1
|
Redding MJ, Grayson SM, Charles L. Mass spectrometry of dendrimers. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38504498 DOI: 10.1002/mas.21876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/14/2023] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Mass spectrometry (MS) has become an essential technique to characterize dendrimers as it proved efficient at tackling analytical challenges raised by their peculiar onion-like structure. Owing to their chemical diversity, this review covers benefits of MS methods as a function of dendrimer classes, discussing advantages and limitations of ionization techniques, tandem mass spectrometry (MS/MS) strategies to determine the structure of defective species, as well as most recently demonstrated capabilities of ion mobility spectrometry (IMS) in the field. Complementarily, the well-defined structure of these macromolecules offers major advantages in the development of MS-based method, as reported in a second section reviewing uses of dendrimers as MS and IMS calibration standards and as multifunctional charge inversion reagents in gas phase ion/ion reactions.
Collapse
Affiliation(s)
- McKenna J Redding
- Department of Chemistry, Tulane University, New Orleans, Los Angeles, USA
| | - Scott M Grayson
- Department of Chemistry, Tulane University, New Orleans, Los Angeles, USA
| | - Laurence Charles
- Aix Marseille Université, CNRS, Institut de Chimie Radicalaire, Marseille, France
| |
Collapse
|
2
|
Kharwade R, Mahajan N, More S, Warokar A, Mendhi S, Dhobley A, Palve D. Effect of PEGylation on drug uptake, biodistribution, and tissue toxicity of efavirenz-ritonavir loaded PAMAM G4 dendrimers. Pharm Dev Technol 2023; 28:200-218. [PMID: 36695103 DOI: 10.1080/10837450.2023.2173230] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present investigations aimed to compare the efficiency of PAMAM G4 (PG4) and PEGylated PAMAM G4 (PPG4) dendrimers as novel nanocarriers for the treatment of HIV-1. Synthesized PG4 and PPG4 dendrimers were confirmed by electrospray ionization and particle size with its morphology. The anti-human immunodeficiency virus (HIV) drug efavirenz (EFV) with a booster dose of ritonavir (RTV) was encapsulated into PG4 and PPG4 formerly noted as PG4ER and PPG4ER, respectively. Further, evaluated for dendrimers mediated solubilization, drug release, cytotoxicity, drug uptake, plasma, and tissue pharmacokinetics, and histopathology. PG4ER and PPG4ER both promoted a prolonged release of EFV in weakly acidic pH 4 up to 84 h and 132 h, respectively. The results of the cytotoxicity assay and drug uptake study showed that PPG4ER was safe and biocompatible up to 12.5 µg/ml. The plasma pharmacokinetic profile of EFV and RTV was significantly increased by PPG4ER with prolonged t1/2 up to three times as compared to free EFV-RTV and PG4ER. Histopathological analysis showed remarkably lower tissue toxicity in PPG4ER as compared to free EFV-RTV. Therefore, overall data suggested that PPG4 has a great potential for prolonged release of EFV and RTV with enhanced bioavailability and lower toxicity.
Collapse
Affiliation(s)
- Rohini Kharwade
- Dadasaheb Balpande College of Pharmacy, Nagpur, India.,Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Nilesh Mahajan
- Dadasaheb Balpande College of Pharmacy, Nagpur, India.,Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Sachin More
- Dadasaheb Balpande College of Pharmacy, Nagpur, India.,Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Amol Warokar
- Dadasaheb Balpande College of Pharmacy, Nagpur, India.,Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Sachin Mendhi
- Dadasaheb Balpande College of Pharmacy, Nagpur, India.,Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Akshay Dhobley
- Department of Oral Pathology and Microbiology, Government Dental College and Hospital, Nagpur, India
| | - Devendra Palve
- Department of Oral Pathology and Microbiology, Government Dental College and Hospital, Nagpur, India
| |
Collapse
|
3
|
Pawlaczyk M, Schroeder G. Dendrimer-Functionalized Hybrid Materials Based on Silica as Novel Carriers of Bioactive Acids. Molecules 2020; 25:molecules25112660. [PMID: 32521636 PMCID: PMC7321234 DOI: 10.3390/molecules25112660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 11/17/2022] Open
Abstract
One of the major goals in the materials science is the design and development of non-toxic, versatile, and efficient drug delivery systems. The study reported in this paper concerns the syntheses of poly(amidoamine) (PAMAM) dendrimers with tris(2-aminoethyl)amine as an amine core and different terminal amines, and their attachment to silica matrix. The obtained ethylenediamine (EDA), triethylenetetramine (TETA), tris(2-aminoethyl)amine (TREN) and 4,7,10-trioxa-1,13-tridecanediamine (TRI-OXA) dendrimers were introduced to the support surface via an epoxy linker, leading to a loading efficiency in the range of 0.054–0.113 mmol g−1, determined using elemental and thermogravimetric analyses. The materials exhibited high adsorption capacities towards the chosen model drugs: folic, salicylic and nicotinic acid. The investigated adsorption processes were found to follow the Freundlich isotherm model, with indication of the drugs’ structure influence on the binding efficiency. Drug-loaded hybrid materials were also described for in vitro drug release in three pH-different paraphysiological media. The highest percentage release was obtained in the tests performed at pH 2.0, ranging between 35.42 and 99.83%. Satisfactory results and the versatility of PAMAM dendrimers may lead to the application of such materials not only as drug carriers dedicated to a wide range of pharmaceutics, but also as analytical tools for pre-concentration and/or the determination of biocompound contamination in samples.
