1
|
Snyder DT, Harvey SR, Wysocki VH. Surface-induced Dissociation Mass Spectrometry as a Structural Biology Tool. Chem Rev 2022; 122:7442-7487. [PMID: 34726898 PMCID: PMC9282826 DOI: 10.1021/acs.chemrev.1c00309] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Native mass spectrometry (nMS) is evolving into a workhorse for structural biology. The plethora of online and offline preparation, separation, and purification methods as well as numerous ionization techniques combined with powerful new hybrid ion mobility and mass spectrometry systems has illustrated the great potential of nMS for structural biology. Fundamental to the progression of nMS has been the development of novel activation methods for dissociating proteins and protein complexes to deduce primary, secondary, tertiary, and quaternary structure through the combined use of multiple MS/MS technologies. This review highlights the key features and advantages of surface collisions (surface-induced dissociation, SID) for probing the connectivity of subunits within protein and nucleoprotein complexes and, in particular, for solving protein structure in conjunction with complementary techniques such as cryo-EM and computational modeling. Several case studies highlight the significant role SID, and more generally nMS, will play in structural elucidation of biological assemblies in the future as the technology becomes more widely adopted. Cases are presented where SID agrees with solved crystal or cryoEM structures or provides connectivity maps that are otherwise inaccessible by "gold standard" structural biology techniques.
Collapse
Affiliation(s)
- Dalton T. Snyder
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Sophie R. Harvey
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Vicki H. Wysocki
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
2
|
The selective adsorption performance and mechanism of multiwall magnetic carbon nanotubes for heavy metals in wastewater. Sci Rep 2021; 11:16878. [PMID: 34413419 PMCID: PMC8377063 DOI: 10.1038/s41598-021-96465-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/05/2021] [Indexed: 11/08/2022] Open
Abstract
The safe treatment of heavy metals in wastewater is directly related to human health and social development. In this paper, a new type of recyclable adsorbent is synthesized through the oxidation of enhancer and modification with magnetic nanoparticles. The new adsorbent not only inherits the advantages of multiwall carbon nanotubes (6O-MWCNTs), but also exhibits a new magnetic property and further improved adsorption capacity, which is conducive to the magnetic separation and recovery of heavy metals. The adsorption results indicate that multiwall magnetic carbon nanotubes (6O-MWCNTs@Fe3O4) have a good performance for Pb(II) selective adsorption, with a maximum adsorption capacity of 215.05 mg/g, much higher than the existing adsorption capacity of the same type of adsorbents. Under the action of an external magnetic field, 6O-MWCNTs@Fe3O4 that adsorbed metal ions can quickly achieve good separation from the solution. The joint characterization results of FTIR and XPS show that under the action of both coordination and electrostatic attraction, the C=O bond in the -COOH group is induced to open by the metal ions and transforms into an ionic bond, and the metal ions are stably adsorbed on the surface of 6O-MWCNTs@Fe3O4. Pb(II) has a stronger attraction than Cu(II) and Cd(II) to the lone pair of electrons in oxygen atoms to form complexes, due to the covalent index of Pb (6.41) is more larger than that of Cu (2.98) and Cd (2.71).These data provide a new type of recyclable adsorbent for the efficient treatment of heavy metal ions in wastewater and enrich relevant theoretical knowledge.
Collapse
|
3
|
Thermal dissociation of the singly protonated Arginine: Competition between side-chain and backbone fragmentation. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Fast fragmentation during surface-induced dissociation: An examination of peptide size and structure. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Zhou LS, Wang YQ, Guo H. Dynamics studies of diglycine scattering from highly oriented pyrolytic graphite. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp2001013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Lin-sen Zhou
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque NM 87131, USA
| | - Ying-qi Wang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque NM 87131, USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque NM 87131, USA
| |
Collapse
|
6
|
Stiving AQ, Gilbert JD, Jones BJ, Wysocki VH. A Tilted Surface and Ion Carpet Array for SID. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:458-462. [PMID: 32031394 PMCID: PMC7203677 DOI: 10.1021/jasms.9b00009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The development of native mass spectrometry (MS) has provided structural biologists an additional tool to probe the structures of large macromolecular systems. Surface-induced dissociation (SID) is one activation method used within tandem MS experiments that has proven useful in interrogating the connectivity and topology of biologically-relevant protein complexes. We present here the use of a tilted surface and ion carpet array within a new SID device design, enabling decreased dimensions along the ion path and fewer lenses to tune. This device works well in fragmenting ions of both low (peptides) and high (protein complexes) m/z. Results show that the ion carpet array, while enabling simplification of the back-end of the device, has deficiencies in product collection and subsequently signal at higher SID energies when fragmenting protein complexes. However, the use of the tilted surface is advantageous as an effective way to shorten the device and reduce the number of independent voltages.
