1
|
Xiong Y, Liang W, Wang X, Zhu H, Yi P, Wei G, Liu H, Lin Y, Zhang L, Ying J, Hua F. S100A8 knockdown activates the PI3K/AKT signaling pathway to inhibit microglial autophagy and improve cognitive impairment mediated by chronic sleep deprivation. Int Immunopharmacol 2024; 143:113375. [PMID: 39418730 DOI: 10.1016/j.intimp.2024.113375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE Cognitive dysfunction is one of the major symptoms of chronic sleep deprivation (CSD). Abnormal autophagy and apoptosis are thought to be important mechanisms. S100 Calcium Binding Protein A8 (S100A8) plays a key role in autophagy and apoptosis of microglia. This study investigated whether S100A8 knockdown can effectively inhibit aberrant autophagy in microglia and improve cognitive function by activating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway under CSD conditions. METHODS CSD mouse models and BV2 cell autophagy models were established in vivo and in vitro. Transcriptome sequencing was used to determine the key regulator related to autophagy. The Morris water maze test was used to evaluate the cognitive behavior of the mice. RT-qPCR and western blot were conducted to examine S100A8 expression and autophagy signalling. HE, TUNEL, transmission electron microscopy, immunofluorescence, and histochemistry were performed to detect pathological changes, neuronal autophagy, apoptosis, or positive cells in hippocampal tissues, respectively. RESULTS Transcriptome sequencing showed that S100A8 was significantly elevated in CSD mice, and fluorescence colocalization results further suggested that S100A8 mainly colocalizes with microglia. In vivo studies revealed that knockdown of S100A8 alleviated CSD-induced cognitive impairment in mice. Through further mechanistic investigations employing both in vivo and in vitro models, we demonstrated that silencing S100A8 can activate the PI3K/AKT pathway, thereby reducing CSD-induced abnormal autophagy and apoptosis in microglia. Aberrant autophagy and apoptosis in microglia were reversed with the PI3K/AKT pathway inhibitor LY294002. CONCLUSION The S100A8/PI3K/AKT axis plays a crucial role in chronic sleep deprivation-mediated autophagy and apoptosis in microglia.
Collapse
Affiliation(s)
- Yanhong Xiong
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Weidong Liang
- Department of Anesthesiology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xifeng Wang
- Jiangxi Province Key Laboratory of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hong Zhu
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Pengcheng Yi
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Gen Wei
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hailin Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
2
|
Li H, Sun J, Wu Y, Yang Y, Zhang W, Tian Y. Honokiol relieves hippocampal neuronal damage in Alzheimer's disease by activating the SIRT3-mediated mitochondrial autophagy. CNS Neurosci Ther 2024; 30:e14878. [PMID: 39097923 PMCID: PMC11298204 DOI: 10.1111/cns.14878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND This work elucidated the effect of honokiol (HKL) on hippocampal neuronal mitochondrial function in Alzheimer's disease (AD). METHODS APP/PS1 mice were used as AD mice models and exposed to HKL and 3-TYP. Morris water maze experiment was performed to appraise cognitive performance of mice. Hippocampal Aβ+ plaque deposition and neuronal survival was evaluated by immunohistochemistry and Nissl staining. Hippocampal neurons were dissociated from C57BL/6 mouse embryos. Hippocampal neuronal AD model was constructed by Aβ oligomers induction and treated with HKL, CsA and 3-TYP. Neuronal viability and apoptosis were detected by cell counting kit-8 assay and TUNEL staining. mRFP-eGFP-LC3 assay, MitoSOX Red, dichlorodihydrofluorescein diacetate, and JC-1 staining were performed to monitor neuronal autophagosomes, mitochondrial reactive oxygen species (ROS), neuronal ROS, and mitochondrial membrane potential. Autophagy-related proteins were detected by Western blot. RESULTS In AD mice, HKL improved cognitive function, relieved hippocampal Aβ1-42 plaque deposition, promoted hippocampal neuron survival, and activated hippocampal SIRT3 expression and mitochondrial autophagy. These effects of HKL on AD mice were abolished by 3-TYP treatment. In hippocampal neuronal AD model, HKL increased neuronal activity, attenuated neuronal apoptosis and Aβ aggregation, activated SIRT3 and mitochondrial autophagy, reduced mitochondrial and neuronal ROS, and elevated mitochondrial membrane potential. CsA treatment and 3-TYP treatment abrogated the protection of HKL on hippocampal neuronal AD model. The promotion of mitochondrial autophagy by HKL in hippocampal neuronal AD model was counteracted by 3-TYP. CONCLUSIONS HKL activates SIRT3-mediated mitochondrial autophagy to mitigate hippocampal neuronal damage in AD. HKL may be effective in treating AD.
Collapse
Affiliation(s)
- Haitao Li
- Department of Neurology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Jinmei Sun
- Department of Neurology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Yili Wu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Wenzhou Kangning Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang ProvinceWenzhou Medical University, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| | - Yishu Yang
- Department of Neurology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Wei Zhang
- Department of Neurology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Yuanruhua Tian
- Department of Neurology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
3
|
Li H, Guan M, Zhang NN, Wang Y, Liang T, Wu H, Wang C, Sun T, Liu S. Harnessing nanomedicine for modulating microglial states in the central nervous system disorders: Challenges and opportunities. Biomed Pharmacother 2024; 177:117011. [PMID: 38917758 DOI: 10.1016/j.biopha.2024.117011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Microglia are essential for maintaining homeostasis and responding to pathological events in the central nervous system (CNS). Their dynamic and multidimensional states in different environments are pivotal factors in various CNS disorders. However, therapeutic modulation of microglial states is challenging due to the intricate balance these cells maintain in the CNS environment and the blood-brain barrier's restriction of drug delivery. Nanomedicine presents a promising avenue for addressing these challenges, offering a method for the targeted and efficient modulation of microglial states. This review covers the challenges faced in microglial therapeutic modulation and potential use of nanoparticle-based drug delivery systems. We provide an in-depth examination of nanoparticle applications for modulating microglial states in a range of CNS disorders, encompassing neurodegenerative and autoimmune diseases, infections, traumatic injuries, stroke, tumors, chronic pain, and psychiatric conditions. This review highlights the recent advancements and future prospects in nanomedicine for microglial modulation, paving the way for future research and clinical applications of therapeutic interventions in CNS disorders.
Collapse
Affiliation(s)
- Haisong Li
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China; Department of Neurosurgery, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Meng Guan
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China; Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Ning-Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China
| | - Yizhuo Wang
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Tingting Liang
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Haitao Wu
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Chang Wang
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China.
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China; International Center of Future Science, Jilin University, Changchun, Jilin, China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China.
| | - Shuhan Liu
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China; Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China.
| |
Collapse
|
4
|
Li N, Liang Y, Zhang L, Xu C, Wang L. Neolignans in Magnolia officinalis as natural anti-Alzheimer's disease agents: A systematic review. Ageing Res Rev 2024; 99:102398. [PMID: 38955265 DOI: 10.1016/j.arr.2024.102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Magnolia officinalis, a traditional herbal medicine widely used in clinical practice, exerts antibacterial, anti-tumor, anti-inflammatory, antioxidant, and anti-aging activities. Neolignans are the main active ingredients of M. officinalis and exert a wide range of pharmacological effects, including anti-Alzheimer's disease (AD) activity. OBJECTIVE To summarize the published data on the therapeutic effect and mechanism of neolignans on AD in vivo and in vitro. METHODS PubMed, Web of Science, Google Scholar, and Scopus were systematically reviewed (up to March 1, 2024) for pre-clinical studies. RESULTS M. officinalis-derived neolignans (honokiol, magnolol, 4-O-methylhonokiol, and obovatol) alleviated behavioral abnormalities, including learning and cognitive impairments, in AD animal models. Mechanistically, neolignans inhibited Aβ generation or aggregation, neuroinflammation, and acetylcholinesterase activity; promoted microglial phagocytosis and anti-oxidative stress; alleviated mitochondrial dysfunction and energy metabolism, as well as anti-cholinergic deficiency; and regulated intestinal flora. Furthermore, neolignans may achieve neuroprotection by regulating different molecular pathways, including the NF-κB, ERK, AMPK/mTOR/ULK1, and cAMP/PKA/CREB pathways. CONCLUSIONS Neolignans exert anti-AD effects through multiple mechanisms and pathways. However, the exact targets, pharmacokinetics, safety, and clinical efficacy in patients with AD need further investigation in multi-center clinical case-control studies.
Collapse
Affiliation(s)
- Na Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, PR China.
| | - Yuanyuan Liang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, PR China.
| | - Lijuan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, PR China.
| | - Changlu Xu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, PR China.
| | - Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, PR China.
| |
Collapse
|
5
|
Franco R, Garrigós C, Lillo J, Rivas-Santisteban R. The Potential of Metabolomics to Find Proper Biomarkers for Addressing the Neuroprotective Efficacy of Drugs Aimed at Delaying Parkinson's and Alzheimer's Disease Progression. Cells 2024; 13:1288. [PMID: 39120318 PMCID: PMC11311351 DOI: 10.3390/cells13151288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
The first objective is to highlight the lack of tools to measure whether a given intervention affords neuroprotection in patients with Alzheimer's or Parkinson's diseases. A second aim is to present the primary outcome measures used in clinical trials in cohorts of patients with neurodegenerative diseases. The final aim is to discuss whether metabolomics using body fluids may lead to the discovery of biomarkers of neuroprotection. Information on the primary outcome measures in clinical trials related to Alzheimer's and Parkinson's disease registered since 2018 was collected. We analysed the type of measures selected to assess efficacy, not in terms of neuroprotection since, as stated in the aims, there is not yet any marker of neuroprotection. Proteomic approaches using plasma or CSF have been proposed. PET could estimate the extent of lesions, but disease progression does not necessarily correlate with a change in tracer uptake. We propose some alternatives based on considering the metabolome. A new opportunity opens with metabolomics because there have been impressive technological advances that allow the detection, among others, of metabolites related to mitochondrial function and mitochondrial structure in serum and/or cerebrospinal fluid; some of the differentially concentrated metabolites can become reliable biomarkers of neuroprotection.