Collapse
|
4
|
Kaczorowska MA, Jędrzejewska B. Electrospray ionization collision induced dissociation of thiocarbocyanine and selenocarbocyanine dyes. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:592-599. [PMID: 31066154 DOI: 10.1002/jms.4368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
The effect of the properties of sulphur and selenium atoms, the composition and location of substituents (-CH3 , -OCH3 , -C2 H5 , and -C3 H6 -((N+ Br- )C5 H5 )), and the charge state on the collision induced dissociation (CID) behaviour of ions generated by electrospray ionization (ESI) of thiocarbocyanine and selenocarbocyanine dyes have been investigated. The results show that, for of all the examined singly charged ions, the main dissociation channel was related to the formation of distonic ions, generated as a result of cleavages within the dimethine bridge. In the case of doubly charged ions (with propyl-pyridinium substituents), competition between fragmentation processes related to charges located at different nitrogen atoms has been observed. The S/Se replacement also has an impact on the CID behaviour of the examined carbocyanine dyes. On the basis of the performed CID MS/MS experiments, general rules for the CID of thiocarbocyanine and selenocarbocyanine dyes have been proposed.
Collapse
Affiliation(s)
- Małgorzata A Kaczorowska
- Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, Seminaryjna 3, PL-85-326, Bydgoszcz, Poland
| | - Beata Jędrzejewska
- Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, Seminaryjna 3, PL-85-326, Bydgoszcz, Poland
| |
Collapse
|
5
|
Haler JRN, Massonnet P, Far J, de la Rosa VR, Lecomte P, Hoogenboom R, Jérôme C, De Pauw E. Gas-Phase Dynamics of Collision Induced Unfolding, Collision Induced Dissociation, and Electron Transfer Dissociation-Activated Polymer Ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:563-572. [PMID: 30523570 DOI: 10.1007/s13361-018-2115-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/24/2018] [Accepted: 11/24/2018] [Indexed: 06/09/2023]
Abstract
Polymer characterizations are often performed using mass spectrometry (MS). Aside from MS and different tandem MS (MS/MS) techniques, ion mobility-mass spectrometry (IM-MS) has been recently added to the inventory of characterization technique. However, only few studies have focused on the reproducibility and robustness of polymer IM-MS analyses. Here, we perform collisional and electron-mediated activation of polymer ions before measuring IM drift times, collision cross-sections (CCS), or reduced ion mobilities (K0). The resulting IM behavior of different activated product ions is then compared to non-activated native intact polymer ions. First, we analyzed collision induced unfolding (CIU) of precursor ions to test the robustness of polymer ion shapes. Then, we focused on fragmentation product ions to test for shape retentions from the precursor ions: cation ejection species (CES) and product ions with m/z and charge state values identical to native intact polymer ions. The CES species are formed using both collision induced dissociation (CID) and electron transfer dissociation (ETD, formally ETnoD) experiments. Only small drift time, CCS, or K0 deviations between the activated/formed ions are observed compared to the native intact polymer ions. The polymer ion shapes seem to depend solely on their mass and charge state. The experiments were performed on three synthetic homopolymers: poly(ethoxy phosphate) (PEtP), poly(2-n-propyl-2-oxazoline) (Pn-PrOx), and poly(ethylene oxide) (PEO). These results confirm the robustness of polymer ion CCSs for IM calibration, especially singly charged polymer ions. The results are also discussed in the context of polymer analyses, CCS predictions, and probing ion-drift gas interaction potentials. Graphical Abstract.