Collapse
|
7
|
Martin Somer A, Macaluso V, Barnes GL, Yang L, Pratihar S, Song K, Hase WL, Spezia R. Role of Chemical Dynamics Simulations in Mass Spectrometry Studies of Collision-Induced Dissociation and Collisions of Biological Ions with Organic Surfaces. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2-24. [PMID: 32881516 DOI: 10.1021/jasms.9b00062] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this article, a perspective is given of chemical dynamics simulations of collisions of biological ions with surfaces and of collision-induced dissociation (CID) of ions. The simulations provide an atomic-level understanding of the collisions and, overall, are in quite good agreement with experiment. An integral component of ion/surface collisions is energy transfer to the internal degrees of freedom of both the ion and the surface. The simulations reveal how this energy transfer depends on the collision energy, incident angle, biological ion, and surface. With energy transfer to the ion's vibration fragmentation may occur, i.e. surface-induced dissociation (SID), and the simulations discovered a new fragmentation mechanism, called shattering, for which the ion fragments as it collides with the surface. The simulations also provide insight into the atomistic dynamics of soft-landing and reactive-landing of ions on surfaces. The CID simulations compared activation by multiple "soft" collisions, resulting in random excitation, versus high energy single collisions and nonrandom excitation. These two activation methods may result in different fragment ions. Simulations provide fragmentation products in agreement with experiments and, hence, can provide additional information regarding the reaction mechanisms taking place in experiment. Such studies paved the way on using simulations as an independent and predictive tool in increasing fundamental understanding of CID and related processes.
Collapse
Affiliation(s)
- Ana Martin Somer
- Departamento de Química, Facultad de Ciencias, Módulo 13 Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC Cantoblanco, 28049 Madrid, Spain
| | - Veronica Macaluso
- LAMBE, Univ Evry, CNRS, CEA, Université Paris-Saclay, 91025 Evry, France
| | - George L Barnes
- Department of Chemistry and Biochemistry, Siena College, Loudonville, New York 12211, United States
| | - Li Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Subha Pratihar
- Department of Chemistry and Biochemistry Texas Tech University, Lubbock, Texas 79409, United States
| | - Kihyung Song
- Department of Chemistry, Korea National University of Education, Chungbuk 28644, Republic of Korea
| | - William L Hase
- Department of Chemistry and Biochemistry Texas Tech University, Lubbock, Texas 79409, United States
| | - Riccardo Spezia
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT, 4, Place Jussieu, Paris, 75252 Cedex 05, France
| |
Collapse
|
8
|
Malik A, Lin YF, Pratihar S, Angel LA, Hase WL. Direct Dynamics Simulations of Fragmentation of a Zn(II)-2Cys-2His Oligopeptide. Comparison with Mass Spectrometry Collision-Induced Dissociation. J Phys Chem A 2019; 123:6868-6885. [DOI: 10.1021/acs.jpca.9b05218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Abdul Malik
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061 United States
| | - Yu-Fu Lin
- Department of Chemistry Texas A&M University—Commerce, 2600 South Neal Street, Commerce, Texas 75428, United States
| | - Subha Pratihar
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061 United States
| | - Laurence A. Angel
- Department of Chemistry Texas A&M University—Commerce, 2600 South Neal Street, Commerce, Texas 75428, United States
| | - William L. Hase
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061 United States
| |
Collapse
|
9
|
Gu M, Yang L, Hase WL, Sun J, Zhang J. Energy Transfer of Peptide Ions Colliding with a Self‐Assembled Monolayer Surface. The Influence of Peptide Ion Size. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201800544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Meng Gu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin Heilongjiang 150001 China
| | - Li Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin Heilongjiang 150001 China
| | - William L Hase
