) gel electrode measurements (average [Formula: see text], featuring <1-Ohm differences (0.618 ± 0.340 Ω) across all movements. Longitudinal MFBIA changes were successfully measured in extended at-home settings (repeated measures r = 0.84). Participant responses found the system to be comfortable and intuitive (8.3/10), and all participants were able to don and operate the system independently. CONCLUSION This work demonstrates wearable textile electrodes can be a viable substitute for gel electrodes when monitoring leg MFBIA in dynamic, uncontrolled settings. SIGNIFICANCE Adhesive-free MFBIA can improve healthcare by enabling robust wearable musculoskeletal health monitoring in at-home and everyday settings.
Collapse
|
9
|
Gong Z, Lo WLA, Wang R, Li L. Electrical impedance myography combined with quantitative assessment techniques in paretic muscle of stroke survivors: Insights and challenges. Front Aging Neurosci 2023; 15:1130230. [PMID: 37020859 PMCID: PMC10069712 DOI: 10.3389/fnagi.2023.1130230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Aging is a non-modifiable risk factor for stroke and the global burden of stroke is continuing to increase due to the aging society. Muscle dysfunction, common sequela of stroke, has long been of research interests. Therefore, how to accurately assess muscle function is particularly important. Electrical impedance myography (EIM) has proven to be feasible to assess muscle impairment in patients with stroke in terms of micro structures, such as muscle membrane integrity, extracellular and intracellular fluids. However, EIM alone is not sufficient to assess muscle function comprehensively given the complex contributors to paretic muscle after an insult. This article discusses the potential to combine EIM and other common quantitative methods as ways to improve the assessment of muscle function in stroke survivors. Clinically, these combined assessments provide not only a distinct advantage for greater accuracy of muscle assessment through cross-validation, but also the physiological explanation on muscle dysfunction at the micro level. Different combinations of assessments are discussed with insights for different purposes. The assessments of morphological, mechanical and contractile properties combined with EIM are focused since changes in muscle structures, tone and strength directly reflect the muscle function of stroke survivors. With advances in computational technology, finite element model and machine learning model that incorporate multi-modal evaluation parameters to enable the establishment of predictive or diagnostic model will be the next step forward to assess muscle function for individual with stroke.
Collapse
Affiliation(s)
- Ze Gong
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Wai Leung Ambrose Lo
- Department of Rehabilitation Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruoli Wang
- KTH MoveAbility Lab, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Le Li
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- *Correspondence: Le Li,
| |
Collapse
|
10
|
Ghita M, Ghita M, Copot D, Birs I, Muresan CI, Ionescu CM. Lumped Parametric Model for Skin Impedance Data in Patients with Postoperative Pain. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:4708-4711. [PMID: 36086513 DOI: 10.1109/embc48229.2022.9871666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The societal and economic burden of unassessed and unmodeled postoperative pain is high and predicted to rise over the next decade, leading to over-dosing as a result of subjective (NRS-based) over-estimation by the patient. This study identifies how post-surgical trauma alters the parameters of impedance models, to detect and examine acute pain variability. Model identification is performed on clinical data captured from post-anesthetized patients, using Anspec-PRO prototype apriori validated for clinical pain assessment. The multisine excitation of this in-house developed device enables utilizing the complex skin impedance frequency response in data-driven electrical models. The single-dispersion Cole model is proposed to fit the clinical curve in the given frequency range. Changes in identified parameters are analyzed for correlation with the patient's reported pain for the same time moment. The results suggest a significant correlation for the capacitor component. Clinical Relevance- Individual model parameters validated on patients in the post-anesthesia care unit extend the knowledge for objective pain detection to positively influence the outcome of clinical analgesia management.
Collapse
|
11
|
Muñoz JD, Mosquera VH, Rengifo CF. A low-cost, portable, two-dimensional bioimpedance distribution estimation system based on the AD5933 impedance converter. HARDWAREX 2022; 11:e00274. [PMID: 35509922 PMCID: PMC9058721 DOI: 10.1016/j.ohx.2022.e00274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
This study proposes a low-cost, portable, eight-channel electrical impedance tomograph based on the AD5933 impedance converter. The patterns for current injection and voltage measurement are managed by an Arduino Mega 2560 board and four 74HC4067 Texas Instruments multiplexers. Regarding the experimental results, the errors in the impedance estimates of an electrical circuit that represents a Cole model were less than 1.14% for the magnitude and 4.15% for the phase. Furthermore, the signal-to-noise ratio measured in a resistive phantom was 55.23 dB. Additional experiments consisted of placing five spheres of different size and conductivity in a saline tank, measuring their impedance through eight electrodes, and then generating impedance maps using the Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software (EIDORS). These maps were different for each sphere, suggesting the proposed prototype as a promising alternative for medical applications.