Collapse
Affiliation(s)
- Rafael Franco
- Molecular Neurobiology Laboratory, Departament de Bioquimica i Biomedicina Molecular, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain; (C.G.); (J.L.)
- Network Center Neurodegenerative Diseases, CiberNed, Spanish National Health Center Carlos iii, Monforte de Lemos 3, 28029 Madrid, Spain
- School of Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Claudia Garrigós
- Molecular Neurobiology Laboratory, Departament de Bioquimica i Biomedicina Molecular, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain; (C.G.); (J.L.)
| | - Jaume Lillo
- Molecular Neurobiology Laboratory, Departament de Bioquimica i Biomedicina Molecular, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain; (C.G.); (J.L.)
- Network Center Neurodegenerative Diseases, CiberNed, Spanish National Health Center Carlos iii, Monforte de Lemos 3, 28029 Madrid, Spain
| | - Rafael Rivas-Santisteban
- Network Center Neurodegenerative Diseases, CiberNed, Spanish National Health Center Carlos iii, Monforte de Lemos 3, 28029 Madrid, Spain
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Campus Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
6
|
Wang C, Hei Y, Liu Y, Bajpai AK, Li Y, Guan Y, Xu F, Yao C. Systems genetics identifies methionine as a high risk factor for Alzheimer's disease. Front Neurosci 2024; 18:1381889. [PMID: 39081851 PMCID: PMC11286400 DOI: 10.3389/fnins.2024.1381889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
As a dietary strategy, methionine restriction has been reported to promote longevity and regulate metabolic disorders. However, the role and possible regulatory mechanisms underlying methionine in neurodegenerative diseases such as Alzheimer's disease (AD), remain unexplored. This study utilized the data from BXD recombinant inbred (RI) mice to establish a correlation between the AD phenotype in mice and methionine level. Gene enrichment analysis indicated that the genes associated with the concentration of methionine in the midbrain are involved in the dopaminergic synaptic signaling pathway. Protein interaction network analysis revealed that glycogen synthase kinase 3 beta (GSK-3β) was a key regulator of the dopaminergic synaptic pathway and its expression level was significantly correlated with the AD phenotype. Finally, in vitro experiments demonstrated that methionine deprivation could reduce the expression of Aβ and phosphorylated Tau, suggesting that lowering methionine levels in humans may be a preventive or therapeutic strategy for AD. In conclusion, our findings support that methionine is a high risk factor for AD. These findings predict potential regulatory network, theoretically supporting methionine restriction to prevent AD.
Collapse
Affiliation(s)
- Congmin Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yu Hei
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yu Liu
- School of Pharmacy, Binzhou Medical University, Yantai, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
| | - Akhilesh Kumar Bajpai
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Yuhe Li
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yawen Guan
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Fuyi Xu
- School of Pharmacy, Binzhou Medical University, Yantai, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
| | - Cuifang Yao
- School of Pharmacy, Binzhou Medical University, Yantai, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
| |
Collapse
|
7
|
Zhong M, Xu QQ, Hu Z, Yang W, Lin ZX, Xian YF. Tianma-Gouteng pair ameliorates the cognitive deficits on two transgenic mouse models of Alzheimer's disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118113. [PMID: 38548119 DOI: 10.1016/j.jep.2024.118113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer's disease (AD) is a progressive neurodegenerative disease. Tianma-Gouteng Pair (TGP), commonly prescribed as a pair-herbs, can be found in many Chinese medicine formulae to treat brain diseases. However, the neuroprotective effects and molecular mechanisms of TGP remained unexplored. AIM OF THE STUDY This study investigated the difference between the TgCRND8 and 5 × FAD transgenic mice, the anti-AD effects of TGP, and underlying molecular mechanisms of TGP against AD through the two mouse models. METHODS Briefly, three-month-old TgCRND8 and 5 × FAD mice were orally administered with TGP for 4 and 6 months, respectively. Behavioral tests were carried out to determine the neuropsychological functions. Moreover, immunofluorescence and western blotting assays were undertaken to reveal the molecular mechanisms of TGP. RESULTS Although TgCRND8 and 5 × FAD mice had different beta-amyloid (Aβ) burdens, neuroinflammation status, and cognition impairments, TGP exerted neuroprotective effects against AD in the two models. In detail, behavioral tests revealed that TGP treatment markedly ameliorated the anxiety-like behavior, attenuated the recognition memory deficits, and increased the spatial learning ability as well as the reference memory of TgCRND8 and 5 × FAD mice. Moreover, TGP treatment could regulate the beta-amyloid precursor protein (APP) processing by inhibiting the Aβ production enzymes such as β- and γ-secretases and activating Aβ degrading enzyme to reduce Aβ accumulation. In addition, TGP reduced the Aβ42 level, the ratio of Aβ42/Αβ40, Aβ accumulation, and tau hyperphosphorylation in both the 5 × FAD and TgCRND8 mouse models. Furthermore, TGP ameliorated neuroinflammation by decreasing the densities of activated microglia and astrocytes, and inhibiting the production of inflammatory cytokines. TGP upregulated the SIRT1 and AMPK, and downregulated sterol response element binding protein 2 (SREBP2) in the brain of TgCRND8 mice and deactivation of the EPhA4 and c-Abl in the brain tissues of 5 × FAD mice. CONCLUSION Our experiments for the first time revealed the neuroprotective effects and molecular mechanism of TGP on 5 × FAD and TgCRND8 transgenic mouse models of different AD stages. TGP decreased the level of Aβ aggregates, improved the tauopathy, and reduced the neuroinflammation by regulation of the SIRT1/AMPK/SREBP2 axis and deactivation of EPhA4/c-Abl signaling pathway in the brains of TgCRND8 and 5 × FAD mice, respectively. All these findings unequivocally confirmed that the TGP would be promising in developing into an anti-AD therapeutic pharmaceutical.
Collapse
Affiliation(s)
- Mei Zhong
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - Qing-Qing Xu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - Zhen Hu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - Wen Yang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China; Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Hong Kong, Shatin, N.T., Hong Kong SAR, PR China; Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China.
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China.
| |
Collapse
|
8
|
Li X, Yuan Z, Wang Y, Wang W, Shi J. Recent advances of honokiol:pharmacological activities, manmade derivatives and structure-activity relationship. Eur J Med Chem 2024; 272:116471. [PMID: 38704945 DOI: 10.1016/j.ejmech.2024.116471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Honokiol (HNK) is a typical natural biphenyl polyphenol compound. It has been proven to have a wide range of biological activities, including pharmacological effects such as anti-cancer, anti-inflammatory, neuroprotective, and antimicrobial. However, due to the poor stability, water solubility, and bioavailability of HNK, HNK has not been used in clinical treatment. This article reviews the latest research on the pharmacological activity of HNK and summarizes the HNK derivatives designed and improved by several researchers. Reviewing these contents could promote the research process of HNK and guide the design of better HNK derivatives for clinical application in the future.
Collapse
Affiliation(s)
- Xiuxia Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Zhuo Yuan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuxia Wang
- Geriatric Intensive Care Unit, Sichuan Geriatric Medical Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan Province, China
| | - Wenjing Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; West China Medical Publishers, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
9
|
Li R, Yao S, Wei F, Chen M, Zhong Y, Zou C, Chen L, Wei L, Yang C, Zhang X, Liu Y. Downregulation of miR-181c-5p in Alzheimer's disease weakens the response of microglia to Aβ phagocytosis. Sci Rep 2024; 14:11487. [PMID: 38769091 PMCID: PMC11106282 DOI: 10.1038/s41598-024-62347-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024] Open
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disease. Recently, studies have demonstrated the potential involvement of microRNA-181c-5p (miR-181c-5p) in AD. However, the mechanism through which miR-181c-5p is responsible for the onset and progression of this disease remains unclear, and our study aimed to explore this problem. Differential expression analysis of the AD dataset was performed to identify dysregulated genes. Based on hypergeometric analysis, AD differential the upstream regulation genes miR-181c-5p was found. We constructed a model where SH-SY5Y and BV2 cells were exposed to Aβ1-42 to simulate AD. Levels of tumor necrosis factor-alpha, interleukin-6, and IL-1β were determined using enzyme-linked immunosorbent assay or reverse transcription quantitative polymerase chain reaction. Phosphorylation levels of p-P38 and P38 were detected by Western blot. The level of apoptosis in BV2 cells under Aβ1-42 stress was exacerbated by miR-181c-5p mimic. Downregulated miR-181c-5p impaired the phagocytosis and degradation of Aβ by BV2 cells. The release of proinflammatory cytokines in BV2 cells with Aβ1-42 stress was alleviated by miR-181c-5p upregulation. Additionally, miR-181c-5p downregulation alleviated the phosphorylation of P38 in Aβ1-42-induced SH-SY5Y cells. In conclusion, miR-181c-5p improves the phagocytosis of Aβ by microglial cells in AD patients, thereby reducing neuroinflammation.
Collapse
Affiliation(s)
- Rongjie Li
- Department of Geriatrics, The Fifth Affiliated Hospital of Guangxi Medical University, No.89 Qixing Road, Nanning, 530021, China
- Department of Geriatrics, The First People's Hospital of Nanning, Nanning, China
| | - Shanshan Yao
- Department of Geriatrics, The Fifth Affiliated Hospital of Guangxi Medical University, No.89 Qixing Road, Nanning, 530021, China
- Department of Geriatrics, The First People's Hospital of Nanning, Nanning, China
| | - Feijie Wei
- Department of Geriatrics, The Fifth Affiliated Hospital of Guangxi Medical University, No.89 Qixing Road, Nanning, 530021, China
- Department of Geriatrics, The First People's Hospital of Nanning, Nanning, China
| | - Meixiang Chen
- Department of Geriatrics, The Fifth Affiliated Hospital of Guangxi Medical University, No.89 Qixing Road, Nanning, 530021, China
- Department of Geriatrics, The First People's Hospital of Nanning, Nanning, China
| | - Yuanli Zhong
- Department of Neurology, The First People's Hospital of Nanning, Nanning, China
| | - Chun Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liechun Chen
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lichun Wei
- Department of Geriatrics, The Fifth Affiliated Hospital of Guangxi Medical University, No.89 Qixing Road, Nanning, 530021, China
- Department of Geriatrics, The First People's Hospital of Nanning, Nanning, China
| | - Chunxia Yang
- Department of Geriatrics, The Fifth Affiliated Hospital of Guangxi Medical University, No.89 Qixing Road, Nanning, 530021, China
- Department of Geriatrics, The First People's Hospital of Nanning, Nanning, China
| | - Xiyuan Zhang
- Department of Geriatrics, The Fifth Affiliated Hospital of Guangxi Medical University, No.89 Qixing Road, Nanning, 530021, China.