Collapse
Affiliation(s)
- Jean R N Haler
- Mass Spectrometry Laboratory, MolSys Research unit, Quartier Agora, University of Liège, Allée du Six Aout 11, B-4000, Liège, Belgium.
| | - Philippe Massonnet
- Mass Spectrometry Laboratory, MolSys Research unit, Quartier Agora, University of Liège, Allée du Six Aout 11, B-4000, Liège, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory, MolSys Research unit, Quartier Agora, University of Liège, Allée du Six Aout 11, B-4000, Liège, Belgium
| | - Victor R de la Rosa
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000, Ghent, Belgium
| | - Philippe Lecomte
- Center for Education and Research on Macromolecules, CESAM Research Unit, Quartier Agora, University of Liège, Allée du Six Aout 13, B-4000, Liège, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000, Ghent, Belgium
| | - Christine Jérôme
- Center for Education and Research on Macromolecules, CESAM Research Unit, Quartier Agora, University of Liège, Allée du Six Aout 13, B-4000, Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research unit, Quartier Agora, University of Liège, Allée du Six Aout 11, B-4000, Liège, Belgium
| |
Collapse
|
6
|
van Agthoven MA, Lam YPY, O'Connor PB, Rolando C, Delsuc MA. Two-dimensional mass spectrometry: new perspectives for tandem mass spectrometry. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2019; 48:213-229. [PMID: 30863873 PMCID: PMC6449292 DOI: 10.1007/s00249-019-01348-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/24/2019] [Accepted: 02/06/2019] [Indexed: 12/11/2022]
Abstract
Fourier transform ion cyclotron resonance mass analysers (FT-ICR MS) can offer the highest resolutions and mass accuracies in mass spectrometry. Mass spectra acquired in an FT-ICR MS can yield accurate elemental compositions of all compounds in a complex sample. Fragmentation caused by ion-neutral, ion-electron, or ion-photon interactions leads to more detailed structural information on compounds. The most often used method to correlate compounds and their fragment ions is to isolate the precursor ions from the sample before fragmentation. Two-dimensional mass spectrometry (2D MS) offers a method to correlate precursor and fragment ions without requiring precursor isolation. 2D MS therefore enables easy access to the fragmentation patterns of all compounds from complex samples. In this article, the principles of FT-ICR MS are reviewed and the 2D MS experiment is explained. Data processing for 2D MS is detailed, and the interpretation of 2D mass spectra is described.
Collapse
Affiliation(s)
- Maria A van Agthoven
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV47AL, UK
| | - Yuko P Y Lam
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV47AL, UK
| | - Peter B O'Connor
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV47AL, UK
| | - Christian Rolando
- MSAP USR 3290, Université Lille, Sciences et Technologies, 59655, Villeneuve d'Ascq Cedex, France
| | - Marc-André Delsuc
- Institut de Génétique, Biologie Moléculaire et Cellulaire, INSERM, U596, CNRS, UMR7104, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden, France.
- CASC4DE, 20 avenue du Neuhof, 67100, Strasbourg, France.
| |
Collapse
|
7
|
Haler JRN, Far J, Aqil A, Claereboudt J, Tomczyk N, Giles K, Jérôme C, De Pauw E. Multiple Gas-Phase Conformations of a Synthetic Linear Poly(acrylamide) Polymer Observed Using Ion Mobility-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2492-2499. [PMID: 28808984 DOI: 10.1007/s13361-017-1769-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
Ion mobility-mass spectrometry (IM-MS) has emerged as a powerful separation and identification tool to characterize synthetic polymer mixtures and topologies (linear, cyclic, star-shaped,…). Electrospray coupled to IM-MS already revealed the coexistence of several charge state-dependent conformations for a single charge state of biomolecules with strong intramolecular interactions, even when limited resolving power IM-MS instruments were used. For synthetic polymers, the sample's polydispersity allows the observation of several chain lengths. A unique collision cross-section (CCS) trend is usually observed when increasing the degree of polymerization (DP) at constant charge state, allowing the deciphering of different polymer topologies. In this paper, we report multiple coexisting CCS trends when increasing the DP at constant charge state for linear poly(acrylamide) PAAm in the gas phase. This is similar to observations on peptides and proteins. Biomolecules show in addition population changes when collisionally heating the ions. In the case of synthetic PAAm, fragmentation occurred before reaching the energy for conformation conversion. These observations, which were made on two different IM-MS instruments (SYNAPT G2 HDMS and high resolution multi-pass cyclic T-Wave prototype from Waters), limit the use of ion mobility for synthetic polymer topology interpretations to polymers where unique CCS values are observed for each DP at constant charge state. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jean R N Haler
- Mass Spectrometry Laboratory, University of Liège, Quartier Agora, Allée du Six Aout 11, B-4000, Liège, Belgium.