Collapse
Affiliation(s)
- Juan D. Muñoz
- Research Group of Automation, Universidad del Cauca, Colombia
| | - Víctor H. Mosquera
- Department of Electronic Instrumentation and Control, Universidad del Cauca, Colombia
| | - Carlos F. Rengifo
- Department of Electronic Instrumentation and Control, Universidad del Cauca, Colombia
| |
Collapse
|
12
|
Critcher S, Freeborn TJ. Flexible PCB Failures From Dynamic Activity and Their Impacts on Bioimpedance Measurements: A Wearable Case Study. IEEE OPEN JOURNAL OF CIRCUITS AND SYSTEMS 2021; 2:732-742. [PMID: 34901875 PMCID: PMC8656411 DOI: 10.1109/ojcas.2021.3122369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Wearable health monitoring systems that collect data in free-living environments are becoming increasingly popular. Flexible printed circuits provide a commercially available option that can conform to the shape of a wearable system and support electronic sensing and flexible interconnect. However, repetitive dynamic activity can stress and damage the interconnect of flexible PCBs which degrades data quality. This case study evaluated the performance of flexible PCBs providing interconnect between electrodes and sensing electronics for tissue bioimpedance measurements in a wearable system. Resistance data (1 kHz to 128 kHz) was collected from localized knee tissues of 3 participants using the wearable design with flexible PCBs over 7 days of free-living. From electrical and optical inspection after use trace cracking of the flexible PCBs occurred, degrading tissue resistances reported by the wearable system. Exploration of these results advances understanding of how flexible PCBs perform in free-living conditions for wearable bioimpedance applications.
Collapse
Affiliation(s)
- Shelby Critcher
- Department of Electrical and Computer Engineering, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Todd J Freeborn
- Department of Electrical and Computer Engineering, University of Alabama, Tuscaloosa, AL 35487, USA
| |
Collapse
|
13
|
Freeborn TJ, Critcher S. Threshold and Trend Artifacts in Localized Multi-Frequency Bioimpedance Measurements. IFAC-PAPERSONLINE 2021; 54:55-60. [PMID: 37097809 PMCID: PMC10122868 DOI: 10.1016/j.ifacol.2021.10.231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Localized tissue bioimpedance is being widely investigated as a technique to identify physiological features in support of health focused applications. In support of this method being translated into wearable systems for continuous monitoring, it is critical to not only collect measurements but also evaluate their quality. This is necessary to reduce errors in equipment or measurement conditions from contributing data artifacts to datasets that will be analyzed. Two methods for artifact identification in resistance measurements of bioimpedance datasets are presented. These methods, based on thresholding and trend detection, are applied to localized knee bioimpedance datasets collected from two knee sites over 7 consecutive days in free-living conditions. Threshold artifacts were identified in 0.04% (longitudinal and transverse) and 0.69% (longitudinal) /3.50% (transverse) of the total data collected.