- Department of Geriatrics, The First People's Hospital of Nanning, Nanning, China.
| | - Ying Liu
- Department of Geriatrics, The Fifth Affiliated Hospital of Guangxi Medical University, No.89 Qixing Road, Nanning, 530021, China.
- Department of Geriatrics, The First People's Hospital of Nanning, Nanning, China.
| |
Collapse
|
10
|
Liu J, Jiang G, Zhang H, Zhang H, Jia X, Gan Z, Yu H. Effects of Hibernation on Colonic Epithelial Tissue and Gut Microbiota in Wild Chipmunks ( Tamias sibiricus). Animals (Basel) 2024; 14:1498. [PMID: 38791715 PMCID: PMC11117362 DOI: 10.3390/ani14101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The gut microbiota plays a crucial role in the host's metabolic processes. Many studies have shown significant changes in the gut microbiota of mammals during hibernation to adapt to the changes in the external environment, but there is limited research on the colonic epithelial tissue and gut microbiota of the wild chipmunks during hibernation. This study analyzed the diversity, composition, and function of the gut microbiota of the wild chipmunk during hibernation using 16S rRNA gene high-throughput sequencing technology, and further conducted histological analysis of the colon. Histological analysis of the colon showed an increase in goblet cells in the hibernation group, which was an adaptive change to long-term fasting during hibernation. The dominant gut microbial phyla were Bacteroidetes, Firmicutes, and Proteobacteria, and the relative abundance of them changed significantly. The analysis of gut microbiota structural differences indicated that the relative abundance of Helicobacter typhlonius and Mucispirillum schaedleri increased significantly, while unclassified Prevotella-9, unclassified Prevotellaceae-UCG-001, unclassified Prevotellaceae-UCG-003 and other species of Prevotella decreased significantly at the species level. Alpha diversity analysis showed that hibernation increased the diversity and richness of the gut microbiota. Beta diversity analysis revealed significant differences in gut microbiota diversity between the hibernation group and the control group. PICRUSt2 functional prediction analysis of the gut microbiota showed that 15 pathways, such as lipid metabolism, xenobiotics biodegradation and metabolism, amino acid metabolism, environmental adaptation, and neurodegenerative diseases, were significantly enriched in the hibernation group, while 12 pathways, including carbohydrate metabolism, replication and repair, translation, and transcription, were significantly enriched in the control group. It can be seen that during hibernation, the gut microbiota of the wild chipmunk changes towards taxa that are beneficial for reducing carbohydrate consumption, increasing fat consumption, and adapting more strongly to environmental changes in order to better provide energy for the body and ensure normal life activities during hibernation.
Collapse
Affiliation(s)
- Juntao Liu
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (J.L.); (G.J.); (H.Z.); (H.Z.); (X.J.)
- School of Public Health, Jilin University, Changchun 130021, China;
| | - Guangyu Jiang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (J.L.); (G.J.); (H.Z.); (H.Z.); (X.J.)
- School of Public Health, Jilin University, Changchun 130021, China;
| | - Hongrui Zhang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (J.L.); (G.J.); (H.Z.); (H.Z.); (X.J.)
- School of Public Health, Jilin University, Changchun 130021, China;
| | - Haiying Zhang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (J.L.); (G.J.); (H.Z.); (H.Z.); (X.J.)
| | - Xiaoyan Jia
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (J.L.); (G.J.); (H.Z.); (H.Z.); (X.J.)
| | - Zhenwei Gan
- School of Public Health, Jilin University, Changchun 130021, China;
| | - Huimei Yu
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (J.L.); (G.J.); (H.Z.); (H.Z.); (X.J.)
| |
Collapse
|
11
|
Huang L, Luo S, Tong S, Lv Z, Wu J. The development of nanocarriers for natural products. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1967. [PMID: 38757428 DOI: 10.1002/wnan.1967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Natural bioactive compounds from plants exhibit substantial pharmacological potency and therapeutic value. However, the development of most plant bioactive compounds is hindered by low solubility and instability. Conventional pharmaceutical forms, such as tablets and capsules, only partially overcome these limitations, restricting their efficacy. With the recent development of nanotechnology, nanocarriers can enhance the bioavailability, stability, and precise intracellular transport of plant bioactive compounds. Researchers are increasingly integrating nanocarrier-based drug delivery systems (NDDS) into the development of natural plant compounds with significant success. Moreover, natural products benefit from nanotechnological enhancement and contribute to the innovation and optimization of nanocarriers via self-assembly, grafting modifications, and biomimetic designs. This review aims to elucidate the collaborative and reciprocal advancement achieved by integrating nanocarriers with botanical products, such as bioactive compounds, polysaccharides, proteins, and extracellular vesicles. This review underscores the salient challenges in nanomedicine, encompassing long-term safety evaluations of nanomedicine formulations, precise targeting mechanisms, biodistribution complexities, and hurdles in clinical translation. Further, this study provides new perspectives to leverage nanotechnology in promoting the development and optimization of natural plant products for nanomedical applications and guiding the progression of NDDS toward enhanced efficiency, precision, and safety. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Liying Huang
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Shicui Luo
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Sen Tong
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhuo Lv
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Junzi Wu
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Clinical Medical Research Center for Geriatric Diseases, Yunnan First People's Hospital, Kunming, Yunnan, China
| |
Collapse
|
12
|
Moukham H, Lambiase A, Barone GD, Tripodi F, Coccetti P. Exploiting Natural Niches with Neuroprotective Properties: A Comprehensive Review. Nutrients 2024; 16:1298. [PMID: 38732545 PMCID: PMC11085272 DOI: 10.3390/nu16091298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Natural products from mushrooms, plants, microalgae, and cyanobacteria have been intensively explored and studied for their preventive or therapeutic potential. Among age-related pathologies, neurodegenerative diseases (such as Alzheimer's and Parkinson's diseases) represent a worldwide health and social problem. Since several pathological mechanisms are associated with neurodegeneration, promising strategies against neurodegenerative diseases are aimed to target multiple processes. These approaches usually avoid premature cell death and the loss of function of damaged neurons. This review focuses attention on the preventive and therapeutic potential of several compounds derived from natural sources, which could be exploited for their neuroprotective effect. Curcumin, resveratrol, ergothioneine, and phycocyanin are presented as examples of successful approaches, with a special focus on possible strategies to improve their delivery to the brain.
Collapse
Affiliation(s)
- Hind Moukham
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (H.M.); (A.L.); (P.C.)
| | - Alessia Lambiase
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (H.M.); (A.L.); (P.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | | | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (H.M.); (A.L.); (P.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (H.M.); (A.L.); (P.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
13
|
Zhang Z, Scanlan A, Koneru R, Morrell CR, Reece MD, Edwards E, Roa S, Gavegnano C, Bimonte-Nelson H, Arbiser J, Tyor W. Honokiol hexafluoro confers reversal of neuropathological markers of HIV infection in a murine SCID model. Neurotherapeutics 2024; 21:e00329. [PMID: 38388224 PMCID: PMC10943487 DOI: 10.1016/j.neurot.2024.e00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 02/24/2024] Open
Abstract
Cognitive impairment remains a persistent challenge in people living with HIV (PWLH) despite antiretroviral therapy (ART) due to ART's inability to eliminate brain HIV. HIV-induced cognitive dysfunction results from immune dysregulation, ongoing neuroinflammation, and the continuous virus presence, collectively contributing to cognitive deficits. Therefore, adjunctive therapies are needed to reduce cerebral HIV reservoirs, mitigate neuroinflammation, and impede cognitive dysfunction progression. Our study focused on Honokiol, known for its anti-inflammatory and neuroprotective properties, in an experimental mouse model simulating HIV-induced cognitive dysfunction. Using Honokiol Hexafluoro (HH), a synthetic analogue, we comprehensively evaluated its potential to ameliorate cognitive dysfunction and cerebral pathology in HIV-associated cognitive dysfunction. Our findings showed that HH treatment effectively reversed HIV-induced cognitive dysfunction, concurrently suppressing astrocyte activation, restoring neuronal dendritic arborization, and reducing microglial activation. Furthermore, HH remodeled the metabolic profile of HIV-infected human monocyte-derived macrophages, resulting in decreased activation and the promotion of a quiescent state in vitro.
Collapse
Affiliation(s)
- Zhan Zhang
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Aaron Scanlan
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - Rajeth Koneru
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - Chelsea Richardson Morrell
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - Monica D Reece
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Emily Edwards
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Sebastian Roa
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Christina Gavegnano
- Atlanta VA Medical Center, Decatur, GA, USA; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA; Center for the Study of Human Health, Emory College, Atlanta, GA, USA; Harvard Medical School, Center for Bioethics, Boston, MA, USA
| | | | - Jack Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta, USA; Metroderm/United Derm Partners, Atlanta, GA, USA
| | - William Tyor
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA.
| |
Collapse
|
14
|
Chen M, Wu T. Nanoparticles and neurodegeneration: Insights on multiple pathways of programmed cell death regulated by nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168739. [PMID: 38008311 DOI: 10.1016/j.scitotenv.2023.168739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Currently, nanoparticles (NPs) are extensively applied in the diagnosis and treatment of neurodegenerative diseases (NDs). With the rapid development and increasing exposure to the public, the potential neurotoxicity associated with NDs caused by NPs has attracted the researchers' attentions but their biosafety assessments are still far behind relevant application studies. Based on recent research, this review aims to conduct a comprehensive and systematic analysis of neurotoxicity induced by NPs. The 191 studies selected according to inclusion and exclusion criteria were imported into the software, and the co-citations and keywords of the included literatures were analyzed to find the breakthrough point of previous studies. According to the available studies, the routes of NPs entering into the normal and injured brain were various, and then to be distributed and accumulated in living bodies. When analyzing the adverse effects induced by NPs, we focused on multiple programmed cell deaths (PCDs), especially ferroptosis triggered by NPs and their tight connection and crosstalk that have been found playing critical roles in the pathogenesis of NDs and their underlying toxic mechanisms. The activation of multiple PCD pathways by NPs provides a scientific basis for the occurrence and development of NDs. Furthermore, the adoption of new methodologies for evaluating the biosafety of NPs would benefit the next generation risk assessment (NGRA) of NPs and their toxic interventions. This would help ensure their safe application and sustainable development in the field of medical neurobiology.
