1
|
Chen AY, Thomas CA, Thomas PW, Yang K, Cheng Z, Fast W, Crowder MW, Cohen SM. Iminodiacetic Acid as a Novel Metal-Binding Pharmacophore for New Delhi Metallo-β-lactamase Inhibitor Development. ChemMedChem 2020; 15:1272-1282. [PMID: 32315115 PMCID: PMC7434514 DOI: 10.1002/cmdc.202000123] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/20/2020] [Indexed: 12/12/2022]
Abstract
The fungal natural product aspergillomarasmine A (AMA) has been identified as a noncompetitive inhibitor of New Delhi metallo-β-lactamase-1 (NDM-1) that inhibits by removing ZnII from the active-site. The nonselective metal-chelating properties and difficult synthesis and derivatization of AMA have hindered the development of this scaffold into a potent and selective inhibitor of NDM-1. Iminodiacetic acid (IDA) has been identified as the metal-binding pharmacophore (MBP) core of AMA that can be leveraged for inhibitor development. Herein, we report the use of IDA for fragment-based drug discovery (FBDD) of NDM-1 inhibitors. IDA (IC50 =120 μM) was developed into inhibitor 23 f (IC50 =8.6 μM, Ki =2.6 μM), which formed a ternary complex with NDM-1, as evidenced by protein thermal-shift and native-state electrospray ionization mass spectrometry (ESI-MS) experiments. Combining mechanistic analysis with inhibitor derivatization, the use of IDA as an alternative AMA scaffold for NDM-1 inhibitor development is detailed.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Caitlyn A Thomas
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Pei W Thomas
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Austin, TX 78712, USA
| | - Kundi Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Zishuo Cheng
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Walter Fast
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Austin, TX 78712, USA
| | - Michael W Crowder
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
2
|
Rydzik AM, Brem J, Chandler SA, Benesch JLP, Claridge TDW, Schofield CJ. Monitoring protein-metal binding by 19F NMR - a case study with the New Delhi metallo-β-lactamase 1. RSC Med Chem 2020; 11:387-391. [PMID: 33479644 PMCID: PMC7484990 DOI: 10.1039/c9md00416e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/31/2019] [Indexed: 11/29/2022] Open
Abstract
19F NMR protein observed spectroscopy is evaluated as a method for analysing protein metal binding using the New Delhi metallo-β-lactamase 1. The results imply 19F NMR is useful for analysis of different metallated protein states and investigations on equilibrium states in the presence of inhibitors. One limitation is that 19F labelling may affect metal ion binding. The sensitive readout of changes in protein behaviour observed by 19F NMR spectra coupled with the broad scope of tolerated conditions (e.g. buffer variations) means 19F NMR should be further investigated for studying metal ion interactions and the inhibition of metallo-enzymes during drug discovery.
Collapse
Affiliation(s)
- Anna M Rydzik
- The Department of Chemistry , University of Oxford , 12 Mansfield Road , Oxford , OX1 3TA , UK .
| | - Jürgen Brem
- The Department of Chemistry , University of Oxford , 12 Mansfield Road , Oxford , OX1 3TA , UK .
| | - Shane A Chandler
- The Department of Chemistry , University of Oxford , 12 Mansfield Road , Oxford , OX1 3TA , UK .
| | - Justin L P Benesch
- The Department of Chemistry , University of Oxford , 12 Mansfield Road , Oxford , OX1 3TA , UK .
| | - Timothy D W Claridge
- The Department of Chemistry , University of Oxford , 12 Mansfield Road , Oxford , OX1 3TA , UK .
| | - Christopher J Schofield
- The Department of Chemistry , University of Oxford , 12 Mansfield Road , Oxford , OX1 3TA , UK .
