1
|
Wang Y, Wu W, Zhang P, Chen X, Feng Y, Yang H, Jin L, Huang H, Shi X, Wang S, Zhang Y. Vitamin C Alleviates the Risk of Gestational Diabetes Mellitus Associated With Exposure to Metals. J Diabetes Res 2024; 2024:1298122. [PMID: 39035682 PMCID: PMC11260216 DOI: 10.1155/2024/1298122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Background: Exposure to heavy metals has been suggested to increase the risk of gestational diabetes mellitus (GDM) through the oxidative stress pathway. The study is aimed at examining whether vitamin C could modify the association between exposure to heavy metals and risk of GDM. Methods: We conducted a case-control study in Taiyuan, China, with 776 GDM cases and 776 controls. Data on vitamin C intake from diet and supplements were collected through questionnaires. Concentrations of metals in participants' blood were measured using inductively coupled plasma-mass spectrometry (ICP-MS). Unconditional logistic regression models were applied to estimate effect modification of vitamin C on the association between heavy metals and GDM. Results: Women with higher blood levels of mercury (Hg) (odds ratio (OR) = 2.36, 95% confidence interval (CI): 1.43, 3.92 and 2.04, 95% CI: 1.20, 3.46 for the second and third vs. the first tertile) and arsenic (As) (OR = 2.46, 95% CI: 1.37, 4.43 and 2.16, 95% CI: 1.12, 4.17 for the second and third vs. the first tertile) exposure were associated with increased risk of GDM among women without vitamin C supplement use and having dietary vitamin C intake < 85 mg/day. We found no significant association with metals among women who took vitamin C supplements and/or dietary vitamin C ≥ 85 mg/day. Significant interactions were observed between vitamin C and exposures to metals (i.e., Hg and As) on the risk of GDM (P interaction = 0.048 and 0.045, respectively). Conclusions: Our study, for the first time, suggests that vitamin C supplement use or higher dietary vitamin C intake during preconception and early pregnancy could alleviate the risk of GDM associated with exposure to As and Hg. The results warrant further investigation.
Collapse
Affiliation(s)
- Ying Wang
- Department of EpidemiologyShanxi Medical University School of Public Health, Taiyuan, China
- Center of Clinical Epidemiology and Evidence Based MedicineShanxi Medical University, Taiyuan, China
| | - Weiwei Wu
- Department of EpidemiologyShanxi Medical University School of Public Health, Taiyuan, China
- Center of Clinical Epidemiology and Evidence Based MedicineShanxi Medical University, Taiyuan, China
| | - Ping Zhang
- Department of EpidemiologyShanxi Medical University School of Public Health, Taiyuan, China
| | - Xi Chen
- National Institute of Environmental HealthChinese Center for Disease Control and Prevention, Beijing, China
| | - Yongliang Feng
- Department of EpidemiologyShanxi Medical University School of Public Health, Taiyuan, China
- Center of Clinical Epidemiology and Evidence Based MedicineShanxi Medical University, Taiyuan, China
| | - Hailan Yang
- Department of ObstetricsThe First Affiliated HospitalShanxi Medical University, Taiyuan, China
| | - Lan Jin
- Department of SurgeryYale School of Medicine, New Haven, Connecticut, USA
| | - Huang Huang
- Department of Cancer Prevention and ControlNational Cancer Center/National Clinical Research Center for Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoming Shi
- National Institute of Environmental HealthChinese Center for Disease Control and Prevention, Beijing, China
| | - Suping Wang
- Department of EpidemiologyShanxi Medical University School of Public Health, Taiyuan, China
- Center of Clinical Epidemiology and Evidence Based MedicineShanxi Medical University, Taiyuan, China
| | - Yawei Zhang