- Department of Chemistry and BiochemistryTexas Tech University Lubbock TX 79401 USA
| | - Jianmin Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin Heilongjiang 150001 China
| | - Jiaxu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin Heilongjiang 150001 China
| |
Collapse
|
10
|
Ásgeirsson V, Bauer CA, Grimme S. Quantum chemical calculation of electron ionization mass spectra for general organic and inorganic molecules. Chem Sci 2017; 8:4879-4895. [PMID: 28959412 PMCID: PMC5603848 DOI: 10.1039/c7sc00601b] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/04/2017] [Indexed: 01/03/2023] Open
Abstract
We introduce a fully stand-alone version of the Quantum Chemistry Electron Ionization Mass Spectra (QCEIMS) program [S. Grimme, Angew. Chem. Int. Ed., 2013, 52, 6306] allowing efficient simulations for molecules composed of elements with atomic numbers up to Z = 86. The recently developed extended tight-binding semi-empirical method GFN-xTB has been combined with QCEIMS, thereby eliminating dependencies on third-party electronic structure software. Furthermore, for reasonable calculations of ionization potentials, as required by the method, a second tight-binding variant, IPEA-xTB, is introduced here. This novel combination of methods allows the automatic, fast and reasonably accurate computation of electron ionization mass spectra for structurally different molecules across the periodic table. In order to validate and inspect the transferability of the method, we perform large-scale simulations for some representative organic, organometallic, and main-group inorganic systems. Theoretical spectra for 23 molecules are compared directly to experimental data taken from standard databases. For the first time, realistic quantum chemistry based EI-MS for organometallic systems like ferrocene or copper(ii)acetylacetonate are presented. Compared to previously used semiempirical methods, GFN-xTB is faster, more robust, and yields overall higher quality spectra. The partially analysed theoretical reaction and fragmentation mechanisms are chemically reasonable and reveal in unprecedented detail the extreme complexity of high energy gas phase ion chemistry including complicated rearrangement reactions prior to dissociation.
Collapse
Affiliation(s)
- Vilhjálmur Ásgeirsson
- Mulliken Center for Theoretical Chemistry , Institute of Physical and Theoretical Chemistry , University of Bonn , Beringstr. 4 , 53115 Bonn , Germany . ; Tel: +49 228 73 2351
- Faculty of Physical Sciences and Science Institute , University of Iceland , 107 Reykjavík , Iceland
| | - Christoph A Bauer
- Mulliken Center for Theoretical Chemistry , Institute of Physical and Theoretical Chemistry , University of Bonn , Beringstr. 4 , 53115 Bonn , Germany . ; Tel: +49 228 73 2351
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry , Institute of Physical and Theoretical Chemistry , University of Bonn , Beringstr. 4 , 53115 Bonn , Germany . ; Tel: +49 228 73 2351
| |
Collapse
|
11
|
Krishnan Y, Sharma N, Lourderaj U, Paranjothy M. Classical Dynamics Simulations of Dissociation of Protonated Tryptophan in the Gas Phase. J Phys Chem A 2017; 121:4389-4396. [PMID: 28537746 DOI: 10.1021/acs.jpca.7b01359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gas phase decomposition of protonated amino acids are of great interest due to their role in understanding protein and peptide chemistry. Several experimental and theoretical studies have been reported in the literature on this subject. In the present work, decomposition of the aromatic amino acid protonated tryptophan was studied by on-the-fly classical chemical dynamics simulations using density functional theory. Mass spectrometry and electronic structure theory studies have shown multiple dissociation pathways for this biologically relevant molecule. Unlike aliphatic amino acids, protonated tryptophan dissociates via NH3 elimination rather than the usual iminium ion formation by combined removal of H2O and CO molecules. Also, a major fragmentation pathway in the present work involves Cα-Cβ bond fission. Results of the chemical dynamics simulations reported here are in overall agreement with experiments, and detailed atomic level mechanisms are presented.