Collapse
Affiliation(s)
- Min Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
15
|
Ding B, Lou J, Qin T, Xie W, Li D, Li P, Wang X, Lin Z, Guo X, Zhu J. L-ascorbyl-2-phosphate alleviates white matter injury caused by chronic hypoxia through the PRMT5/P53/NF-κB pathway. J Neurochem 2024; 168:142-160. [PMID: 38169121 DOI: 10.1111/jnc.16038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
White matter injury (WMI) is one of the most serious complications associated with preterm births. Damage to oligodendrocytes, which are the key cells involved in WMI pathogenesis, can directly lead to myelin abnormalities. L-ascorbyl-2-phosphate (AS-2P) is a stable form of vitamin C. This study aimed to explore the protective effects of AS-2P against chronic hypoxia-induced WMI, and elucidate the underlying mechanisms. An in vivo chronic hypoxia model and in vitro oxygen-glucose deprivation (OGD) model were established to explore the effects of AS-2P on WMI using immunofluorescence, immunohistochemistry, western blotting, real-time quantitative polymerase chain reaction, Morris water maze test, novel object recognition test, beaming-walking test, electron microscopy, and flow cytometry. The results showed that AS-2P resulted in the increased expression of MBP, Olig2, PDGFRα and CC1, improved thickness and density of the myelin sheath, and reduced TNF-α expression and microglial cell infiltration to alleviate inflammation in the brain after chronic hypoxia. Moreover, AS-2P improved the memory, learning and motor abilities of the mice with WMI. These protective effects of AS-2P may involve the upregulation of protein arginine methyltransferase 5 (PRMT5) and downregulation of P53 and NF-κB. In conclusion, our study demonstrated that AS-2P attenuated chronic hypoxia-induced WMI in vivo and OGD-induced oligodendrocyte injury in vitro possibly by regulating the PRMT5/P53/NF-κB pathway, suggesting that AS-2P may be a potential therapeutic option for WMI.
Collapse
Affiliation(s)
- Bingqing Ding
- Department of Pediatrics, the Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jia Lou
- Department of Pediatrics, the Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tianqi Qin
- Department of Pediatrics, the Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiwei Xie
- Department of Pediatrics, the Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Di Li
- Department of Pediatrics, the Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peijun Li
- Department of Pediatrics, the Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang, China
| | - Xingyun Wang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenlang Lin
- Department of Pediatrics, the Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang, China
| | - Xiaoling Guo
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Children Genitourinary Diseases of Wenzhou, Wenzhou, Zhejiang, China
| | - Jianghu Zhu
- Department of Pediatrics, the Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang, China
| |
Collapse
|
16
|
He Z, Botchway BOA, Zhang Y, Liu X. Triptolide activates the Nrf2 signaling pathway and inhibits the NF-κB signaling pathway to improve Alzheimer disease. Metab Brain Dis 2024; 39:173-182. [PMID: 37624431 DOI: 10.1007/s11011-023-01278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Alzheimer disease (AD) is a common neurodegenerative disease with pathological features of accumulated amyloid plaques, neurofibrillary tangles, and the significant inflammatory environment. These features modify the living microenvironment for nerve cells, causing the damage, dysfunction, and death. Progressive neuronal loss directly leads to cognitive decline in AD patients and is closely related to brain inflammation. Therefore, impairing inflammation via signaling pathways may facilitate either the prevention or delay of the degenerative process. Triptolide has been evidenced to possess potent anti-inflammatory effect. In this review, we elaborate on two signaling pathways (the NF-κB and Nrf2 signaling pathways) that are involved in the anti-inflammatory effect of triptolide.
Collapse
Affiliation(s)
- Zuoting He
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, Zhejiang Province, 312000, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
- Bupa Cromwell Hospital, Kensington, London, UK
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, Zhejiang Province, 312000, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, Zhejiang Province, 312000, China.
| |
Collapse
|
17
|
Lu Z, Fu J, Wu G, Yang Z, Wu X, Wang D, You Z, Nie Z, Sheng Q. Neuroprotection and Mechanism of Gas-miR36-5p from Gastrodia elata in an Alzheimer's Disease Model by Regulating Glycogen Synthase Kinase-3β. Int J Mol Sci 2023; 24:17295. [PMID: 38139125 PMCID: PMC10744203 DOI: 10.3390/ijms242417295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Alzheimer's disease (AD) is currently the most common neurodegenerative disease. Glycogen synthase kinase 3β (GSK-3β) is a pivotal factor in AD pathogenesis. Recent research has demonstrated that plant miRNAs exert cross-kingdom regulation on the target genes in animals. Gastrodia elata (G. elata) is a valuable traditional Chinese medicine that has significant pharmacological activity against diseases of the central nervous system (CNS). Our previous studies have indicated that G. elata-specific miRNA plays a cross-kingdom regulatory role for the NF-κB signaling pathway in mice. In this study, further bioinformatics analysis suggested that Gas-miR36-5p targets GSK-3β. Through western blot, RT-qPCR, and assessments of T-AOC, SOD, and MDA levels, Gas-miR36-5p demonstrated its neuroprotective effects in an AD cell model. Furthermore, Gas-miR36-5p was detected in the murine brain tissues. The results of the Morris water maze test and western blot analysis provided positive evidence for reversing the learning deficits and hyperphosphorylation of Tau in AD mice, elucidating significant neuroprotective effects in an AD model following G. elata RNA administration. Our research emphasizes Gas-miR36-5p as a novel G. elata-specific miRNA with neuroprotective properties in Alzheimer's disease by targeting GSK-3β. Consequently, our findings provide valuable insights into the cross-kingdom regulatory mechanisms underlying G. elata-specific miRNA, presenting a novel perspective for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qing Sheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
18
|
Yan M, Man S, Sun B, Ma L, Guo L, Huang L, Gao W. Gut liver brain axis in diseases: the implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:443. [PMID: 38057297 PMCID: PMC10700720 DOI: 10.1038/s41392-023-01673-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 12/08/2023] Open
Abstract
Gut-liver-brain axis is a three-way highway of information interaction system among the gastrointestinal tract, liver, and nervous systems. In the past few decades, breakthrough progress has been made in the gut liver brain axis, mainly through understanding its formation mechanism and increasing treatment strategies. In this review, we discuss various complex networks including barrier permeability, gut hormones, gut microbial metabolites, vagus nerve, neurotransmitters, immunity, brain toxic metabolites, β-amyloid (Aβ) metabolism, and epigenetic regulation in the gut-liver-brain axis. Some therapies containing antibiotics, probiotics, prebiotics, synbiotics, fecal microbiota transplantation (FMT), polyphenols, low FODMAP diet and nanotechnology application regulate the gut liver brain axis. Besides, some special treatments targeting gut-liver axis include farnesoid X receptor (FXR) agonists, takeda G protein-coupled receptor 5 (TGR5) agonists, glucagon-like peptide-1 (GLP-1) receptor antagonists and fibroblast growth factor 19 (FGF19) analogs. Targeting gut-brain axis embraces cognitive behavioral therapy (CBT), antidepressants and tryptophan metabolism-related therapies. Targeting liver-brain axis contains epigenetic regulation and Aβ metabolism-related therapies. In the future, a better understanding of gut-liver-brain axis interactions will promote the development of novel preventative strategies and the discovery of precise therapeutic targets in multiple diseases.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Benyue Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, 300072, Tianjin, China.
| |
Collapse
|
19
|
Li Z, Zheng Y, Liu K, Liang Y, Lu J, Li Q, Zhao B, Liu X, Li X. Lignans as multi-targeted natural products in neurodegenerative diseases and depression: Recent perspectives. Phytother Res 2023; 37:5599-5621. [PMID: 37669911 DOI: 10.1002/ptr.8003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/09/2023] [Accepted: 08/19/2023] [Indexed: 09/07/2023]
Abstract
As the global population ages, the treatment of neurodegenerative diseases is becoming more and more important. There is an urgent need to discover novel drugs that are effective in treating neurological diseases. In recent years, natural products and their biological activities have gained widespread attention. Lignans are a class of metabolites extensively present in Chinese herbal medicine and possess good pharmacological effects. Latest studies have demonstrated their neuroprotective pharmacological activity in preventing acute/chronic neurodegenerative diseases and depression. In this review, the pharmacological effects of these disorders, the pharmacokinetics, safety, and clinical trials of lignans were summarized according to the scientific literature. These results proved that lignans mainly exert antioxidant and anti-inflammatory activities. Anti-apoptosis, regulation of nervous system functions, and modulation of synaptic signals are also potential effects. Despite the substantial evidence of the neuroprotective potential of lignans, it is not sufficient to support their use in the clinical management. Our study suggests that lignans can be used as prospective agents for the treatment of neurodegenerative diseases and depression, with a view to informing their further development and utilization.