| |
Collapse
|
3
|
Ju LC, Cheng Z, Fast W, Bonomo RA, Crowder MW. The Continuing Challenge of Metallo-β-Lactamase Inhibition: Mechanism Matters. Trends Pharmacol Sci 2018; 39:635-647. [PMID: 29680579 DOI: 10.1016/j.tips.2018.03.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 01/16/2023]
Abstract
Metallo-β-lactamases (MBLs) are a significant clinical problem because they hydrolyze and inactivate nearly all β-lactam-containing antibiotics. These 'lifesaving drugs' constitute >50% of the available contemporary antibiotic arsenal. Despite the global spread of MBLs, MBL inhibitors have not yet appeared in clinical trials. Most MBL inhibitors target active site zinc ions and vary in mechanism from ternary complex formation to metal ion stripping. Importantly, differences in mechanism can impact pharmacology in terms of reversibility, target selectivity, and structure-activity relationship interpretation. This review surveys the mechanisms of MBL inhibitors and describes methods that determine the mechanism of inhibition to guide development of future therapeutics.
Collapse
Affiliation(s)
- Lin-Cheng Ju
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China; Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| | - Zishuo Cheng
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Walter Fast
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, TX 78712, USA
| | - Robert A Bonomo
- Research Services, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA; Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics, and Bioinformatics and the CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology, Cleveland, OH 44106, USA
| | - Michael W Crowder
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
4
|
|
5
|
González MM, Vila AJ. An Elusive Task: A Clinically Useful Inhibitor of Metallo-β-Lactamases. TOPICS IN MEDICINAL CHEMISTRY 2016. [DOI: 10.1007/7355_2016_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
6
|
Chiou J, Wan S, Chan KF, So PK, He D, Chan EWC, Chan TH, Wong KY, Tao J, Chen S. Ebselen as a potent covalent inhibitor of New Delhi metallo-β-lactamase (NDM-1). Chem Commun (Camb) 2015; 51:9543-6. [DOI: 10.1039/c5cc02594j] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We identified a potent NDM-1 inhibitor that formed a S–Se bond with the Cys221 residue at the active site, thereby exhibiting a new inhibition mechanism with broad spectrum inhibitory potential.
Collapse
|
7
|
Lahiri S, Panja A, Dasgupta D. Association of a Zn(2+) containing metallo β-lactamase with the anticancer antibiotic mithramycin. J Inorg Biochem 2014; 142:75-83. [PMID: 25450021 DOI: 10.1016/j.jinorgbio.2014.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 10/03/2014] [Accepted: 10/03/2014] [Indexed: 12/13/2022]
Abstract
Pathogenic bacteria that are resistant to β-lactam antibiotics mostly utilize serine β-lactamases to degrade the antibiotics. Current studies have shown that different subclasses of metallo β-lactamases (E[MBL]) are involved in the defense mechanism of drug resistant bacteria. Here we report that the Zn(2+) containing subclass B1 E[MBL] from Bacillus cereus binds to a naturally occurring anti-cancer drug mithramycin (MTR). Spectroscopic (CD and fluorescence) and isothermal titration calorimetry studies show that MTR forms a high affinity complex with the Zn(2+) ion containing E[MBL]. Abolished interaction of MTR with apo E[MBL] suggests that the formation of this high affinity complex occurs due to the potential of MTR to bind bivalent metal ions like Zn(2+). Furthermore, CD spectroscopy, dynamic light scattering and differential scanning calorimetry studies indicate that the strong association with sub-micromolar dissociation constant leads to an alteration in the enzyme conformation at both secondary and tertiary structural levels. The enzyme activity decreases as a consequence to this conformational disruption arising from the formation of a ternary complex involving MTR, catalytic Zn(2+) and the enzyme. Our results suggest that the naturally occurring antibiotic MTR, a generic drug, has the potential as an E[MBL] inhibitor.