| | - Johann Far
- Mass Spectrometry Laboratory, University of Liège, Quartier Agora, Allée du Six Aout 11, B-4000, Liège, Belgium
| | - Abdelhafid Aqil
- Center for Education and Research on Macromolecules, Department of Chemistry, University of Liège, Quartier Agora, Allée du Six Aout 13, B-4000, Liège, Belgium
| | - Jan Claereboudt
- Waters Corporation, Connexion Business Park, Brusselsesteenweg 500, 1731, Zellik, Belgium
| | - Nick Tomczyk
- Waters Corporation, Stamford Ave., Wilmslow, SK9 4AX, UK
| | - Kevin Giles
- Waters Corporation, Stamford Ave., Wilmslow, SK9 4AX, UK
| | - Christine Jérôme
- Center for Education and Research on Macromolecules, Department of Chemistry, University of Liège, Quartier Agora, Allée du Six Aout 13, B-4000, Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, University of Liège, Quartier Agora, Allée du Six Aout 11, B-4000, Liège, Belgium
| |
Collapse
|
8
|
Qi Y, Volmer DA. Structural analysis of small to medium-sized molecules by mass spectrometry after electron-ion fragmentation (ExD) reactions. Analyst 2016; 141:794-806. [PMID: 26725919 DOI: 10.1039/c5an02171e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron capture dissociation (ECD) is a tandem mass spectrometry (MS/MS) method that utilizes the interaction of ions and electrons. Its unique ability to preserve labile bonds distinguishes it from conventional threshold-based MS/MS methods, the most important of which is collision-induced dissociation (CID). During the last decade, ECD has opened up several new venues in protein analyses, for example top-down sequencing, identification of post-translational modifications, and characterization of protein-protein interactions. In recent years, a number of related dissociation techniques, so-called ExD techniques, particularly electron transfer dissociation (ETD), electron detachment dissociation (EDD), electron induced dissociation (EID), and negative electron transfer dissociation (NETD), have emerged and have extended the application range of ion-electron dissociations further. Importantly, ExD techniques have been applied beyond protein analyses, which is the focus of the current paper. This short introduction describes the application of ExD to small and medium-sized molecules and reviews important applications to natural products, biomedical compounds, synthetic molecules, crude oils, and environmental toxins.
Collapse
Affiliation(s)
- Yulin Qi
- Institute of Bioanalytical Chemistry, Saarland University, 66123 Saarbrücken, Germany.