Collapse
Affiliation(s)
- Zhibei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youdan Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bolin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
20
|
Qu C, Xu QQ, Yang W, Zhong M, Yuan Q, Xian YF, Lin ZX. Gut dysbiosis aggravates cognitive deficits, amyloid pathology and lipid metabolism dysregulation in a transgenic mouse model of Alzheimer's disease. J Pharm Anal 2023; 13:1526-1547. [PMID: 38223452 PMCID: PMC10785152 DOI: 10.1016/j.jpha.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 01/16/2024] Open
Abstract
Gut dysbiosis, a well-known risk factor to triggers the progression of Alzheimer's disease (AD), is strongly associated with metabolic disturbance. Trimethylamine N-oxide (TMAO), produced in the dietary choline metabolism, has been found to accelerate neurodegeneration in AD pathology. In this study, the cognitive function and gut microbiota of TgCRND8 (Tg) mice of different ages were evaluated by Morris water maze task (MWMT) and 16S rRNA sequencing, respectively. Young pseudo germ-free (PGF) Tg mice that received faecal microbiota transplants from aged Tg mice and wild-type (WT) mice were selected to determine the role of the gut microbiota in the process of neuropathology. Excessive choline treatment for Tg mice was used to investigate the role of abnormal choline metabolism on the cognitive functions. Our results showed that gut dysbiosis, neuroinflammation response, Aβ deposition, tau hyperphosphorylation, TMAO overproduction and cyclin-dependent kinase 5 (CDK5)/transcription 3 (STAT3) activation occurred in Tg mice age-dependently. Disordered microbiota of aged Tg mice accelerated AD pathology in young Tg mice, with the activation of CDK5/STAT3 signaling in the brains. On the contrary, faecal microbiota transplantation from WT mice alleviated the cognitive deficits, attenuated neuroinflammation, Aβ deposition, tau hyperphosphorylation, TMAO overproduction and suppressed CDK5/STAT3 pathway activation in Tg mice. Moreover, excessive choline treatment was also shown to aggravate the cognitive deficits, Aβ deposition, neuroinflammation and CDK5/STAT3 pathway activation. These findings provide a novel insight into the interaction between gut dysbiosis and AD progression, clarifying the important roles of gut microbiota-derived substances such as TMAO in AD neuropathology.
Collapse
Affiliation(s)
- Chang Qu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510640, China
| | - Qing-Qing Xu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wen Yang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Mei Zhong
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Qiuju Yuan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Shatin, N.T., Hong Kong, China
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
21
|
Li X, Quan M, Wei Y, Wang W, Xu L, Wang Q, Jia J. Critical thinking of Alzheimer's transgenic mouse model: current research and future perspective. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2711-2754. [PMID: 37480469 DOI: 10.1007/s11427-022-2357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/23/2023] [Indexed: 07/24/2023]
Abstract
Transgenic models are useful tools for studying the pathogenesis of and drug development for Alzheimer's Disease (AD). AD models are constructed usually using overexpression or knock-in of multiple pathogenic gene mutations from familial AD. Each transgenic model has its unique behavioral and pathological features. This review summarizes the research progress of transgenic mouse models, and their progress in the unique mechanism of amyloid-β oligomers, including the first transgenic mouse model built in China based on a single gene mutation (PSEN1 V97L) found in Chinese familial AD. We further summarized the preclinical findings of drugs using the models, and their future application in exploring the upstream mechanisms and multitarget drug development in AD.
Collapse
Affiliation(s)
- Xinyue Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Yiping Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Wei Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Lingzhi Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, 100053, China.
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, 100053, China.
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China.
| |
Collapse
|
22
|
Yang J, Shang J, Yang L, Wei D, Wang X, Deng Q, Zhong Z, Ye Y, Zhou M. Nanotechnology-Based Drug Delivery Systems for Honokiol: Enhancing Therapeutic Potential and Overcoming Limitations. Int J Nanomedicine 2023; 18:6639-6665. [PMID: 38026538 PMCID: PMC10656744 DOI: 10.2147/ijn.s431409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Honokiol (HNK) is a small-molecule polyphenol that has garnered considerable attention due to its diverse pharmacological properties, including antitumor, anti-inflammatory, anti-bacterial, and anti-obesity effects. However, its clinical application is restricted by challenges such as low solubility, poor bioavailability, and rapid metabolism. To overcome these limitations, researchers have developed a variety of nano-formulations for HNK delivery. These nano-formulations offer advantages such as enhanced solubility, improved bioavailability, extended circulation time, and targeted drug delivery. However, existing reviews of HNK primarily focus on its clinical and pharmacological features, leaving a gap in the comprehensive evaluation of HNK delivery systems based on nanotechnology. This paper aims to bridge this gap by comprehensively reviewing different types of nanomaterials used for HNK delivery over the past 15 years. These materials encompass vesicle delivery systems, nanoparticles, polymer micelles, nanogels, and various other nanocarriers. The paper details various HNK nano-delivery strategies and summarizes their latest applications, development prospects, and future challenges. To compile this review, we conducted an extensive search using keywords such as "honokiol", "nanotechnology", and "drug delivery system" on reputable databases, including PubMed, Scopus, and Web of Science, covering the period from 2008 to 2023. Through this search, we identified and selected approximately 90 articles that met our specific criteria.
Collapse
Affiliation(s)
- Jing Yang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jinlu Shang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Liuxuan Yang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Daiqing Wei
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Xia Wang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Qinmin Deng
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Zhirong Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yun Ye
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
23
|
Sun A, Liu H, Sun M, Yang W, Liu J, Lin Y, Shi X, Sun J, Liu L. Emerging nanotherapeutic strategies targeting gut-X axis against diseases. Biomed Pharmacother 2023; 167:115577. [PMID: 37757494 DOI: 10.1016/j.biopha.2023.115577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Gut microbiota can coordinate with different tissues and organs to maintain human health, which derives the concept of the gut-X axis. Conversely, the dysbiosis of gut microbiota leads to the occurrence and development of various diseases, such as neurological diseases, liver diseases, and even cancers. Therefore, the modulation of gut microbiota offers new opportunities in the field of medicines. Antibiotics, probiotics or other treatments might restore unbalanced gut microbiota, which effects do not match what people have expected. Recently, nanomedicines with the high targeting ability and reduced toxicity make them an appreciative choice for relieving disease through targeting gut-X axis. Considering this paradigm-setting trend, the current review summarizes the advancements in gut microbiota and its related nanomedicines. Specifically, this article introduces the immunological effects of gut microbiota, summarizes the gut-X axis-associated diseases, and highlights the nanotherapeutics-mediated treatment via remolding the gut-X axis. Moreover, this review also discusses the challenges in studies related to nanomedicines targeting the gut microbiota and offers the future perspective, thereby aiming at charting a course toward clinic.
Collapse
Affiliation(s)
- Ao Sun
- Department of Nephrology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Hongyu Liu
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, Liaoning Province, China; Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, China Medical University, Ministry of Education, Shenyang, Liaoning Province, China
| | - Mengchi Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, PR China
| | - Weiguang Yang
- Department of Nephrology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jiaxin Liu
- Department of Nephrology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yi Lin
- Department of Nephrology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, PR China.
| | - Linlin Liu
- Department of Nephrology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
24
|
Khatoon F, Ali S, Kumar V, Elasbali AM, Alhassan HH, Alharethi SH, Islam A, Hassan MI. Pharmacological features, health benefits and clinical implications of honokiol. J Biomol Struct Dyn 2023; 41:7511-7533. [PMID: 36093963 DOI: 10.1080/07391102.2022.2120541] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
Honokiol (HNK) is a natural polyphenolic compound extracted from the bark and leaves of Magnolia grandiflora. It has been traditionally used as a medicinal compound to treat inflammatory diseases. HNK possesses numerous health benefits with a minimal level of toxicity. It can cross the blood-brain barrier and blood-cerebrospinal fluid, thus having significant bioavailability in the neurological tissues. HNK is a promising bioactive compound possesses neuroprotective, antimicrobial, anti-tumorigenic, anti-spasmodic, antidepressant, analgesic, and antithrombotic features . HNK can prevent the growth of several cancer types and haematological malignancies. Recent studies suggested its role in COVID-19 therapy. It binds effectively with several molecular targets, including apoptotic factors, chemokines, transcription factors, cell surface adhesion molecules, and kinases. HNK has excellent pharmacological features and a wide range of chemotherapeutic effects, and thus, researchers have increased interest in improving the therapeutic implications of HNK to the clinic as a novel agent. This review focused on the therapeutic implications of HNK, highlighting clinical and pharmacological features and the underlying mechanism of action.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatima Khatoon
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, India
| | - Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, India
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Saudi Arabia
| | - Hassan H Alhassan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Saudi Arabia
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran, Saudia Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
25
|
Chang Y, Wang C, Zhu J, Zheng S, Sun S, Wu Y, Jiang X, Li L, Ma R, Li G. SIRT3 ameliorates diabetes-associated cognitive dysfunction via regulating mitochondria-associated ER membranes. J Transl Med 2023; 21:494. [PMID: 37481555 PMCID: PMC10362714 DOI: 10.1186/s12967-023-04246-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/05/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Diabetes is associated with an increased risk of cognitive decline and dementia. These diseases are linked with mitochondrial dysfunction, most likely as a consequence of excessive formation of mitochondria-associated membranes (MAMs). Sirtuin3 (SIRT3), a key mitochondrial NAD+-dependent deacetylase, is critical responsible for mitochondrial functional homeostasis and is highly associated with neuropathology. However, the role of SIRT3 in regulating MAM coupling remains unknown. METHODS Streptozotocin-injected diabetic mice and high glucose-treated SH-SY5Y cells were established as the animal and cellular models, respectively. SIRT3 expression was up-regulated in vivo using an adeno-associated virus in mouse hippocampus and in vitro using a recombinant lentivirus vector. Cognitive function was evaluated using behavioural tests. Hippocampus injury was assessed using Golgi and Nissl staining. Apoptosis was analysed using western blotting and TUNEL assay. Mitochondrial function was detected using flow cytometry and confocal fluorescence microscopy. The mechanisms were investigated using co-immunoprecipitation of VDAC1-GRP75-IP3R complex, fluorescence imaging of ER and mitochondrial co-localisation and transmission electron microscopy of structural analysis of MAMs. RESULTS Our results demonstrated that SIRT3 expression was significantly reduced in high glucose-treated SH-SY5Y cells and hippocampal tissues from diabetic mice. Further, up-regulating SIRT3 alleviated hippocampus injuries and cognitive impairment in diabetic mice and mitigated mitochondrial Ca2+ overload-induced mitochondrial dysfunction and apoptosis. Mechanistically, MAM formation was enhanced under high glucose conditions, which was reversed by genetic up-regulation of SIRT3 via reduced interaction of the VDAC1-GRP75-IP3R complex in vitro and in vivo. Furthermore, we investigated the therapeutic effects of pharmacological activation of SIRT3 in diabetic mice via honokiol treatment, which exhibited similar effects to our genetic interventions. CONCLUSIONS In summary, our findings suggest that SIRT3 ameliorates cognitive impairment in diabetic mice by limiting aberrant MAM formation. Furthermore, targeting the activation of SIRT3 by honokiol provides a promising therapeutic candidate for diabetes-associated cognitive dysfunction. Overall, our study suggests a novel role of SIRT3 in regulating MAM coupling and indicates that SIRT3-targeted therapies are promising for diabetic dementia patients.