Collapse
Affiliation(s)
- Shibojyoti Lahiri
- Biophysics Division, Saha Institute of Nuclear Physics, 1/AF Sector-1, Bidhannagar, Kolkata 700064, India.
| | - Amrita Panja
- Biophysics Division, Saha Institute of Nuclear Physics, 1/AF Sector-1, Bidhannagar, Kolkata 700064, India
| | - Dipak Dasgupta
- Biophysics Division, Saha Institute of Nuclear Physics, 1/AF Sector-1, Bidhannagar, Kolkata 700064, India.
| |
Collapse
|
8
|
Recent directions of electrospray mass spectrometry for elemental speciation analysis. Anal Bioanal Chem 2011; 400:1645-52. [DOI: 10.1007/s00216-011-4911-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 03/10/2011] [Accepted: 03/14/2011] [Indexed: 10/18/2022]
|
9
|
Bebrone C, Lassaux P, Vercheval L, Sohier JS, Jehaes A, Sauvage E, Galleni M. Current challenges in antimicrobial chemotherapy: focus on ß-lactamase inhibition. Drugs 2010; 70:651-79. [PMID: 20394454 DOI: 10.2165/11318430-000000000-00000] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The use of the three classical beta-lactamase inhibitors (clavulanic acid, tazobactam and sulbactam) in combination with beta-lactam antibacterials is currently the most successful strategy to combat beta-lactamase-mediated resistance. However, these inhibitors are efficient in inactivating only class A beta-lactamases and the efficiency of the inhibitor/antibacterial combination can be compromised by several mechanisms, such as the production of naturally resistant class B or class D enzymes, the hyperproduction of AmpC or even the production of evolved inhibitor-resistant class A enzymes. Thus, there is an urgent need for the development of novel inhibitors. For serine active enzymes (classes A, C and D), derivatives of the beta-lactam ring such as 6-beta-halogenopenicillanates, beta-lactam sulfones, penems and oxapenems, monobactams or trinems seem to be potential starting points to design efficient molecules (such as AM-112 and LK-157). Moreover, a promising non-beta-lactam molecule, NXL-104, is now under clinical development. In contrast, an ideal inhibitor of metallo-beta-lactamases (class B) remains to be found, despite the huge number of potential molecules already described (biphenyl tetrazoles, cysteinyl peptides, mercaptocarboxylates, succinic acid derivatives, etc.). The search for such an inhibitor is complicated by the absence of a covalent intermediate in their catalytic mechanisms and the fact that beta-lactam derivatives often behave as substrates rather than as inhibitors. Currently, the most promising broad-spectrum inhibitors of class B enzymes are molecules presenting chelating groups (thiols, carboxylates, etc.) combined with an aromatic group. This review describes all the types of molecules already tested as potential beta-lactamase inhibitors and thus constitutes an update of the current status in beta-lactamase inhibitor discovery.
Collapse
Affiliation(s)
- Carine Bebrone
- Biological Macromolecules, Centre for Protein Engineering, University of Liège, Liège, Belgium.
| | | | | | | | | | | | | |
Collapse
|
10
|
Native MS: an ’ESI‚ way to support structure- and fragment-based drug discovery. Future Med Chem 2010; 2:35-50. [DOI: 10.4155/fmc.09.141] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The success of early drug-discovery programs depends on the adequate combination of complementary and orthogonal technologies allowing hit/lead compounds to be optimized and improve therapeutic activity. Among the available biophysical methods, native MS recently emerged as an efficient method for compound-binding screening. Native MS is a highly sensitive and accurate screening technique. This review provides a description of the general approach and an overview of the possible characterization of ligand-binding properties. How native MS supports structure- and fragment-based drug research will also be discussed, with examples from the literature and internal developments. Native MS shows strong potential for in-depth characterization of ligand-binding properties. It is also a reliable screening technique in drug-discovery processes.