| | | |
Collapse
|
9
|
Sepúlveda-Crespo D, Gómez R, De La Mata FJ, Jiménez JL, Muñoz-Fernández MÁ. Polyanionic carbosilane dendrimer-conjugated antiviral drugs as efficient microbicides: Recent trends and developments in HIV treatment/therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1481-98. [DOI: 10.1016/j.nano.2015.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/20/2015] [Accepted: 03/19/2015] [Indexed: 12/22/2022]
|
10
|
Tintaru A, Ungaro R, Liu X, Chen C, Giordano L, Peng L, Charles L. Structural characterization of new defective molecules in poly(amidoamide) dendrimers by combining mass spectrometry and nuclear magnetic resonance. Anal Chim Acta 2015; 853:451-459. [DOI: 10.1016/j.aca.2014.10.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 10/25/2014] [Accepted: 10/29/2014] [Indexed: 11/17/2022]
|
11
|
A review of electron-capture and electron-transfer dissociation tandem mass spectrometry in polymer chemistry. Anal Chim Acta 2014; 808:44-55. [DOI: 10.1016/j.aca.2013.09.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/03/2013] [Accepted: 09/18/2013] [Indexed: 01/24/2023]
|
12
|
Uclés A, Martínez Bueno MJ, Ulaszewska MM, Hernando MD, Ferrer C, Fernández-Alba AR. Quantitative determination of poly(amidoamine) dendrimers in urine by liquid chromatography/electrospray ionization hybrid quadrupole linear ion trap mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:2519-2529. [PMID: 24123640 DOI: 10.1002/rcm.6713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/18/2013] [Accepted: 08/19/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE Dendrimer nanocarriers have become of increasing interest in the field of biomedicine for their drug delivery potential. Surface modifications and optimized nanosize control are the strategies being followed to enhance drug delivery efficacy and renal clearance, especially for dendrimers of a lower generation number. The aim of this study was the development and performance evaluation of an analytical method for the quantitative determination of polyamidoamine (PAMAM) dendrimers in urine. METHODS PAMAM dendrimers (generations G0 to G3) were analyzed using liquid chromatography/electrospray ionization hybrid quadrupole linear ion trap mass spectrometry (LC/ESI-QqLIT-MS). Quantitative analysis was performed in selected reaction monitoring (SRM) mode. To confer a higher degree of confidence on the identification of PAMAM dendrimers, an SRM scan and collision-induced dissociation (CID), as a dependent scan, were performed in one single run using the information-dependent acquisition (IDA) mode. RESULTS The LC/ESI-QqLIT-MS method, in SRM mode, allowed quantitative determination in urine matrix with good repeatability and reproducibility (relative standard deviation (R.S.D.) from 2 to 15%), linearity (R >0.99) over the concentration range (6∙10-4 to 5∙10-2 mmol.L-1 ), and sensitivity within the micromolar range. The detection limit values were above 1∙10-4 mmol.L-1 in both solvent and urine, for the generations studied. CONCLUSIONS The developed method has demonstrated a capability for the identification and quantification of PAMAM dendrimer nanoparticles in a complex liquid matrix. The use of an LC/ESI-QqLIT-MS system, of modest m/z range and unit resolution, offers an alternative in the analysis of lower generation PAMAM dendrimers between mass analyzers of higher resolution and the conventional LC-UV method that is commonly applied for dendrimer quantification, but which lacks sufficient identification capacity. Copyright © 2013 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ana Uclés
- Pesticide Residues Research Group, European Union Reference Laboratory (EURL), Department of Chemistry and Physics, University of Almería, 04120 La Cañada de San Urbano, Almería, Spain; IMDEA-Water (Madrid Institute for Advanced Studies-Water), Parque Científico Tecnológico, University of Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Alexander-Bryant AA, Vanden Berg-Foels WS, Wen X. Bioengineering strategies for designing targeted cancer therapies. Adv Cancer Res 2013; 118:1-59. [PMID: 23768509 DOI: 10.1016/b978-0-12-407173-5.00002-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The goals of bioengineering strategies for targeted cancer therapies are (1) to deliver a high dose of an anticancer drug directly to a cancer tumor, (2) to enhance drug uptake by malignant cells, and (3) to minimize drug uptake by nonmalignant cells. Effective cancer-targeting therapies will require both passive- and active-targeting strategies and a thorough understanding of physiologic barriers to targeted drug delivery. Designing a targeted therapy includes the selection and optimization of a nanoparticle delivery vehicle for passive accumulation in tumors, a targeting moiety for active receptor-mediated uptake, and stimuli-responsive polymers for control of drug release. The future direction of cancer targeting is a combinatorial approach, in which targeting therapies are designed to use multiple-targeting strategies. The combinatorial approach will enable combination therapy for delivery of multiple drugs and dual ligand targeting to improve targeting specificity. Targeted cancer treatments in development and the new combinatorial approaches show promise for improving targeted anticancer drug delivery and improving treatment outcomes.