Collapse
Affiliation(s)
- Yogeshwaran Krishnan
- Department of Chemistry, Indian Institute of Technology Jodhpur , Jodhpur 342011 Rajasthan, India
| | - Nishant Sharma
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubhaneshwar, HBNI , P. O. Jatni, Khurda 752650 Orissa, India
| | - Upakarasamy Lourderaj
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubhaneshwar, HBNI , P. O. Jatni, Khurda 752650 Orissa, India
| | - Manikandan Paranjothy
- Department of Chemistry, Indian Institute of Technology Jodhpur , Jodhpur 342011 Rajasthan, India
| |
Collapse
|
12
|
Pratihar S, Ma X, Homayoon Z, Barnes GL, Hase WL. Direct Chemical Dynamics Simulations. J Am Chem Soc 2017; 139:3570-3590. [DOI: 10.1021/jacs.6b12017] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Subha Pratihar
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Xinyou Ma
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Zahra Homayoon
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - George L. Barnes
- Department
of Chemistry and Biochemistry, Siena College, Loudonville, New York 12211, United States
| | - William L. Hase
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
13
|
Pratihar S, Barnes GL, Laskin J, Hase WL. Dynamics of Protonated Peptide Ion Collisions with Organic Surfaces: Consonance of Simulation and Experiment. J Phys Chem Lett 2016; 7:3142-3150. [PMID: 27467857 DOI: 10.1021/acs.jpclett.6b00978] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this Perspective, mass spectrometry experiments and chemical dynamics simulations are described that have explored the atomistic dynamics of protonated peptide ions, peptide-H(+), colliding with organic surfaces. These studies have investigated the energy transfer and fragmentation dynamics for peptide-H(+) surface-induced dissociation (SID), peptide-H(+) physisorption on the surface, soft landing (SL), and peptide-H(+) reaction with the surface, reactive landing (RL). SID provides primary structures of biological ions and information regarding their fragmentation pathways and energetics. Two SID mechanisms are found for peptide-H(+) fragmentation. A traditional mechanism in which peptide-H(+) is vibrationally excited by its collision with the surface, rebounds off the surface and then dissociates in accord with the statistical, RRKM unimolecular rate theory. The other, shattering, is a nonstatistical mechanism in which peptide-H(+) fragments as it collides with the surface, dissociating via many pathways and forming many product ions. Shattering is important for collisions with diamond and perfluorinated self-assembled monolayer (F-SAM) surfaces, increasing in importance with the peptide-H(+) collision energy. Chemical dynamics simulations also provide important mechanistic insights on SL and RL of biological ions on surfaces. The simulations indicate that SL occurs via multiple mechanisms consisting of sequences of peptide-H(+) physisorption on and penetration in the surface. SL and RL have a broad range of important applications including preparation of protein or peptide microarrays, development of biocompatible substrates and biosensors, and preparation of novel synthetic materials, including nanomaterials. An important RL mechanism is intact deposition of peptide-H(+) on the surface.
Collapse
Affiliation(s)
- Subha Pratihar
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409-1061, United States
| | - George L Barnes
- Department of Chemistry and Biochemistry, Siena College , Loudonville, New York 12211, United States
| | - Julia Laskin
- Pacific Northwest National Laboratory , Physical Sciences Division, P.O. Box 999 K8-88, Richland, Washington 99352, United States
| | - William L Hase
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409-1061, United States
| |
Collapse
|
14
|
Pratihar S, Barnes GL, Hase WL. Chemical dynamics simulations of energy transfer, surface-induced dissociation, soft-landing, and reactive-landing in collisions of protonated peptide ions with organic surfaces. Chem Soc Rev 2016; 45:3595-608. [DOI: 10.1039/c5cs00482a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Different simulation approaches like MM, QM + MM, and QM/MM, were used to study surface-induced dissociation, soft-landing, and reactive-landing for the peptide-H+ + surface collisions.