Collapse
|
11
|
Cook KM, Hilton ST, Mecinović J, Motherwell WB, Figg WD, Schofield CJ. Epidithiodiketopiperazines block the interaction between hypoxia-inducible factor-1alpha (HIF-1alpha) and p300 by a zinc ejection mechanism. J Biol Chem 2009; 284:26831-8. [PMID: 19589782 PMCID: PMC2785371 DOI: 10.1074/jbc.m109.009498] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 07/01/2009] [Indexed: 11/06/2022] Open
Abstract
The hypoxic response in humans is regulated by the hypoxia-inducible transcription factor system; inhibition of hypoxia-inducible factor (HIF) activity has potential for the treatment of cancer. Chetomin, a member of the epidithiodiketopiperazine (ETP) family of natural products, inhibits the interaction between HIF-alpha and the transcriptional coactivator p300. Structure-activity studies employing both natural and synthetic ETP derivatives reveal that only the structurally unique ETP core is required and sufficient to block the interaction of HIF-1alpha and p300. In support of both cell-based and animal work showing that the cytotoxic effect of ETPs is reduced by the addition of Zn(2+) through an unknown mechanism, our mechanistic studies reveal that ETPs react with p300, causing zinc ion ejection. Cell studies with both natural and synthetic ETPs demonstrated a decrease in vascular endothelial growth factor and antiproliferative effects that were abrogated by zinc supplementation. The results have implications for the design of selective ETPs and for the interaction of ETPs with other zinc ion-binding protein targets involved in gene expression.
Collapse
MESH Headings
- Binding Sites
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Disulfides/chemistry
- Disulfides/pharmacology
- Dose-Response Relationship, Drug
- HCT116 Cells
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/chemistry
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Indole Alkaloids/chemistry
- Indole Alkaloids/pharmacology
- Models, Chemical
- Models, Molecular
- Molecular Sequence Data
- Molecular Structure
- Protein Binding/drug effects
- Protein Structure, Tertiary
- Spectrometry, Mass, Electrospray Ionization
- Structure-Activity Relationship
- Vascular Endothelial Growth Factor A/metabolism
- Zinc/chemistry
- Zinc/pharmacology
- p300-CBP Transcription Factors/chemistry
- p300-CBP Transcription Factors/genetics
- p300-CBP Transcription Factors/metabolism
Collapse
Affiliation(s)
- Kristina M. Cook
- From NCI, National Institutes of Health, Bethesda, Maryland 20814
- the Chemistry Research Laboratory, Department of Chemistry, and the Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Stephen T. Hilton
- the Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University of London, London WC1N 1AX, United Kingdom, and
| | - Jasmin Mecinović
- the Chemistry Research Laboratory, Department of Chemistry, and the Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - William B. Motherwell
- the Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - William D. Figg
- From NCI, National Institutes of Health, Bethesda, Maryland 20814
| | - Christopher J. Schofield
- the Chemistry Research Laboratory, Department of Chemistry, and the Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
12
|
Positively cooperative binding of zinc ions to Bacillus cereus 569/H/9 beta-lactamase II suggests that the binuclear enzyme is the only relevant form for catalysis. J Mol Biol 2009; 392:1278-91. [PMID: 19665032 DOI: 10.1016/j.jmb.2009.07.092] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 07/27/2009] [Accepted: 07/31/2009] [Indexed: 11/21/2022]
Abstract
Metallo-beta-lactamases catalyze the hydrolysis of most beta-lactam antibiotics and hence represent a major clinical concern. While enzymes belonging to subclass B1 have been shown to display maximum activity as dizinc species, the actual metal-to-protein stoichiometry and the affinity for zinc are not clear. We have further investigated the process of metal binding to the beta-lactamase II from Bacillus cereus 569/H/9 (known as BcII). Zinc binding was monitored using complementary biophysical techniques, including circular dichroism in the far-UV, enzymatic activity measurements, competition with a chromophoric chelator, mass spectrometry, and nuclear magnetic resonance. Most noticeably, mass spectrometry and nuclear magnetic resonance experiments, together with catalytic activity measurements, demonstrate that two zinc ions bind cooperatively to the enzyme active site (with K(1)/K(2)> or =5) and, hence, that catalysis is associated with the dizinc enzyme species only. Furthermore, competitive experiments with the chromophoric chelator Mag-Fura-2 indicates K(2)<80 nM. This contrasts with cadmium binding, which is clearly a noncooperative process with the mono form being the only species significantly populated in the presence of 1 molar equivalent of Cd(II). Interestingly, optical measurements reveal that although the apo and dizinc species exhibit undistinguishable tertiary structural organizations, the metal-depleted enzyme shows a significant decrease in its alpha-helical content, presumably associated with enhanced flexibility.
