1
|
Mick GJ, McCormick KL. The role of GABA in type 1 diabetes. Front Endocrinol (Lausanne) 2024; 15:1453396. [PMID: 39619323 PMCID: PMC11604429 DOI: 10.3389/fendo.2024.1453396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/22/2024] [Indexed: 12/13/2024] Open
Abstract
Gamma aminobutyric acid (GABA) is synthesized from glutamate by glutamic decarboxylase (GAD). The entero-pancreatic biology of GABA, which is produced by pancreatic islets, GAD-expressing microbiota, enteric immune cells, or ingested through diet, supports an essential physiologic role of GABA in the health and disease. Outside the central nervous system (CNS), GABA is uniquely concentrated in pancreatic β-cells. They express GAD65, which is a type 1 diabetes (T1D) autoantigen. Glutamate constitutes 10% of the amino acids in dietary protein and is preeminently concentrated in human milk. GABA is enriched in many foods, such as tomato and fermented cheese, and is an over-the-counter supplement. Selected microbiota in the midgut have the enzymatic capacity to produce GABA. Intestinal microbiota interact with gut-associated lymphoid tissue to maintain host defenses and immune tolerance, which are implicated in autoimmune disease. Although GABA is a widely known inhibitory neurotransmitter, oral GABA does not cross the blood brain barrier. Three diabetes-related therapeutic actions are ascribed to GABA, namely, increasing pancreatic β-cell content, attenuating excess glucagon and tamping down T-cell immune destruction. These salutary actions have been observed in numerous rodent diabetes models that usually employed high or near-continuous GABA doses. Clinical studies, to date, have identified positive effects of oral GABA on peripheral blood mononuclear cell cytokine release and plasma glucagon. Going forward, it is reassuring that oral GABA therapy has been well-tolerated and devoid of serious adverse effects.
Collapse
Affiliation(s)
- Gail J. Mick
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | | |
Collapse
|
2
|
Li X, Zhou D, Liu M, Zeng H, Yu X, Song Y, He Q, Liu X, Zhang H, Shen Z, Zhu Z, Gu M, Hu X, Zhou W. Evaluation of anti-diabetic effects of Glimepiride/metformin cocrystal. J Drug Target 2024:1-16. [PMID: 39484922 DOI: 10.1080/1061186x.2024.2424901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/11/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
Emerging data suggest that cocrystal of two compounds may have a different pharmacological effect from two compounds alone or their physical combination. Glimepiride (Gli) and metformin (Met) are two types of anti-diabetic drugs. Previously we generated the glimepiride/metformin cocrystal (GM). In this study, we evaluated the anti-diabetic effects of GM and explored the underlying mechanisms. Our result showed that GM reduced the blood glucose and HbA1c levels in db/db mice, and low doses of GM can achieve the hypoglycemic effect as Gli or Met alone, and high dose of GM was better than Gli and Met alone in improving the pathological changes of liver. In vivo studies showed that GM activated AMPK and STAT3 signaling, downregulated TXNIP expression and upregulated MaFA expression. Moreover, GM promoted the secretion of insulin in pancreas of db/db mice and in high glucose-treated INS-1 and MIN-6 cells. Together, GM possesses slightly better anti-diabetic effects than Met or Gli alone in db/db mice, and the mechanism of GM protecting β-cell dysfunction induced by glucotoxicity may be associated with activation of the AMPK/TXNIP/MaFA pathway.
Collapse
Affiliation(s)
- Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing 400016, China
| | - Duanfang Zhou
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
- Department of Pharmacy, Chongqing Health Center for Women and Children, Chongqing 401147, China
| | - Mingpu Liu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing 400016, China
| | - Hongfang Zeng
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing 400016, China
| | - Xiaoping Yu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing 400016, China
| | - Yi Song
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing 400016, China
| | - Qichen He
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing 400016, China
| | - Xu Liu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing 400016, China
| | - Huan Zhang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing 400016, China
| | - Zhengze Shen
- Department of Pharmacy, Yongchuan Hospital affiliated to Chongqing Medical University, Chongqing 400016, China
| | - Zeng Zhu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Mingyan Gu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Xiangnan Hu
- Department of Pharmacochemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Weiying Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing 400016, China
| |
Collapse
|
3
|
Schwartz SS, Herman ME. Gluco-regulation & type 2 diabetes: entrenched misconceptions updated to new governing principles for gold standard management. Front Endocrinol (Lausanne) 2024; 15:1394805. [PMID: 38933821 PMCID: PMC11199379 DOI: 10.3389/fendo.2024.1394805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Our understanding of type 2 diabetes (T2D) has evolved dramatically. Advances have upended entrenched dogmas pertaining to the onset and progression of T2D, beliefs that have prevailed from the early era of diabetes research-and continue to populate our medical textbooks and continuing medical education materials. This review article highlights key insights that lend new governing principles for gold standard management of T2D. From the historical context upon which old beliefs arose to new findings, this article outlines evidence and perspectives on beta cell function, the underlying defects in glucoregulation, the remediable nature of T2D, and, the rationale supporting the shift to complication-centric prescribing. Practical approaches translate this rectified understanding of T2D into strategies that fill gaps in current management practices of prediabetes through late type 2 diabetes.