- Department of Cancer Prevention and ControlNational Cancer Center/National Clinical Research Center for Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Aumailley L, Bodein A, Adjibade P, Leclercq M, Bourassa S, Droit A, Mazroui R, Lebel M. Combined transcriptomics and proteomics unveil the impact of vitamin C in modulating specific protein abundance in the mouse liver. Biol Res 2024; 57:26. [PMID: 38735981 PMCID: PMC11088995 DOI: 10.1186/s40659-024-00509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Vitamin C (ascorbate) is a water-soluble antioxidant and an important cofactor for various biosynthetic and regulatory enzymes. Mice can synthesize vitamin C thanks to the key enzyme gulonolactone oxidase (Gulo) unlike humans. In the current investigation, we used Gulo-/- mice, which cannot synthesize their own ascorbate to determine the impact of this vitamin on both the transcriptomics and proteomics profiles in the whole liver. The study included Gulo-/- mouse groups treated with either sub-optimal or optimal ascorbate concentrations in drinking water. Liver tissues of females and males were collected at the age of four months and divided for transcriptomics and proteomics analysis. Immunoblotting, quantitative RT-PCR, and polysome profiling experiments were also conducted to complement our combined omics studies. RESULTS Principal component analyses revealed distinctive differences in the mRNA and protein profiles as a function of sex between all the mouse cohorts. Despite such sexual dimorphism, Spearman analyses of transcriptomics data from females and males revealed correlations of hepatic ascorbate levels with transcripts encoding a wide array of biological processes involved in glucose and lipid metabolisms as well as in the acute-phase immune response. Moreover, integration of the proteomics data showed that ascorbate modulates the abundance of various enzymes involved in lipid, xenobiotic, organic acid, acetyl-CoA, and steroid metabolism mainly at the transcriptional level, especially in females. However, several proteins of the mitochondrial complex III significantly correlated with ascorbate concentrations in both males and females unlike their corresponding transcripts. Finally, poly(ribo)some profiling did not reveal significant enrichment difference for these mitochondrial complex III mRNAs between Gulo-/- mice treated with sub-optimal and optimal ascorbate levels. CONCLUSIONS Thus, the abundance of several subunits of the mitochondrial complex III are regulated by ascorbate at the post-transcriptional levels. Our extensive omics analyses provide a novel resource of altered gene expression patterns at the transcriptional and post-transcriptional levels under ascorbate deficiency.
Collapse
Affiliation(s)
- Lucie Aumailley
- Centre de recherche du CHU de Québec, Faculty of Medicine, Université Laval, 2705 Laurier Blvd., Local R-2714, Québec City, QC, G1V 4G2, Canada
| | - Antoine Bodein
- Endocrinology and Nephrology Unit, CHU de Québec-Laval University Research Center, Québec City, QC, Canada
| | - Pauline Adjibade
- Cancer Research Center, Université Laval, Québec, QC, G1R 3S3, Canada
| | - Mickaël Leclercq
- Endocrinology and Nephrology Unit, CHU de Québec-Laval University Research Center, Québec City, QC, Canada
| | - Sylvie Bourassa
- Proteomics Platform, Centre de recherche du CHU de Québec, Faculty of Medicine, Université Laval, Quebec City, QC, G1V 4G2, Canada
| | - Arnaud Droit
- Endocrinology and Nephrology Unit, CHU de Québec-Laval University Research Center, Québec City, QC, Canada
- Proteomics Platform, Centre de recherche du CHU de Québec, Faculty of Medicine, Université Laval, Quebec City, QC, G1V 4G2, Canada
| | - Rachid Mazroui
- Cancer Research Center, Université Laval, Québec, QC, G1R 3S3, Canada
| | - Michel Lebel
- Centre de recherche du CHU de Québec, Faculty of Medicine, Université Laval, 2705 Laurier Blvd., Local R-2714, Québec City, QC, G1V 4G2, Canada.