Collapse
Affiliation(s)
- Yanmin Chang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cailin Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiahui Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Siyi Zheng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shangqi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yanqing Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xingjun Jiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lulu Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Gang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
26
|
Hu L, Tao Y, Jiang Y, Qin F. Recent progress of nanomedicine in the treatment of Alzheimer's disease. Front Cell Dev Biol 2023; 11:1228679. [PMID: 37457297 PMCID: PMC10340527 DOI: 10.3389/fcell.2023.1228679] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of memory disruption in elderly subjects, with the prevalence continuing to rise mainly because of the aging world population. Unfortunately, no efficient therapy is currently available for the AD treatment, due to low drug potency and several challenges to delivery, including low bioavailability and the impediments of the blood-brain barrier. Recently, nanomedicine has gained considerable attention among researchers all over the world and shown promising developments in AD treatment. A wide range of nano-carriers, such as polymer nanoparticles, liposomes, solid lipid nanoparticles, dendritic nanoparticles, biomimetic nanoparticles, magnetic nanoparticles, etc., have been adapted to develop successful new treatment strategies. This review comprehensively summarizes the recent advances of different nanomedicine for their efficacy in pre-clinical studies. Finally, some insights and future research directions are proposed. This review can provide useful information to guide the future design and evaluation of nanomedicine in AD treatment.
Collapse
Affiliation(s)
- Liqiang Hu
- Mental Health Center and West China-California Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yiran Tao
- Mental Health Center and West China-California Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yanjiao Jiang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Feng Qin
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Li J, Zhang F, Zhao L, Dong C. Microbiota-gut-brain axis and related therapeutics in Alzheimer's disease: prospects for multitherapy and inflammation control. Rev Neurosci 2023:revneuro-2023-0006. [PMID: 37076953 DOI: 10.1515/revneuro-2023-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/26/2023] [Indexed: 04/21/2023]
Abstract
Alzheimer's disease (AD) is the most common type of dementia in the elderly and causes neurodegeneration, leading to memory loss, behavioral disorder, and psychiatric impairment. One potential mechanism contributing to the pathogenesis of AD may be the imbalance in gut microbiota, local and systemic inflammation, and dysregulation of the microbiota-gut-brain axis (MGBA). Most of the AD drugs approved for clinical use today are symptomatic treatments that do not improve AD pathologic changes. As a result, researchers are exploring novel therapeutic modalities. Treatments involving the MGBA include antibiotics, probiotics, transplantation of fecal microbiota, botanical products, and others. However, single-treatment modalities are not as effective as expected, and a combination therapy is gaining momentum. The purpose of this review is to summarize recent advances in MGBA-related pathological mechanisms and treatment modalities in AD and to propose a new concept of combination therapy. "MGBA-based multitherapy" is an emerging view of treatment in which classic symptomatic treatments and MGBA-based therapeutic modalities are used in combination. Donepezil and memantine are two commonly used drugs in AD treatment. On the basis of the single/combined use of these two drugs, two/more additional drugs and treatment modalities that target the MGBA are chosen based on the characteristics of the patient's condition as an adjuvant treatment, as well as the maintenance of good lifestyle habits. "MGBA-based multitherapy" offers new insights for the treatment of cognitive impairment in AD patients and is expected to show good therapeutic results.
Collapse
Affiliation(s)
- Jiahao Li
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, No. 222 Zhongshan Road, Dalian 116011, China
| | - Feng Zhang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Li Zhao
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, No. 222 Zhongshan Road, Dalian 116011, China
| | - Chunbo Dong
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, No. 222 Zhongshan Road, Dalian 116011, China
| |
Collapse
|
28
|
Gouveia FV, Lea‐Banks H, Aubert I, Lipsman N, Hynynen K, Hamani C. Anesthetic-loaded nanodroplets with focused ultrasound reduces agitation in Alzheimer's mice. Ann Clin Transl Neurol 2023; 10:507-519. [PMID: 36715553 PMCID: PMC10109287 DOI: 10.1002/acn3.51737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE Alzheimer's disease (AD) is often associated with neuropsychiatric symptoms, including agitation and aggressive behavior. These symptoms increase with disease severity, ranging from 10% in mild cognitive impairment to 50% in patients with moderate-to-severe AD, pose a great risk for self-injury and injury to caregivers, result in high rates of institutionalization and great suffering for patients and families. Current pharmacological therapies have limited efficacy and a high potential for severe side effects. Thus, there is a growing need to develop novel therapeutics tailored to safely and effectively reduce agitation and aggressive behavior in AD. Here, we investigate for the first time the use of focused ultrasound combined with anesthetic-loaded nanodroplets (nanoFUS) targeting the amygdala (key structure in the neurocircuitry of agitation) as a novel minimally invasive tool to modulate local neural activity and reduce agitation and aggressive behavior in the TgCRND8 AD transgenic mice. METHODS Male and female animals were tested in the resident-intruder (i.e., aggressive behavior) and open-field tests (i.e., motor agitation) for baseline measures, followed by treatment with active- or sham-nanoFUS. Behavioral testing was then repeated after treatment. RESULTS Active-nanoFUS neuromodulation reduced aggressive behavior and agitation in male mice, as compared to sham-treated controls. Treatment with active-nanoFUS increased the time male mice spent in social-non-aggressive behaviors. INTERPRETATION Our results show that neuromodulation with active-nanoFUS may be a potential therapeutic tool for the treatment of neuropsychiatric symptoms, with special focus on agitation and aggressive behaviors. Further studies are necessary to establish cellular, molecular and long-term behavioral changes following treatment with nanoFUS.
Collapse
Affiliation(s)
- Flavia Venetucci Gouveia
- Biological Sciences PlatformSunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
- Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoOntarioM5G 1X8Canada
| | - Harriet Lea‐Banks
- Physical Sciences PlatformSunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
| | - Isabelle Aubert
- Biological Sciences PlatformSunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
- Laboratory Medicine & PathobiologyUniversity of TorontoTorontoOntarioM5S 1A1Canada
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences CentreTorontoOntarioM4N 3M5Canada
| | - Nir Lipsman
- Biological Sciences PlatformSunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences CentreTorontoOntarioM4N 3M5Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences CentreTorontoOntarioM4N 3M5Canada
- Division of NeurosurgeryUniversity of TorontoTorontoOntarioM5T 1P5Canada
| | - Kullervo Hynynen
- Physical Sciences PlatformSunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences CentreTorontoOntarioM4N 3M5Canada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioM5S 1A1Canada
- Institute of Biomedical Engineering, University of TorontoTorontoOntarioM5S 1A1Canada
| | - Clement Hamani
- Biological Sciences PlatformSunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences CentreTorontoOntarioM4N 3M5Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences CentreTorontoOntarioM4N 3M5Canada
- Division of NeurosurgeryUniversity of TorontoTorontoOntarioM5T 1P5Canada
| |
Collapse
|
29
|
Zhou Y, Tang J, Lan J, Zhang Y, Wang H, Chen Q, Kang Y, Sun Y, Feng X, Wu L, Jin H, Chen S, Peng Y. Honokiol alleviated neurodegeneration by reducing oxidative stress and improving mitochondrial function in mutant SOD1 cellular and mouse models of amyotrophic lateral sclerosis. Acta Pharm Sin B 2023; 13:577-597. [PMID: 36873166 PMCID: PMC9979194 DOI: 10.1016/j.apsb.2022.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting both upper and lower motor neurons (MNs) with large unmet medical needs. Multiple pathological mechanisms are considered to contribute to the progression of ALS, including neuronal oxidative stress and mitochondrial dysfunction. Honokiol (HNK) has been reported to exert therapeutic effects in several neurologic disease models including ischemia stroke, Alzheimer's disease and Parkinson's disease. Here we found that honokiol also exhibited protective effects in ALS disease models both in vitro and in vivo. Honokiol improved the viability of NSC-34 motor neuron-like cells that expressed the mutant G93A SOD1 proteins (SOD1-G93A cells for short). Mechanistical studies revealed that honokiol alleviated cellular oxidative stress by enhancing glutathione (GSH) synthesis and activating the nuclear factor erythroid 2-related factor 2 (NRF2)-antioxidant response element (ARE) pathway. Also, honokiol improved both mitochondrial function and morphology via fine-tuning mitochondrial dynamics in SOD1-G93A cells. Importantly, honokiol extended the lifespan of the SOD1-G93A transgenic mice and improved the motor function. The improvement of antioxidant capacity and mitochondrial function was further confirmed in the spinal cord and gastrocnemius muscle in mice. Overall, honokiol showed promising preclinical potential as a multiple target drug for ALS treatment.