Collapse
Affiliation(s)
- Subha Pratihar
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| | - George L. Barnes
- Department of Chemistry and Biochemistry
- Siena College
- Loudonville
- USA
| | - William L. Hase
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| |
Collapse
|
15
|
Martín-Sómer A, Yáñez M, Gaigeot MP, Spezia R. Unimolecular Fragmentation Induced By Low-Energy Collision: Statistically or Dynamically Driven? J Phys Chem A 2014; 118:10882-93. [DOI: 10.1021/jp5076059] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ana Martín-Sómer
- Departamento
de Química, Facultad de Ciencias, Módulo
13. Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC. Cantoblanco, E-28049 Madrid, Spain
- Université d’Evry Val d’Essonne, UMR 8587 LAMBE, Boulevard F. Mitterrand, 91025 Evry Cedex, France
| | - Manuel Yáñez
- Departamento
de Química, Facultad de Ciencias, Módulo
13. Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC. Cantoblanco, E-28049 Madrid, Spain
| | - Marie-Pierre Gaigeot
- Université d’Evry Val d’Essonne, UMR 8587 LAMBE, Boulevard F. Mitterrand, 91025 Evry Cedex, France
- CNRS, Laboratoire Analyse
et Modélisation pour la Biologie et
l’Environnement, UMR 8587, Boulevard
F. Mitterrand, 91025 Evry Cedex, France
- Institut Universitaire de France (IUF), 103 Blvd St Michel, 75005 Paris, France
| | - Riccardo Spezia
- Université d’Evry Val d’Essonne, UMR 8587 LAMBE, Boulevard F. Mitterrand, 91025 Evry Cedex, France
- CNRS, Laboratoire Analyse
et Modélisation pour la Biologie et
l’Environnement, UMR 8587, Boulevard
F. Mitterrand, 91025 Evry Cedex, France
| |
Collapse
|
16
|
Pratihar S, Kohale SC, Bhakta DG, Laskin J, Hase WL. Dynamics of energy transfer and soft-landing in collisions of protonated dialanine with perfluorinated self-assembled monolayer surfaces. Phys Chem Chem Phys 2014; 16:23769-78. [PMID: 25274280 DOI: 10.1039/c4cp03535f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemical dynamics simulations are reported which provide atomistic details of collisions of protonated dialanine, ala2-H(+), with a perfluorinated octanethiolate self-assembled monolayer (F-SAM) surface. The simulations are performed at collision energies Ei of 5.0, 13.5, 22.5, 30.00, and 70 eV, and incident angles 0° (normal) and 45° (grazing). Excellent agreement with experiment (J. Am. Chem. Soc., 2000, 122, 9703-9714) is found for both the average fraction and distribution of the collision energy transferred to the ala2-H(+) internal degrees of freedom. The dominant pathway for this energy transfer is to ala2-H(+) vibration, but for Ei = 5.0 eV ∼20% of the energy transfer is to ala2-H(+) rotation. Energy transfer to ala2-H(+) rotation decreases with increase in Ei and becomes negligible at high Ei. Three types of collisions are observed in the simulations: i.e. those for which ala2-H(+) (1) directly scatters off the F-SAM surface; (2) sticks/physisorbs on/in the surface, but desorbs within the 10 ps numerical integration of the simulations; and (3) remains trapped (i.e. soft-landed) on/in the surface when the simulations are terminated. Penetration of the F-SAM by ala2-H(+) is important for the latter two types of events. The trapped trajectories are expected to have relatively long residence times on the surface, since a previous molecular dynamics simulation (J. Phys. Chem. B, 2014, 118, 5577-5588) shows that thermally accommodated ala2-H(+) ions have an binding energy with the F-SAM surface of at least ∼15 kcal mol(-1).
Collapse
Affiliation(s)
- Subha Pratihar
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA.
| | | | | | | | | |
Collapse
|
17
|
Pratihar S, Kohale SC, Vázquez SA, Hase WL. Intermolecular potential for binding of protonated peptide ions with perfluorinated hydrocarbon surfaces. J Phys Chem B 2014; 118:5577-88. [PMID: 24779856 DOI: 10.1021/jp410886s] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An analytic potential energy function was developed to model both short-range and long-range interactions between protonated peptide ions and perfluorinated hydrocarbon chains. The potential function is defined as a sum of two-body potentials of the Buckingham form. The parameters of the two-body potentials were obtained by fits to intermolecular potential energy curves (IPECs) calculated for CF4, which represents the F and C atoms of a perfluoroalkane chain, interacting with small molecules chosen as representatives of the main functional groups and atoms present in protonated peptide ions: specifically, CH4, NH3, NH4(+), and HCOOH. The IPECs were calculated at the MP2/aug-cc-pVTZ level of theory, with basis set superposition error (BSSE) corrections. Good fits were obtained for an energy range extending up to about 400 kcal/mol. It is shown that the pair potentials derived from the NH3/CF4 and HCOOH/CF4 fits reproduce acceptably well the intermolecular interactions in HCONH2/CF4, which indicates that the parameters obtained for the amine and carbonyl atoms may be transferable to the corresponding atoms of the amide group. The derived potential energy function may be used in chemical dynamics simulations of collisions of peptide-H(+) ions with perfluorinated hydrocarbon surfaces.