| |
Collapse
|
3
|
Zhang X, Ren X, Sun W, Griffin N, Wang L, Liu H. PFOA exposure induces aberrant glucose and lipid metabolism in the rat liver through the AMPK/mTOR pathway. Toxicology 2023; 493:153551. [PMID: 37236338 DOI: 10.1016/j.tox.2023.153551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/05/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Perfluorooctanoic acid (PFOA) is the most prominent member of a widely utilized family of compounds named Perfluoroalkyl substances (PFASs). Initially produced for use in both industrial and consumer applications, it has since been recognized that PFASs are extremely persistent in the environment where they have been characterized as persistent organic pollutants (POPs). While previous studies have demonstrated that PFOA may induce disorders of lipid and carbohydrate metabolism, the precise mechanisms by which PFOA produces this phenotype and the involvement of downstream AMPK/mTOR pathways remains unclear. In this study, male rats were exposed to 1.25, 5 and 20mg PFOA/kg body weight/day for 28 days by oral gavage. After 28 days, blood was collected and tested for serum biochemical indicators and livers were removed and weighed. To investigate aberrant metabolism in rats exposed to PFOA, livers were analyzed by performing LC-MS/MS untargeted metabolomics, quantitative real-time PCR, western blotting, immunohistochemical staining was also performed on exposed tissues. Our results showed that exposure to PFOA induced liver damage, increased the expression of glucose and lipid related biochemical indexes in liver and serum, and altered the expression levels of AMPK/mTOR pathway related genes and proteins. In summary, this study clarifies the mechanisms responsible for PFOA toxicity in the liver of exposed animals.
Collapse
Affiliation(s)
- Xuemin Zhang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, PR China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233030, PR China
| | - Xijuan Ren
- School of Public Health, Bengbu Medical College, Bengbu 233030, PR China
| | - Weiqiang Sun
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, PR China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233030, PR China
| | - Nathan Griffin
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Li Wang
- School of Public Health, Bengbu Medical College, Bengbu 233030, PR China.
| | - Hui Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, PR China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233030, PR China.
| |
Collapse
|
4
|
Nie L, Yang Z, Qin X, Lai KP, Qin J, Yang B, Su M. Vitamin C protects the spleen against PFOA-induced immunotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161266. [PMID: 36592905 DOI: 10.1016/j.scitotenv.2022.161266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Perfluorooctanoic acid (PFOA) is widely used in industrial and consumer products of our daily life. It is well-documented that PFOA is closely associated with fatty liver disease. Recently, cumulating studies demonstrated the immunotoxicity of PFOA, but its harmful effect on the largest immune organ, spleen is still largely unknown. In the present study, we used PFOA-exposed mouse model together with comparative transcriptomic analysis to understand the molecular mechanisms underlying the immunotoxicity of PFOA. Furthermore, we investigated the possible use of vitamin C to reverse the PFOA-induced immunotoxicity in spleen. Our result showed that the PFOA exposure could reduce the spleen weight and plasma lymphocytes, and the splenic comparative transcriptomic analysis highlighted the alteration of cell proliferation, metabolism and immune response through the regulation of gene clusters including nicotinamide nucleotide transhydrogenases (NNT) and lymphocyte antigen 6 family member D and K (LY6D and LY6K). More importantly, the supplementation of vitamin C would relieve the PFOA-reduced spleen index and white blood cells. The bioinformatic analysis of transcriptome suggested its involvement in the spleen cell proliferation and immune response. For the first time, our study delineated the molecular mechanisms underlying the PFOA-induced immunotoxicity in the spleen. Furthermore, our results suggested that the supplementation of vitamin C had beneficial effect on the PFOA-altered spleen functions.