Collapse
Affiliation(s)
- Yujun Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jingshu Tang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jiaqi Lan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yong Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hongyue Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qiuyu Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuying Kang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yang Sun
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinhong Feng
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Lei Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.,NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing 100050, China
| | - Shizhong Chen
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
30
|
Xu QQ, Su ZR, Yang W, Zhong M, Xian YF, Lin ZX. Patchouli alcohol attenuates the cognitive deficits in a transgenic mouse model of Alzheimer's disease via modulating neuropathology and gut microbiota through suppressing C/EBPβ/AEP pathway. J Neuroinflammation 2023; 20:19. [PMID: 36717922 PMCID: PMC9887791 DOI: 10.1186/s12974-023-02704-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/22/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by progressive cognitive dysfunctions and behavioral impairments. Patchouli alcohol (PA), isolated from Pogostemonis Herba, exhibits multiple pharmacological properties, including neuroprotective effects. This study aimed to investigate the therapeutic effects of PA against AD using the TgCRND8 transgenic AD mouse model, and to explore the underlying mechanisms targeting CCAAT/enhancer-binding protein β/asparagine endopeptidase (C/EBPβ/AEP) signaling pathway. METHODS After genotyping to confirm the transgenicity, drug treatments were administered intragastrically once daily to 3-month-old TgCRND8 mice for 4 consecutive months. Several behavioral tests were applied to assess different aspects of neurological functions. Then the brain and colon tissues were harvested for in-depth mechanistic studies. To further verify whether PA exerts anti-AD effects via modulating C/EBPβ/AEP signaling pathway in TgCRND8 mice, adeno-associated virus (AAV) vectors encoding CEBP/β were bilaterally injected into the hippocampal CA1 region in TgCRND8 mice to overexpress C/EBPβ. Additionally, the fecal microbiota transplantation (FMT) experiment was performed to verify the potential role of gut microbiota on the anti-AD effects of PA. RESULTS Our results showed that PA treatment significantly improved activities of daily living (ADL), ameliorated the anxiety-related behavioral deficits and cognitive impairments in TgCRND8 mice. PA modulated the amyloid precursor protein (APP) processing. PA also markedly reduced the levels of beta-amyloid (Aβ) 40 and Aβ42, suppressed Aβ plaque burdens, inhibited tau protein hyperphosphorylation at several sites and relieved neuroinflammation in the brains of TgCRND8 mice. Moreover, PA restored gut dysbiosis and inhibited the activation of the C/EBPβ/AEP signaling pathway in the brain and colon tissues of TgCRND8 mice. Interestingly, PA strikingly alleviated the AD-like pathologies induced by the overexpression of C/EBPβ in TgCRND8 mice. Additionally, the FMT of fecal microbiota from the PA-treated TgCRND8 mice significantly alleviated the cognitive impairments and AD-like pathologies in the germ-free TgCRND8 mice. CONCLUSION All these findings amply demonstrated that PA could ameliorate the cognitive deficits in TgCRND8 mice via suppressing Aβ plaques deposition, hyperphosphorylation of tau protein, neuroinflammation and gut dysbiosis through inhibiting the activation of C/EBPβ/AEP pathway, suggesting that PA is a promising naturally occurring chemical worthy of further development into the pharmaceutical treatment of AD.
Collapse
Affiliation(s)
- Qing-Qing Xu
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China
| | - Zi-Ren Su
- grid.411866.c0000 0000 8848 7685Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Wen Yang
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China
| | - Mei Zhong
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China
| | - Yan-Fang Xian
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China
| | - Zhi-Xiu Lin
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China ,grid.10784.3a0000 0004 1937 0482Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China ,grid.10784.3a0000 0004 1937 0482Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China
| |
Collapse
|
31
|
Yang W, Xu QQ, Yuan Q, Xian YF, Lin ZX. Sulforaphene, a CDK5 Inhibitor, attenuates cognitive deficits in a transgenic mouse model of Alzheimer's disease via reducing Aβ Deposition, tau hyperphosphorylation and synaptic dysfunction. Int Immunopharmacol 2023; 114:109504. [PMID: 36508924 DOI: 10.1016/j.intimp.2022.109504] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/28/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of neurodegenerative disorder characterized by progressive loss of memory and cognitive functions. There are two pathological hallmarks, including accumulation of amyloid plaques composed of β-amyloid peptide (Aβ) and deposits of neurofibrillatory tangles (NFT). Cyclin-dependent kinase 5 (CDK5), a serine/threonine kinase, plays an important role in synaptic plasticity and cognitive behavior. Sulforaphene (SF) has been demonstrated to exert anti-AD activity in AD rat model. In this study, we aimed to evaluate the cognitive deficits improving effects of SF on in TgCRND8 mice and to elucidate the underlying molecular mechanisms. METHODS TgCRND8 mice were intragastrically treated with SF (25 and 50 mg/kg) for 4 months from 3-month-old. The cognitive functions were assessed using Morris Water Maze Test. Cultured primary mouse neurons were pre-treated with SF, followed by co-treatment with Aβ1-42 oligomers. CDK5 inhibitor (roscovitine) was used to determine the involvement of CDK5/p25 pathway in the anti-AD effects of SF in primary neurons. RESULTS Our results showed that SF treatment significantly ameliorated the cognitive deficits in TgCRND8 mice and protected primary mouse neurons against Aβ1-42 induced neurotoxicity. SF could modulate the expression of Aβ production related markers, and suppress the phosphorylation of tau protein at specific sites in the TgCRND8 mice. In addition, SF enhanced the expressions of synaptic plasticity related markers and CDK5. SF also markedly suppressed the CDK5/p25 activity. CONCLUSIONS SF is a potent CDK5 inhibitor and a potential therapeutic agent for treatment and prevention of AD. Moreover, SF inhibited the overexpression of CDK5 in primary neurons of mouse.
Collapse
Affiliation(s)
- Wen Yang
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
| | - Qing-Qing Xu
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
| | - Qiuju Yuan
- Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Shatin, N.T., Hong Kong SAR, China.
| | - Yan-Fang Xian
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
| | - Zhi-Xiu Lin
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P. R. China.
| |
Collapse
|
32
|
Zhan Y, Al-Nusaif M, Ding C, Zhao L, Dong C. The potential of the gut microbiome for identifying Alzheimer's disease diagnostic biomarkers and future therapies. Front Neurosci 2023; 17:1130730. [PMID: 37179559 PMCID: PMC10174259 DOI: 10.3389/fnins.2023.1130730] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/05/2023] [Indexed: 05/15/2023] Open
Abstract
Being isolated from the peripheral system by the blood-brain barrier, the brain has long been considered a completely impervious tissue. However, recent findings show that the gut microbiome (GM) influences gastrointestinal and brain disorders such as Alzheimer's disease (AD). Despite several hypotheses, such as neuroinflammation, tau hyperphosphorylation, amyloid plaques, neurofibrillary tangles, and oxidative stress, being proposed to explain the origin and progression of AD, the pathogenesis remains incompletely understood. Epigenetic, molecular, and pathological studies suggest that GM influences AD development and have endeavored to find predictive, sensitive, non-invasive, and accurate biomarkers for early disease diagnosis and monitoring of progression. Given the growing interest in the involvement of GM in AD, current research endeavors to identify prospective gut biomarkers for both preclinical and clinical diagnoses, as well as targeted therapy techniques. Here, we discuss the most recent findings on gut changes in AD, microbiome-based biomarkers, prospective clinical diagnostic uses, and targeted therapy approaches. Furthermore, we addressed herbal components, which could provide a new venue for AD diagnostic and therapy research.
Collapse
Affiliation(s)
- Yu Zhan
- Department of Neurology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Murad Al-Nusaif
- Department of Neurology, First Affiliated Hospital, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratories for Research on the Pathogenic Mechanism of Neurological Disease, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Cong Ding
- The Center for Gerontology and Geriatrics, Dalian Friendship Hospital, Dalian, China
| | - Li Zhao
- Department of Neurology, First Affiliated Hospital, Dalian Medical University, Dalian, China
- *Correspondence: Li Zhao,
| | - Chunbo Dong
- Department of Neurology, First Affiliated Hospital, Dalian Medical University, Dalian, China
- Chunbo Dong,
| |
Collapse
|
33
|
Li ZL, Ma HT, Wang M, Qian YH. Research trend of microbiota-gut-brain axis in Alzheimer’s disease based on CiteSpace (2012–2021): A bibliometrics analysis of 608 articles. Front Aging Neurosci 2022; 14:1036120. [DOI: 10.3389/fnagi.2022.1036120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022] Open
Abstract
BackgroundRecently, research on the microbiota-gut-brain axis (MGBA) has received increasing attention, and the number of studies related to Alzheimer’s disease (AD) has increased rapidly, but there is currently a lack of summary of MGBA in AD.ObjectiveTo capture research hotspots, grasp the context of disciplinary research, and explore future research development directions.MethodsIn the core dataset of Web of Science, documents are searched according to specific subject words. CiteSpace software is used to perform statistical analysis on measurement indicators such as the number of published papers, publishing countries, institutions, subject areas, authors, cocited journals, and keywords, and to visualize of a network of relevant content elements.ResultsThe research of MGBA in AD has shown an upward trend year by year, and the cooperation between countries is relatively close, and mainly involves the intersection of neuroscience, pharmacy, and microbiology. This research focuses on the relationship between MGBA and AD symptoms. Keyword hotspots are closely related to new technologies. Alzheimer’s disease, anterior cingulate cortex, inflammatory degeneration, dysbiosis, and other research are the focus of this field.ConclusionThe study revealed that the research and development of MGBA in AD rapidly progressed, but no breakthrough has been made in the past decade, it still needs to be closely combined with multidisciplinary technology to grasp the frontier hotspots. Countries should further strengthen cooperation, improve the disciplinary system, and increase the proportion of empirical research in all research.