Collapse
Affiliation(s)
- Subha Pratihar
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409-1061, United States
| | | | | | | |
Collapse
|
18
|
Yang L, Sun R, Hase WL. Use of Direct Dynamics Simulations to Determine Unimolecular Reaction Paths and Arrhenius Parameters for Large Molecules. J Chem Theory Comput 2011; 7:3478-83. [DOI: 10.1021/ct200459v] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li Yang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Rui Sun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - William L. Hase
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
19
|
Barnes GL, Young K, Yang L, Hase WL. Fragmentation and reactivity in collisions of protonated diglycine with chemically modified perfluorinated alkylthiolate-self-assembled monolayer surfaces. J Chem Phys 2011; 134:094106. [DOI: 10.1063/1.3558736] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Mullin JM, Roskop LB, Pruitt SR, Collins MA, Gordon MS. Systematic fragmentation method and the effective fragment potential: an efficient method for capturing molecular energies. J Phys Chem A 2010; 113:10040-9. [PMID: 19739681 DOI: 10.1021/jp9036183] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The systematic fragmentation method fragments a large molecular system into smaller pieces, in such a way as to greatly reduce the computational cost while retaining nearly the accuracy of the parent ab initio electronic structure method. In order to attain the desired (sub-kcal/mol) accuracy, one must properly account for the nonbonded interactions between the separated fragments. Since, for a large molecular species, there can be a great many fragments and therefore a great many nonbonded interactions, computations of the nonbonded interactions can be very time-consuming. The present work explores the efficacy of employing the effective fragment potential (EFP) method to obtain the nonbonded interactions since the EFP method has been shown previously to capture nonbonded interactions with an accuracy that is often comparable to that of second-order perturbation theory. It is demonstrated that for nonbonded interactions that are not high on the repulsive wall (generally >2.7 A), the EFP method appears to be a viable approach for evaluating the nonbonded interactions. The efficacy of the EFP method for this purpose is illustrated by comparing the method to ab initio methods for small water clusters, the ZOVGAS molecule, retinal, and the alpha-helix. Using SFM with EFP for nonbonded interactions yields an error of 0.2 kcal/mol for the retinal cis-trans isomerization and a mean error of 1.0 kcal/mol for the isomerization energies of five small (120-170 atoms) alpha-helices.
Collapse
|
21
|
Barnes GL, Hase WL. Energy Transfer, Unfolding, and Fragmentation Dynamics in Collisions of N-Protonated Octaglycine with an H-SAM Surface. J Am Chem Soc 2009; 131:17185-93. [DOI: 10.1021/ja904925p] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- George L. Barnes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409
| | - William L. Hase
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409
| |
Collapse
|
22
|
Spezia R, Salpin JY, Gaigeot MP, Hase WL, Song K. Protonated Urea Collision-Induced Dissociation. Comparison of Experiments and Chemical Dynamics Simulations. J Phys Chem A 2009; 113:13853-62. [DOI: 10.1021/jp906482v] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Riccardo Spezia
- Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, CNRS UMR 8587, Université d’Evry-Val-d’Essonne, Bd. F. Mitterrand, 91025 Evry Cedex, France, Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas 79409, and Department of Chemistry, Korea National University of Education, Chungbuk, 363-791 South Korea
| | - Jean-Yves Salpin
- Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, CNRS UMR 8587, Université d’Evry-Val-d’Essonne, Bd. F. Mitterrand, 91025 Evry Cedex, France, Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas 79409, and Department of Chemistry, Korea National University of Education, Chungbuk, 363-791 South Korea
| | - Marie-Pierre Gaigeot
- Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, CNRS UMR 8587, Université d’Evry-Val-d’Essonne, Bd. F. Mitterrand, 91025 Evry Cedex, France, Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas 79409, and Department of Chemistry, Korea National University of Education, Chungbuk, 363-791 South Korea
| | - William L. Hase
- Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, CNRS UMR 8587, Université d’Evry-Val-d’Essonne, Bd. F. Mitterrand, 91025 Evry Cedex, France, Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas 79409, and Department of Chemistry, Korea National University of Education, Chungbuk, 363-791 South Korea
| | - Kihyung Song
- Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, CNRS UMR 8587, Université d’Evry-Val-d’Essonne, Bd. F. Mitterrand, 91025 Evry Cedex, France, Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas 79409, and Department of Chemistry, Korea National University of Education, Chungbuk, 363-791 South Korea
| |
Collapse
|
23
|
Park K, Deb B, Song K, Hase WL. Importance of shattering fragmentation in the surface-induced dissociation of protonated octaglycine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:939-948. [PMID: 19318279 DOI: 10.1016/j.jasms.2009.02.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/25/2009] [Accepted: 02/25/2009] [Indexed: 05/27/2023]
Abstract
A QM + MM direct chemical dynamics simulation was performed to study collisions of protonated octaglycine, gly(8)-H(+), with the diamond {111} surface at an initial collision energy E(i) of 100 eV and incident angle theta(i) of 0 degrees and 45 degrees. The semiempirical model AM1 was used for the gly(8)-H(+) intramolecular potential, so that its fragmentation could be studied. Shattering dominates gly(8)-H(+) fragmentation at theta(i) = 0 degrees, with 78% of the ions dissociating in this way. At theta(i) = 45 degrees shattering is much less important. For theta(i) = 0 degrees there are 304 different pathways, many related by their backbone cleavage patterns. For the theta(i) = 0 degrees fragmentations, 59% resulted from both a-x and b-y cleavages, while for theta(i) = 45 degrees 70% of the fragmentations occurred with only a-x cleavage. For theta(i) = 0 degrees, the average percentage energy transfers to the internal degrees of freedom of the ion and the surface, and the energy remaining in ion translation are 45%, 26%, and 29%. For 45 degrees these percentages are 26%, 12%, and 62%. The percentage energy-transfer to DeltaE(int) for theta(i) = 0 degrees is larger than that reported in previous experiments for collisions of des-Arg(1)-bradykinin with a diamond surface at the same theta(i). This difference is discussed in terms of differences between the model diamond surface used in the simulations and the diamond surface prepared for the experiments.
Collapse
Affiliation(s)
- Kyoyeon Park
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | | | | | | |
Collapse
|
24
|
Barnes GL, Hase WL. NH4+ + CH4 Gas Phase Collisions as a Possible Analogue to Protonated Peptide/Surface Induced Dissociation. J Phys Chem A 2009; 113:7543-7. [DOI: 10.1021/jp900919s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- George L. Barnes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409
| | - William L. Hase
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409
| |
Collapse
|
25
|
Lourderaj U, Hase WL. Theoretical and Computational Studies of Non-RRKM Unimolecular Dynamics. J Phys Chem A 2009; 113:2236-53. [DOI: 10.1021/jp806659f] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Upakarasamy Lourderaj
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061
| | - William L. Hase
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061
| |
Collapse
|
26
|
Wysocki VH, Joyce KE, Jones CM, Beardsley RL. Surface-induced dissociation of small molecules, peptides, and non-covalent protein complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:190-208. [PMID: 18191578 PMCID: PMC2709493 DOI: 10.1016/j.jasms.2007.11.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 10/23/2007] [Accepted: 11/03/2007] [Indexed: 05/12/2023]
Abstract
This article provides a perspective on collisions of ions with surfaces, including surface-induced dissociation (SID) and reactive ion scattering spectrometry (RISS). The content is organized into sections on surface-induced dissociation of small ions, surface characterization of organic thin films by collision of well-characterized ions into surfaces, the use of SID to probe peptide fragmentation, and the dissociation of large non-covalent complexes by SID. Examples are given from the literature with a focus on experiments from the authors' laboratory. The article is not a comprehensive review but is designed to provide the reader with an overview of the types of results possible by collisions of ions into surfaces.