Collapse
Affiliation(s)
- Litao Nie
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, PR China
| | - Zhiwen Yang
- Department of Clinical Pharmacy, Guigang City People's Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, PR China
| | - Xian Qin
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, PR China
| | - Jingru Qin
- Department of Clinical Pharmacy, Guigang City People's Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, PR China
| | - Bin Yang
- College of Pharmacy, Guangxi Medical University, Nanning, PR China.
| | - Min Su
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, PR China.
| |
Collapse
|
5
|
Naderi M, Seyedabadi M, Amiri FT, Mohammadi E, Akbari S, Shaki F. Taurine protects against perfluorooctanoic acid-induced hepatotoxicity via inhibition of oxidative stress, inflammatory, and apoptotic pathways. Toxicol Res (Camb) 2023; 12:124-132. [PMID: 36866213 PMCID: PMC9972835 DOI: 10.1093/toxres/tfad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/05/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
We are constantly encountering with low doses of chemicals in everyday life rather than toxic doses at a time. So, ongoing low-dose exposures of environmental chemicals commonly encountered are very likely to cause an adverse health effects. Perfluorooctanoic acid (PFOA) is frequently used for production of an array of consumer products and industrial processes. The present study evaluated the underlying mechanisms of PFOA-induced liver damage and also potential protection by taurine. Male Wistar rats were exposed to PFOA alone and in combination with taurine (25, 50, and 100 mg/kg/day) by gavage for 4 weeks. Liver function tests as well as histopathological examinations were studied. Also, oxidative stress markers, mitochondrial function, and nitric oxide (NO) production in liver tissues were measured. In addition, the expression of apoptosis-related genes (caspase-3, Bax, and Bcl-2), inflammation-associated genes (TNF-α, IL-6, NF-B), and c-Jun-N-terminal kinase (JNK) were evaluated. Taurine significantly reversed serum biochemical and histopathological alterations in the liver tissue following exposure to PFOA (10 mg/kg/day). Similarly, taurine alleviated mitochondrial oxidative damage-induced by PFOA in the liver tissue. An increased Bcl2: Bax ratio with decrees in the expression level of caspase-3, and decreased expression of inflammatory markers (TNF-α and IL-6), NF-B, and JNK were also observed following the administration of taurine. These findings suggest a protective role of taurine against PFOA-induced hepatotoxicity via the inhibition of oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Maloos Naderi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 4815733971, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari 4815733971, Iran
| | - Mohammad Seyedabadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 4815733971, Iran
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 4815733971, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran
| | - Ebrahim Mohammadi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj 6618634683, Iran
| | - Sholeh Akbari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 4815733971, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari 4815733971, Iran
| | - Fatemeh Shaki
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 4815733971, Iran
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari 4815733971, Iran
| |
Collapse
|
6
|
Gan CD, Peng MY, Liu HB, Yang JY. Concentration and distribution of metals, total fluorine, per- and poly-fluoroalkyl substances (PFAS) in vertical soil profiles in industrialized areas. CHEMOSPHERE 2022; 302:134855. [PMID: 35533930 DOI: 10.1016/j.chemosphere.2022.134855] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
The widespread usage of per- and poly-fluoroalkyl substances (PFAS) has caused great concern due to their potential toxicology to human and environmental health. However, there have been limited investigations on the vertical distribution of PFAS in fluorine (F) contaminated soils. In this study, the spatial and vertical distribution of metals, total F, and PFAS in the soil profiles were investigated at different areas in an industrial city. The higher F concentrations in the farmland soils with intensive agricultural activities suggested the impacts of soil tillage. The ΣPFAS concentrations ranged from 0.187 to 1.852 ng g-1 in all soil samples, with PFOA as the dominant pollutant, which accounted for 17.2%-51.6% of the ΣPFAS in all samples. Highest level of PFAS was found in the shallow layer of the soil profiles. The long-chain PFAS such as PFUdA and PFTeDA tended to remain in the topsoil, while the short-chains (PFBA, PFPeA, and PFHxA) have migrated to depth of 100 cm in the vertical soil profile. The application of F-enriched phosphorus fertilizers and atmospheric deposition may be important sources of F and PFAS in soils in this area. Correlation analysis indicated that most of PFAS have similar common sources, and the significantly positive correlation between Zn and PFAS suggested they may share similar sources. This study highlights the need for further work to monitor the PFAS level in soil environments in industrialized areas, in addition to focusing on soil metal and F pollution.