Collapse
|
34
|
Xu QQ, Su ZR, Hu Z, Yang W, Xian YF, Lin ZX. Patchouli alcohol ameliorates the learning and memory impairments in an animal model of Alzheimer's disease via modulating SIRT1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154441. [PMID: 36108371 DOI: 10.1016/j.phymed.2022.154441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/14/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases. Patchouli alcohol (PA), a major active ingredient isolated from Pogostemonis Herba, exhibits extensive bioactivity in the central nervous system (CNS) and exerts neuroprotective effects. PURPOSE This study aimed to investigate the anti-AD effects of PA in an animal model of AD and to elucidate the underlying molecular mechanisms. METHODS The gas chromatography (GC) was used to determine the ability of PA to pass the blood-brain barrier (BBB) in rats after oral administration. The sporadic AD rat model was established by intracerebroventricularly (ICV) injection with streptozotocin (STZ). PA (25 and 50 mg/kg) was given to rat orally once daily for 42 consecutive days. Morris water maze (MWM) test was performed to determine the learning and memory functions of the STZ-induced AD rats. EX527, a silent information regulator 1 (SIRT1) selective inhibitor, was used to investigate the involvement of SIRT1 in the anti-AD effects of PA in rats. RESULTS PA could penetrate the BBB. MWM test results showed that PA could significantly ameliorate the learning and memory deficits induced by STZ in rats. Meanwhile, PA enhanced the expression of SIRT1, and markedly alleviated the tau pathology by inhibiting the hyperacetylation (at the site of Lys174) and hyperphosphorylation (at the sites of Thr181, Thr205, Ser396 and Ser404) of tau protein. PA also efficiently suppressed the activation of microglia and astrocytes, and the beta-amyloid (Aβ) expression and the deacetylation of nuclear factor-kappa B (NF-κB) at Lys 310 (K310) in the STZ-treated AD rats. EX527, a SIRT1 selective inhibitor, could partially abolish the cognitive deficits improving effect of PA and inhibit the down-regulation of acetylated tau and acetylated NF-κB p65, suggesting that PA exhibited neuroprotective effects against AD via upregulating SIRT1. CONCLUSION This study reported for the first time that PA could penetrate the BBB to exert its protective effects on the brain after a single-dose oral administration. The current experimental findings also amply demonstrated that PA could improve the cognitive and memory impairments in the STZ-induced AD rat model. The underlying mechanisms involve the alleviations of neuroinflammation, tau pathology and Aβ deposition via modulating of SIRT1 and NF-κB pathways. All these findings strongly suggest that PA is a promising naturally occurring compound worthy of further development into an anti-AD pharmaceutical.
Collapse
Affiliation(s)
- Qing-Qing Xu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Zi-Ren Su
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhen Hu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Wen Yang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
| |
Collapse
|
35
|
Dou Y, Zhao D. Targeting Emerging Pathogenic Mechanisms by Natural Molecules as Potential Therapeutics for Neurodegenerative Diseases. Pharmaceutics 2022; 14:2287. [PMID: 36365106 PMCID: PMC9695024 DOI: 10.3390/pharmaceutics14112287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 10/07/2024] Open
Abstract
Natural molecules with favorable safety profile and broad pharmacological activities have shown great promise in the treatment of various neurodegenerative diseases (NDDs). Current studies applying natural molecules against NDDs mainly focus on well-recognized conventional pathogenesis, such as toxic protein aggregation, oxidative stress, and neuroinflammation. However, accumulating evidence reveals that some underlying pathogenic mechanisms are involved earlier and more deeply in the occurrence and development of NDDs, such as ferroptosis, energy metabolism disorders, autophagy-lysosomal dysfunction, endoplasmic reticulum stress, and gut dysbiosis. Therefore, determining whether natural molecules can play therapeutic roles in these emerging pathogenic mechanisms will help clarify the actual targets of natural molecules and their future clinical translation. Furthermore, how to overcome the inability of most poorly water-soluble natural molecules to cross the blood-brain barrier is also critical for effective NDD treatment. This review summarizes emerging pathogenic mechanisms targeted by natural molecules for NDD treatment, proposes nanocarrier-based drug delivery and intranasal administration to enhance the intracerebral bioavailability of natural molecules, and summarizes the current state of clinical research on natural product-based therapeutics.
Collapse
Affiliation(s)
- Yan Dou
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Dongju Zhao
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| |
Collapse
|
36
|
Deng C, Chen H, Meng Z, Meng S. Roles of traditional chinese medicine regulating neuroendocrinology on AD treatment. Front Endocrinol (Lausanne) 2022; 13:955618. [PMID: 36213283 PMCID: PMC9533021 DOI: 10.3389/fendo.2022.955618] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022] Open
Abstract
The incidence of sporadic Alzheimer's disease (AD) is increasing in recent years. Studies have shown that in addition to some genetic abnormalities, the majority of AD patients has a history of long-term exposure to risk factors. Neuroendocrine related risk factors have been proved to be strongly associated with AD. Long-term hormone disorder can have a direct detrimental effect on the brain by producing an AD-like pathology and result in cognitive decline by impairing neuronal metabolism, plasticity and survival. Traditional Chinese Medicine(TCM) may regulate the complex process of endocrine disorders, and improve metabolic abnormalities, as well as the resulting neuroinflammation and oxidative damage through a variety of pathways. TCM has unique therapeutic advantages in treating early intervention of AD-related neuroendocrine disorders and preventing cognitive decline. This paper reviewed the relationship between neuroendocrine and AD as well as the related TCM treatment and its mechanism. The advantages of TCM intervention on endocrine disorders and some pending problems was also discussed, and new insights for TCM treatment of dementia in the future was provided.
Collapse
Affiliation(s)
- Chujun Deng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Huize Chen
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Zeyu Meng
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shengxi Meng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
37
|
Guo X, Dong Z, Li Q, Wan D, Zhong J, Dongzhi D, Huang M. Flavonoids from Rhododendron nivale Hook. f delay aging via modulation of gut microbiota and glutathione metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154270. [PMID: 35760023 DOI: 10.1016/j.phymed.2022.154270] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/30/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Rhododendron nivale Hook. f (R.n), one of the four Manna Stash used in Tibetan medicine to delay aging, possesses anti-aging pharmacological activity. However, which R.n ingredients contain anti-aging properties and the underlying mechanisms involved are unclear. HYPOTHESIS/PURPOSE Based on interactions between gut microbiota and natural medicines and the important role of gut microbiota in anti-aging, the study investigated the hypothesis that R.n possesses anti-aging properties and the interaction of gut microbiota with R.n is responsible for its anti-aging effects. STUDY DESIGN The primary active ingredients of R.n and their target function and pathway enrichment were explored. An aging mouse model was used to clarify the underlying anti-aging mechanisms of R.n. METHODS Chromatography, spectroscopy, nuclear magnetic technology, and pharmacology were used to reveal the major active ingredients of ethanol extract residues of R.n (RNEA). The target function and pathway enrichment of these active ingredients were explored. Plasma metabolomics coupled with intestinal flora evaluation and bioinformatics analysis was used to clarify the underlying anti-aging mechanisms of RNEA. RESULTS Myricetin-3-β-D-xylopyranoside, hyperin, goospetin-8-methyl ether 3-β-D-galactoside, and diplomorphanin B were separated and identified from RNEA. The network pharmacology study revealed that the active ingredients' target function and pathway enrichment focused mainly on the glutathione antioxidant system. In a D-galactose-induced mouse model of aging, RNEA was shown to possess suitable anti-aging pharmacological activity, as indicated by the amelioration of memory loss and weakened superoxide dismutase and glutathione peroxidase activities. Plasma metabolomics coupled with intestinal flora examination and bioinformatics analysis revealed that RNEA could regulate the expression of glutathione-related enzymes and ameliorate D-galactose-induced imbalances in methionine, glycine, and serine, and betaine and galactose metabolism. The results showed that RNEA reshaped the disordered intestinal flora and mitigated the D-galactose-mediated decline in glutathione oxidase expression, further confirming that the anti-aging effect of RNEA was closely related to regulation of the glutathione antioxidant system. CONCLUSION RNEA, consisting of myricetin-3-β-D-xylopyranoside, hyperin, goospetin-8-methyl ether 3-β-D-galactoside, and diplomorphanin B, possesses anti-aging activity. The anti-aging effect of RNEA might be due to reshaping intestinal flora homeostasis, increasing the expression of glutathione peroxidase 4 in the intestines and liver, enhancing glutathione peroxidase activity, and reinforcing the glutathione antioxidant system.
Collapse
Affiliation(s)
- Xiao Guo
- State Key Laboratory of Tibetan Medicine Research and Development, Tibetan Medicine Research Center, Tibetan Medicial College, Qinghai University, Xining, Qinghai 810016, China
| | - Zhen Dong
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Qien Li
- State Key Laboratory of Tibetan Medicine Research and Development, Tibetan Medicine Research Center, Tibetan Medicial College, Qinghai University, Xining, Qinghai 810016, China
| | - Digao Wan
- State Key Laboratory of Tibetan Medicine Research and Development, Tibetan Medicine Research Center, Tibetan Medicial College, Qinghai University, Xining, Qinghai 810016, China
| | - Jiangbin Zhong
- State Key Laboratory of Tibetan Medicine Research and Development, Tibetan Medicine Research Center, Tibetan Medicial College, Qinghai University, Xining, Qinghai 810016, China
| | - Duojie Dongzhi
- State Key Laboratory of Tibetan Medicine Research and Development, Tibetan Medicine Research Center, Tibetan Medicial College, Qinghai University, Xining, Qinghai 810016, China
| | - Meizhou Huang
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
38
|
Ao C, Li C, Chen J, Tan J, Zeng L. The role of Cdk5 in neurological disorders. Front Cell Neurosci 2022; 16:951202. [PMID: 35966199 PMCID: PMC9368323 DOI: 10.3389/fncel.2022.951202] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Neurological disorders are a group of disorders with motor, sensory or cognitive damage, caused by dysfunction of the central or peripheral nervous system. Cyclin-dependent kinases 5 (Cdk5) is of vital significance for the development of the nervous system, including the migration and differentiation of neurons, the formation of synapses, and axon regeneration. However, when the nervous system is subject to pathological stimulation, aberrant activation of Cdk5 will induce abnormal phosphorylation of a variety of substrates, resulting in a cascade signaling pathway, and thus lead to pathological changes. Cdk5 is intimately related to the pathological mechanism of a variety of neurological disorders, such as A-β protein formation in Alzheimer’s disease, mitochondrial fragmentation in cerebral ischemia, and apoptosis of dopaminergic neurons in Parkinson’s disease. It is worth noting that Cdk5 inhibitors have been reported to have neuroprotective effects by inhibiting related pathological processes. Therefore, in this review, we will briefly introduce the physiological and pathological mechanisms of Cdk5 in the nervous system, focusing on the recent advances of Cdk5 in neurological disorders and the prospect of targeted Cdk5 for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Chuncao Ao
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Chenchen Li
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinlun Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Model for Human Diseases, Central South University, Changsha, China
| | - Liuwang Zeng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Liuwang Zeng
| |
Collapse
|