Collapse
|
13
|
Selevsek N, Rival S, Tholey A, Heinzle E, Heinz U, Hemmingsen L, Adolph HW. Zinc ion-induced domain organization in metallo-beta-lactamases: a flexible "zinc arm" for rapid metal ion transfer? J Biol Chem 2009; 284:16419-16431. [PMID: 19395380 PMCID: PMC2713538 DOI: 10.1074/jbc.m109.001305] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Indexed: 11/06/2022] Open
Abstract
The reversible unfolding of metallo-beta-lactamase from Chryseobacterium meningosepticum (BlaB) by guanidinium hydrochloride is best described by a three-state model including folded, intermediate, and unfolded states. The transformation of the folded apoenzyme into the intermediate state requires only very low denaturant concentrations, in contrast to the Zn2-enzyme. Similarly, circular dichroism spectra of both BlaB and metallo-beta-lactamase from Bacillus cereus 569/H/9 (BcII) display distinct differences between metal-free and Zn2-enzymes, indicating that the zinc ions affect the folding of the proteins, giving a larger alpha-helix content. To identify the regions of the protein involved in this zinc ion-induced change, a hydrogen deuterium exchange study with matrix-assisted laser desorption ionization tandem time of flight mass spectrometry on metal-free and Zn1- and Zn2-BcII was carried out. The region spanning the metal binding metallo-beta-lactamases (MBL) superfamily consensus sequence His-X-His-X-Asp motif and the loop connecting the N- and C-terminal domains of the protein undergoes a zinc ion-dependent structural change between intrinsically disordered and ordered states. The inherent flexibility even appears to allow for the formation of metal ion-bridged protein-protein complexes which may account for both electrospray ionization-mass spectroscopy results obtained upon variation of the zinc/protein ratio and stoichiometry-dependent variations of 199mHg-perturbed angular correlation of gamma-rays spectroscopic data. We suggest that this flexible "zinc arm" motif, present in all the MBL subclasses, is disordered in metal-free MBLs and may be involved in metal ion acquisition from zinc-carrying molecules different from MBL in an "activation on demand" regulation of enzyme activity.
Collapse
Affiliation(s)
- Nathalie Selevsek
- From the Departments of Biochemical Engineering, 66041 Saarbrücken, Germany
| | - Sandrine Rival
- Biochemistry, Saarland University, 66041 Saarbrücken, Germany
| | - Andreas Tholey
- From the Departments of Biochemical Engineering, 66041 Saarbrücken, Germany; Institute for Experimental Medicine-Systemic Proteome Research and Bioanalytics, Christian-Albrechts Universität, 24105 Kiel, Germany
| | - Elmar Heinzle
- From the Departments of Biochemical Engineering, 66041 Saarbrücken, Germany
| | - Uwe Heinz
- Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Lars Hemmingsen
- Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Hans W Adolph
- Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.
| |
Collapse
|
14
|
Mirza UA, Chen G, Liu YH, Doll RJ, Girijavallabhan VM, Ganguly AK, Pramanik BN. Mass spectrometric studies of potent inhibitors of farnesyl protein transferase--detection of pentameric noncovalent complexes. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:1393-1401. [PMID: 18438977 DOI: 10.1002/jms.1417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Farnesyl protein transferase (FPT) inhibition is an interesting and promising approach to noncytotoxic anticancer therapy. Research in this area has resulted in several orally active compounds that are in clinical trials. Electrospray ionization (ESI) time-of-flight mass spectrometry (TOF-MS) was used for the direct detection of a 95 182 Da pentameric noncovalent complex of alpha/beta subunits of FPT containing Zn, farnesyl pyrophosphate (FPP) and SCH 66336, a compound currently undergoing phase III clinical trials as an anticancer agent. It was noted that the desalting of protein samples was an important factor in the detection of the complex. This study demonstrated that the presence of FPP in the system was necessary for the detection of the FPT-inhibitor complex. No pentameric complex was detected in the spectrum when the experiment was carried out in the absence of the FPP. An indirect approach was also applied to confirm the noncovalent binding of SCH 66336 to FPT by the use of an off-line size exclusion chromatography followed by liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) for the detection of the inhibitor.