Collapse
Affiliation(s)
- Vicki H Wysocki
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721-0041, USA.
| | | | | | | |
Collapse
|
27
|
Shemesh D, Gerber RB. Classical Trajectory Simulations of Photoionization Dynamics of Tryptophan: Intramolecular Energy Flow, Hydrogen-Transfer Processes and Conformational Transitions. J Phys Chem A 2006; 110:8401-8. [PMID: 16821822 DOI: 10.1021/jp0570869] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
One-photon and two-photon ionization dynamics of tryptophan is studied by classical trajectory simulations using the semiempirical parametric method number 3 (PM3) potential surface in "on the fly" calculations. The tryptophan conformer is assumed to be in the vibrational ground state prior to ionization. Initial conditions for the trajectories are weighted according to the Wigner distribution function computed for that state. Vertical ionization in the spirit of the classical Franck-Condon principle is assumed. For the two-photon ionization process the ionization is assumed to go resonantively through the first excited state. Most trajectories are computed, and the analysis is carried out for the first 10 ps. A range of interesting effects are observed. The main findings are as follows: (1) Multiple conformational transitions are observed in most of the trajectories within the ultrafast duration of 10 ps. (2) Hydrogen transfer from the carboxyl group to the amino group and back has been observed. A zwitterion is formed as a transient state. (3) Two new isomers are formed during the dynamics, which have apparently not been previously observed. (4) Fast energy flow between the ring modes and the amino acid backbone is observed for both one- and two-photon ionization. However, the effective vibrational temperatures only approach the same value after 90 ps. The conformation transition dynamics, the proton-transfer processes and the vibrational energy flow are discussed and analyzed.
Collapse
Affiliation(s)
- Dorit Shemesh
- Department of Physical Chemistry and the Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel
| | | |
Collapse
|
28
|
Shemesh D, Baer R, Seideman T, Gerber RB. Photoionization dynamics of glycine adsorbed on a silicon cluster: “On-the-fly” simulations. J Chem Phys 2005; 122:184704. [PMID: 15918744 DOI: 10.1063/1.1894052] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dynamics of glycine chemisorbed on the surface of a silicon cluster is studied for a process that involves single-photon ionization, followed by recombination with the electron after a selected time delay. The process is studied by "on-the-fly" molecular dynamics simulations, using the semiempirical parametric method number 3 (PM3) potential energy surface. The system is taken to be in the ground state prior to photoionization, and time delays from 5 to 50 fs before the recombination are considered. The time evolution is computed over 10 ps. The main findings are (1) the positive charge after ionization is initially mostly distributed on the silicon cluster. (2) After ionization the major structural changes are on the silicon cluster. These include Si-Si bond breaking and formation and hydrogen transfer between different silicon atoms. (3) The transient ionization event gives rise to dynamical behavior that depends sensitively on the ion state lifetime. Subsequent to 45 fs evolution in the charged state, the glycine molecule starts to rotate on the silicon cluster. Implications of the results to various processes that are induced by transient transition to a charged state are discussed. These include inelastic tunneling in molecular devices, photochemistry on conducting surfaces, and electron-molecule scattering.
Collapse
Affiliation(s)
- Dorit Shemesh
- Department of Physical Chemistry and Fritz Haber Research Center, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
29
|
Wang J, Hase WL. Intermolecular Potential To Represent Collisions of Protonated Peptide Ions with Fluorinated Alkane Surfaces. J Phys Chem B 2005; 109:8320-4. [PMID: 16851975 DOI: 10.1021/jp046581m] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The MP2/6-311++G(2df,2pd) level of theory was used to calculate intermolecular potential curves between CF(4), as a model for the C and F atoms of a fluorinated alkane surface, and CH(4), NH(3), NH(4)(+), H(2)CO, and H(2)O as models for different types of atoms and functional groups comprising protonated peptide ions. This level of theory was tested by comparisons with the MP2/aug-cc-pVTZ and CCSD(T)/aug-cc-pVTZ theories. Explicit-atom (EA) analytic potential energy functions were then derived by fitting these potential energy curves with two-body potentials between the atoms of the two interacting molecules. An intermolecular potential for the interaction of a protonated peptide ion with a fluorinated alkane surface may be constructed from these two-body potentials. Intermolecular potentials, for which CF(4) is treated as a united atom (UA), were developed by isotropically averaging the CF(4) orientation for each of the EA potential energy curves. The intermolecular potential energy curves calculated for CF(4) are compared with curves calculated previously for CH(4) interacting with the same molecules, to consider the relative efficiency of energy transfer for protonated peptide ion collisions with hydrogenated and fluorinated alkane surfaces.
Collapse
Affiliation(s)
- Jiangping Wang
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | | |
Collapse
|