Collapse
Affiliation(s)
- Todd J Freeborn
- Department of Electrical and Computer Engineering, University of Alabama, Tuscaloosa, AL 35404 USA
| | - Shelby Critcher
- Department of Electrical and Computer Engineering, University of Alabama, Tuscaloosa, AL 35404 USA
| |
Collapse
|
14
|
Ghita M, Copot D, Ionescu CM. Lung cancer dynamics using fractional order impedance modeling on a mimicked lung tumor setup. J Adv Res 2021; 32:61-71. [PMID: 34484826 PMCID: PMC8408337 DOI: 10.1016/j.jare.2020.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 12/23/2022] Open
Abstract
Introduction As pulmonary dysfunctions are prospective factors for developing cancer, efforts are needed to solve the limitations regarding applications in lung cancer. Fractional order respiratory impedance models can be indicative of lung cancer dynamics and tissue heterogeneity. Objective The purpose of this study is to investigate how the existence of a tumorous tissue in the lung modifies the parameters of the proposed models. The first use of a prototype forced oscillations technique (FOT) device in a mimicked lung tumor setup is investigated by comparing and interpreting the experimental findings. Methods The fractional order model parameters are determined for the mechanical properties of the healthy and tumorous lung. Two protocols have been performed for a mimicked lung tumor setup in a laboratory environment. A low frequency evaluation of respiratory impedance model and nonlinearity index were assessed using the forced oscillations technique. Results The viscoelastic properties of the lung tissue change, results being mirrored in the respiratory impedance assessment via FOT. The results demonstrate significant differences among the mimicked healthy and tumor measurements, (p-values < 0.05) for impedance values and also for heterogeneity index. However, there was no significant difference in lung function before and after immersing the mimicked lung in water or saline solution, denoting no structural changes. Conclusion Simulation tests comparing the changes in impedance support the research hypothesis. The impedance frequency response is effective in non-invasive identification of respiratory tissue abnormalities in tumorous lung, analyzed with appropriate fractional models.
Collapse
Affiliation(s)
- Maria Ghita
- Corresponding author at: Ghent University, Research Group on Dynamical Systems and Control (DySC), Tech Lane Science Park 125, Ghent 9052, Belgium.
| | - Dana Copot
- Ghent University, Research Group on Dynamical Systems and Control (DySC), Tech Lane Science Park 125, Ghent 9052, Belgium
- EEDT Core Group on Decision and Control in Flanders Make Consortium, Tech Lane Science Park 131, Ghent 9052, Belgium
| | - Clara M. Ionescu
- Ghent University, Research Group on Dynamical Systems and Control (DySC), Tech Lane Science Park 125, Ghent 9052, Belgium
- EEDT Core Group on Decision and Control in Flanders Make Consortium, Tech Lane Science Park 131, Ghent 9052, Belgium
| |
Collapse
|
15
|
AbdelAty A, Fouda ME, Elbarawy MT, Radwan A. Optimal charging of fractional-order circuits with Cuckoo search. J Adv Res 2021; 32:119-131. [PMID: 34484831 PMCID: PMC8408332 DOI: 10.1016/j.jare.2020.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/12/2020] [Accepted: 11/27/2020] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Optimal charging of RC circuits is a well-studied problem in the integer-order domain due to its importance from economic and system temperature hazards perspectives. However, the fractional-order counterpart of this problem requires investigation. OBJECTIVES This study aims to find approximate solutions of the most energy-efficient input charging function in fractional-order RC circuits. METHODS This paper uses a meta-heuristic optimization technique called Cuckoo search optimizer to attain the maximum charging efficiency of three common fractional-order RC circuits. An analytical expression of the fractional capacitor voltage is suggested such that it satisfies the boundary conditions of the optimal charging problem. The problem is formulated as a fractional-order calculus of variations problem with compositional functional. The numerical solutions are obtained with the meta-heuristic optimization algorithm's help to avoid the complexities of the analytical approach. RESULTS he efficiency surfaces and input voltage charging curves are discussed for fractional-order in the range 0.5 < α ≤ 1 . CONCLUSION The optimized charging function can approximate the optimal charging curve using at most 4 terms. The charging time and the resistive parameters have the most dominant effect on charging efficiency at constant fractional-order α .