Collapse
Affiliation(s)
- Urooj A Mirza
- Department of Spectroscopy, Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Mecinović J, Chowdhury R, Liénard BMR, Flashman E, Buck MRG, Oldham NJ, Schofield CJ. ESI-MS studies on prolyl hydroxylase domain 2 reveal a new metal binding site. ChemMedChem 2008; 3:569-72. [PMID: 18058781 DOI: 10.1002/cmdc.200700233] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jasmin Mecinović
- Chemistry Research Laboratory and OCISB, Mansfield Road, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
16
|
Liénard BMR, Selevsek N, Oldham NJ, Schofield CJ. Combined mass spectrometry and dynamic chemistry approach to identify metalloenzyme inhibitors. ChemMedChem 2008; 2:175-9. [PMID: 17206734 DOI: 10.1002/cmdc.200600250] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Liénard BMR, Garau G, Horsfall L, Karsisiotis AI, Damblon C, Lassaux P, Papamicael C, Roberts GCK, Galleni M, Dideberg O, Frère JM, Schofield CJ. Structural basis for the broad-spectrum inhibition of metallo-beta-lactamases by thiols. Org Biomol Chem 2008; 6:2282-94. [PMID: 18563261 DOI: 10.1039/b802311e] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of broad-spectrum metallo-beta-lactamase (MBL) inhibitors is challenging due to structural diversity and differences in metal utilisation by these enzymes. Analysis of structural data, followed by non-denturing mass spectrometric analyses, identified thiols proposed to inhibit representative MBLs from all three sub-classes: B1, B2 and B3. Solution analyses led to the identification of broad spectrum inhibitors, including potent inhibitors of the CphA MBL (Aeromonas hydrophila). Structural studies revealed that, as observed for other B1 and B3 MBLs, inhibition of the L1 MBL thiols involves metal chelation. Evidence is reported that this is not the case for inhibition of the CphA enzyme by some thiols; the crystal structure of the CphA-Zn-inhibitor complex reveals a binding mode in which the thiol does not interact with the zinc. The structural data enabled the design and the production of further more potent inhibitors. Overall the results suggest that the development of reasonably broad-spectrum MBL inhibitors should be possible.
Collapse
Affiliation(s)
- Benoît M R Liénard
- Chemistry Research Laboratory and OCISB, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:407-418. [PMID: 17326037 DOI: 10.1002/jms.1072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
19
|
Konaklieva MI, Suwandi LS, Kostova MB, Gu J. Determination of the cation-chelating potential of C-methylthiolated beta-lactams and their sulfones by electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:2051-8. [PMID: 17534861 DOI: 10.1002/rcm.3064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The chelation potential of highly lipophilic C-dimethylthiolated monocyclic beta-lactams was examined using electrospray ionization mass spectrometry (ESI-MS). The metal salts NaCl, KCl, CaCl2, ZnCl2, Cu(NO3)2, CdSO4, MnCl2, and Mg(NO3)2 were used for the analysis. The K+ adducts of the compounds studied were more responsive in ESI analysis, compared to their Na+ adducts, regardless of the oxidation state of the sulfur (in the methylthio or the sulfone groups) and the type of the group adjacent to the lactam carbonyl. Opening of the beta-lactam ring, leading to formation of a chargeable N-atom, had little to no effect on the K+ adduct formation. Interactions of the methylthio group with the divalent zinc ion were also observed.
Collapse
Affiliation(s)
- Monika I Konaklieva
- Department of Chemistry, American University, 4400 Massachusetts Ave., NW, Washington, DC 20016, USA.
| | | | | | | |
Collapse
|