Collapse
Affiliation(s)
- Stanley S. Schwartz
- Main Line Health, Wynnewood, PA, and University of Pennsylvania, Philadelphia, PA, United States
| | - Mary E. Herman
- Social Alchemy: Building Physician Competency Across the Globe, Sacatepéquez, Guatemala
| |
Collapse
|
4
|
Spezani R, Reis-Barbosa PH, Mandarim-de-Lacerda CA. Update on the transdifferentiation of pancreatic cells into functional beta cells for treating diabetes. Life Sci 2024; 346:122645. [PMID: 38614297 DOI: 10.1016/j.lfs.2024.122645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/19/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
The increasing global prevalence and associated comorbidities need innovative approaches for type 2 diabetes mellitus (T2DM) prevention and treatment. Genetics contributes significantly to T2DM susceptibility, and genetic counseling is significant in detecting and informing people about the diabetic risk. T2DM is also intricately linked to overnutrition and obesity, and nutritional advising is beneficial to mitigate diabetic evolution. However, manipulating pancreatic cell plasticity and transdifferentiation could help beta cell regeneration and glucose homeostasis, effectively contributing to the antidiabetic fight. Targeted modulation of transcription factors is highlighted for their roles in various aspects of pancreatic cell differentiation and function, inducing non-beta cells' conversion into functional beta cells (responsive to glucose). In addition, pharmacological interventions targeting specific receptors and pathways might facilitate cell transdifferentiation aiming to maintain or increase beta cell mass and function. However, the mechanisms underlying cellular reprogramming are not yet well understood. The present review highlights the primary transcriptional factors in the endocrine pancreas, focusing on transdifferentiation as a primary mechanism. Therefore, islet cell reprogramming, converting one cell type to another and transforming non-beta cells into insulin-producing cells, depends, among others, on transcription factors. It is a promising fact that new transcription factors are discovered every day, and their actions on pancreatic islet cells are revealed. Exploring these pathways associated with pancreatic development and islet endocrine cell differentiation could unravel the molecular intricacies underlying transdifferentiation processes, exploring novel therapeutic strategies to treat diabetes. The medical use of this biotechnology is expected to be achievable within a short time.
Collapse
Affiliation(s)
- Renata Spezani
- Laboratory of Morphometry, Metabolism, Cardiovascular Disease, Institute of Biology, Biomedical Center, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro H Reis-Barbosa
- Laboratory of Morphometry, Metabolism, Cardiovascular Disease, Institute of Biology, Biomedical Center, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism, Cardiovascular Disease, Institute of Biology, Biomedical Center, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Zhao T, Tian Y, Zhao J, Sun D, Ma Y, Wang W, Yan W, Jiao P, Ma J. Loss of mitogen-activated protein kinase phosphate-5 aggravates islet dysfunction in mice with type 1 and type 2 diabetes. FASEB J 2024; 38:e23437. [PMID: 38305849 DOI: 10.1096/fj.202301479r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Impaired functionality and loss of islet β-cells are the primary abnormalities underlying the pathogenesis of both type 1 and 2 diabetes (T1DM and T2DM). However, specific therapeutic and preventive mechanisms underlying these conditions remain unclear. Mitogen-activated protein kinase phosphatase-5 (MKP-5) has been implicated in carcinogenesis, lipid metabolism regulation, and immune cell activation. In a previous study, we demonstrated the involvement of exogenous MKP-5 in the regulation of obesity-induced T2DM. However, the role of endogenous MKP-5 in the T1DM and T2DM processes is unclear. Thus, mice with MKP-5 knockout (KO) were generated and used to establish mouse models of both T1DM and T2DM. Our results showed that MKP-5 KO exacerbated diabetes-related symptoms in mice with both T1DM and T2DM. Given that most phenotypic studies on islet dysfunction have focused on mice with T2DM rather than T1DM, we specifically aimed to investigate the role of endoplasmic reticulum stress (ERS) and autophagy in T2DM KO islets. To accomplish this, we performed RNA sequence analysis to gain comprehensive insight into the molecular mechanisms associated with ERS and autophagy in T2DM KO islets. The results showed that the islets from mice with MKP-5 KO triggered 5' adenosine monophosphate-activated protein kinase (AMPK)-mediated autophagy inhibition and glucose-regulated protein 78 (GRP-78)-dominated ERS. Hence, we concluded that the autophagy impairment, resulting in islet dysfunction in mice with MKP-5 KO, is mediated through GRP-78 involvement. These findings provide valuable insights into the molecular pathogenesis of diabetes and highlight the significant role of MKP-5. Moreover, this knowledge holds promise for novel therapeutic strategies targeting MKP-5 for diabetes management.
Collapse
Affiliation(s)
- Tongjian Zhao
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Yafei Tian
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Jianan Zhao
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Dandan Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Yongjun Ma
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Wei Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Weiqun Yan
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Ping Jiao
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Jie Ma
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|