Collapse
Affiliation(s)
- Chun-Dan Gan
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, 644000, China
| | - Mu-Yi Peng
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Heng-Bo Liu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China; Sichuan Academy of Environmental Sciences, Chengdu, 610041, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, 644000, China.
| |
Collapse
|
7
|
Luo J, Chen D, Qin B, Kong D. Molecular mechanisms for the prevention and promoting the recovery from ischemic stroke by nutraceutical laminarin: A comparative transcriptomic approach. Front Nutr 2022; 9:999426. [PMID: 36118760 PMCID: PMC9479852 DOI: 10.3389/fnut.2022.999426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Stroke is the second leading cause of death and a major cause of disability worldwide. Ischemic stroke caused by atherosclerosis accounts for approximately 87% of all stroke cases. Ischemic stroke is a preventable disease; therefore, a better understanding of the molecular mechanisms underlying its pathogenesis and recovery processes could provide therapeutic targets for drug development and reduce the associated mortality rate. Laminarin, a polysaccharide, is a nutraceutical that can be found in brown algae. Accumulating evidence suggests that laminarin could reduce the detrimental effects of neuroinflammation on brain damage after stroke. However, the molecular mechanism underlying its beneficial effects remains largely unknown. In the present study, we used a middle cerebral artery occlusion (MCAO) rat model and applied comparative transcriptomics to investigate the molecular targets and pathways involved in the beneficial effects of laminarin on ischemic stroke. Our results show the involvement of laminarin targets in biological processes related to blood circulation, oxygen supply, and anti-inflammatory responses in the normal brain. More importantly, laminarin treatment attenuated brain damage and neurodeficits caused by ischemic stroke. These beneficial effects are controlled by biological processes related to blood vessel development and brain cell death through the regulation of canonical pathways. Our study, for the first time, delineated the molecular mechanisms underlying the beneficial effects of laminarin on ischemic stroke prevention and recovery and provides novel therapeutic targets for drug development against ischemic stroke.
Collapse
|
8
|
Li R, Cheng L, Wang Q, Zhou L. Comparative Transcriptomic Analysis Reveals the Immunosuppressive Targets of Mesalazine in Dextran Sulfate Sodium-Induced Ulcerative Colitis. Front Genet 2021; 12:698983. [PMID: 34456974 PMCID: PMC8386351 DOI: 10.3389/fgene.2021.698983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/03/2021] [Indexed: 11/30/2022] Open
Abstract
Ulcerative colitis (UC) is a complex inflammatory bowel disorder that can induce colonic and rectal dysfunction. Mesalazine, a first-line medicine, is routinely prescribed for UC treatment. However, the pharmacological targets of mesalazine against UC are not detailed in current publications. In the current study, a transcriptomics strategy was applied to reveal the therapeutic targets and molecular mechanisms of mesalazine for treating dextran sulfate sodium (DSS)-induced UC in mice. Compared with the UC group, a total of 1,663 differentially expressed genes were identified in mesalazine-treated mice, of which 262 were upregulated and 1,401 were downregulated. GO and KEGG enrichment analyses indicated that the protective actions of mesalazine for treating UC were related to the functional regulation of immune inflammatory response, such as the regulation of T cells, white blood cells, and cytokine receptor pathways. In addition, ingenuity pathway analysis of the gene network further revealed the inhibitory action of mesalazine on C-C motif chemokine ligands (CCL11 and CCL21) and C-X-C motif chemokine ligands (CXCL3 and CXCR2). Taken together, the current transcriptomic findings revealed anti-UC pharmacological targets, including the newly discovered biotargets CCL11, CCL21, CXCL3, and CXCR2, of mesalazine against DSS-induced intestinal inflammation.
Collapse
Affiliation(s)
| | | | | | - Liming Zhou
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|