Collapse
Affiliation(s)
- A.M. AbdelAty
- Engineering Mathematics and Physics Dept., Faculty of Engineering, Fayoum University, Egypt
| | - Mohammed E. Fouda
- Engineering Mathematics and Physics Dept., Faculty of Engineering, Cairo University, Egypt
- Electrical Engineering and Computer Science Dept., University of California Irvine, Irvine, USA
| | - Menna T.M.M. Elbarawy
- Engineering Mathematics and Physics Dept., Faculty of Engineering, Fayoum University, Egypt
| | - A.G. Radwan
- Engineering Mathematics and Physics Dept., Faculty of Engineering, Cairo University, Egypt
- Nanoelectronics Integrated Systems Center (NISC), Nile University, Egypt
| |
Collapse
|
16
|
Analysis of localized bioimpedance from healthy young adults during activities of the vocal folds using Cole-impedance model representation. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Cole-Impedance Model Representations of Right-Side Segmental Arm, Leg, and Full-Body Bioimpedances of Healthy Adults: Comparison of Fractional-Order. FRACTAL AND FRACTIONAL 2021. [DOI: 10.3390/fractalfract5010013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The passive electrical properties of a biological tissue, referred to as the tissue bioimpedance, are related to the underlying tissue physiology. These measurements are often well-represented by a fractional-order equivalent circuit model, referred to as the Cole-impedance model. Objective: Identify if there are differences in the fractional-order (α) of the Cole-impedance parameters that represent the segmental right-body, right-arm, and right-leg of adult participants. Hypothesis: Cole-impedance model parameters often associated with tissue geometry and fluid (R∞, R1, C) will be different between body segments, but parameters often associated with tissue type (α) will not show any statistical differences. Approach: A secondary analysis was applied to a dataset collected for an agreement study between bioimpedance spectroscopy devices and dual-energy X-ray absoptiometry, identifying the Cole-model parameters of the right-side body segments of N=174 participants using a particle swarm optimization approach. Statistical testing was applied to the different groups of Cole-model parameters to evaluate group differences and correlations of parameters with tissue features. Results: All Cole-impedance model parameters showed statistically significant differences between body segments. Significance: The physiological or geometric features of biological tissues that are linked with the fractional-order (α) of data represented by the Cole-impedance model requires further study to elucidate.
Collapse
|
18
|
Ghita M, Neckebroek M, Juchem J, Copot D, Muresan CI, Ionescu CM. Bioimpedance Sensor and Methodology for Acute Pain Monitoring. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6765. [PMID: 33256120 PMCID: PMC7729453 DOI: 10.3390/s20236765] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
The paper aims to revive the interest in bioimpedance analysis for pain studies in communicating and non-communicating (anesthetized) individuals for monitoring purpose. The plea for exploitation of full potential offered by the complex (bio)impedance measurement is emphasized through theoretical and experimental analysis. A non-invasive, low-cost reliable sensor to measure skin impedance is designed with off-the-shelf components. This is a second generation prototype for pain detection, quantification, and modeling, with the objective to be used in fully anesthetized patients undergoing surgery. The 2D and 3D time-frequency, multi-frequency evaluation of impedance data is based on broadly available signal processing tools. Furthermore, fractional-order impedance models are implied to provide an indication of change in tissue dynamics correlated with absence/presence of nociceptor stimulation. The unique features of the proposed sensor enhancements are described and illustrated here based on mechanical and thermal tests and further reinforced with previous studies from our first generation prototype.
Collapse
Affiliation(s)
- Mihaela Ghita
- Research Group of Dynamical Systems and Control, Ghent University, Tech Lane Science Park 125, 9052 Ghent, Belgium; (J.J.); (D.C.); (C.M.I.)
- EEDT—Core Lab on Decision and Control, Flanders Make Consortium, Tech Lane Science Park 131, 9052 Ghent, Belgium
| | - Martine Neckebroek
- Department of Anesthesia, Ghent University Hospital, C. Heymanslaan 10, 9000 Gent, Belgium;
| | - Jasper Juchem
- Research Group of Dynamical Systems and Control, Ghent University, Tech Lane Science Park 125, 9052 Ghent, Belgium; (J.J.); (D.C.); (C.M.I.)
- EEDT—Core Lab on Decision and Control, Flanders Make Consortium, Tech Lane Science Park 131, 9052 Ghent, Belgium
| | - Dana Copot
- Research Group of Dynamical Systems and Control, Ghent University, Tech Lane Science Park 125, 9052 Ghent, Belgium; (J.J.); (D.C.); (C.M.I.)
- EEDT—Core Lab on Decision and Control, Flanders Make Consortium, Tech Lane Science Park 131, 9052 Ghent, Belgium
| | - Cristina I. Muresan
- Department of Automation, Technical University of Cluj-Napoca, Memorandumului 28, 400114 Cluj-Napoca, Romania;
| | - Clara M. Ionescu
- Research Group of Dynamical Systems and Control, Ghent University, Tech Lane Science Park 125, 9052 Ghent, Belgium; (J.J.); (D.C.); (C.M.I.)
- EEDT—Core Lab on Decision and Control, Flanders Make Consortium, Tech Lane Science Park 131, 9052 Ghent, Belgium
- Department of Automation, Technical University of Cluj-Napoca, Memorandumului 28, 400114 Cluj-Napoca, Romania;
| |
Collapse
|