Collapse
Affiliation(s)
- Angela A Alexander-Bryant
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.,Department of Craniofacial Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Wendy S Vanden Berg-Foels
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.,Department of Craniofacial Biology, Medical University of South Carolina, Charleston, South Carolina, USA.,Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Xuejun Wen
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.,Department of Craniofacial Biology, Medical University of South Carolina, Charleston, South Carolina, USA.,Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA.,Department of Orthopedic Surgery, Medical University of South Carolina, Charleston, South Carolina, USA.,Institute for Biomedical Engineering and Nanotechnology, Tongji University School of Medicine, Shanghai, China.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA.,College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
14
|
Lee J, Lee S, Yoon D, Yoon WJ, Im SS, Moon B, Oh HB. Tandem mass spectrometric analysis of isosorbide-1,4-cyclohexane-dicarboxylic acid polyester oligomer cations using ion-trap mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:1913-1918. [PMID: 23939957 DOI: 10.1002/rcm.6645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/25/2013] [Accepted: 06/02/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE Isosorbide is a promising biomass-derived molecule that can be used as a replacement for fossil resource-derived diol monomers used in polyester synthesis. Due to its increased use in sustainable development, it is useful to understand the tandem mass spectrometric (MS/MS) fragmentation pathways of the isosorbide-based copolymer as an aid to interpreting the MS/MS spectra of other isosorbide-containing copolymers. METHODS Collision-activated dissociation (CAD) experiments were performed on the sodiated/protonated molecules, [(AB)(n)A+Na(or H)](+), n = 2-5, of isosorbide (A)-1,4-cyclohexanedicarboxylic acid (B) oligomers formed by ion-trap electrospray ionization (ESI). RESULTS Product ions arose from cleavage of the bonds between isosorbide and 1,4-cyclohexanedicarboxylic acid. In the MS/MS spectra, f(n)'' product ions were most abundant, followed by e(n) ions. McLafferty rearrangement appeared to provide the most facile pathway to yield the abundant f(n)'' and e(n) ions. In addition, a(n), b(n)'', f(n)''u(n)'', and en (+) ions were observed. Inductive cleavage and β-elimination were suggested to be the pathways involved in generating e(n)(+)- and e(n)/b(n)''-type ions, respectively. CONCLUSIONS Based on the obtained CAD spectra, the alternating sequences of two copolymer building blocks, A and B, were unambiguously determined. The fragmentation pathways leading to the observed product ion types were also established.
Collapse
Affiliation(s)
- Jihye Lee
- Department of Chemistry, Sogang University, Seoul 121-742, Korea
| | | | | | | | | | | | | |
Collapse
|
15
|
Kaczorowska MA, Cooper HJ. Electron capture dissociation and collision induced dissociation of S-dipalmitoylated peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1224-1227. [PMID: 23728547 DOI: 10.1007/s13361-013-0662-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/18/2013] [Accepted: 04/29/2013] [Indexed: 06/02/2023]
Abstract
Here we investigate the effect of S-dipalmitoylation on the electron capture dissociation (ECD) behavior of peptides. The ECD and collision induced dissociation (CID) of peptides modified by covalent attachment of [(RS)-2,3-di(palmitoyloxy)-propyl] (PAM2) group to cysteine residues [C(PAM2)LEYDTGFK and RPPGC(PAM2)SPFK] were examined. The results suggest that ECD of S-dipalmitoylated peptides can provide both primary sequence information and structural information regarding the modification. The structural information provided by CID is complementary to that provided by ECD.
Collapse
Affiliation(s)
- Małgorzata A Kaczorowska
- Faculty of Chemical Technology and Engineering, University of Technology and Life Sciences in Bydgoszcz, Seminaryjna 3, Bydgoszcz, Poland.
| | | |
Collapse
|
16
|
So H, Lee J, Han SY, Oh HB. MALDI in-source decay mass spectrometry of polyamidoamine dendrimers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1821-1825. [PMID: 22864829 DOI: 10.1007/s13361-012-0445-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/30/2012] [Accepted: 07/02/2012] [Indexed: 06/01/2023]
Abstract
We report using MALDI-ISD (in-source decay) mass spectrometry (MS) to characterize highly branched synthetic polymers of polyamidoamine (PAMAM) dendrimer. This inherently monodisperse polymer possesses dendritic branches networked by tertiary amines and an amide functionality in each repeating unit. Among various ISD matrices examined, 2,5-DHB was the most efficient, yielding 33 fragments produced by single- or multiple-bond cleavages. Detailed analysis revealed that cleavages at tertiary amine sites (S- and E-type fragments) were the most pronounced, with various other cleavages around amide groups. The fragmentation mechanism appeared to follow the radical-induced dissociation pathway. In addition, the matrix dependence of PAMAM MALDI-ISD differed from that of peptides/proteins. The observed fragments provided rich structural information, which was suitable to characterize dendritic polymers.
Collapse
Affiliation(s)
- Hyerim So
- Department of Chemistry, Sogang University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
17
|
Affiliation(s)
- Feng Xian
- Department
of Chemistry and
Biochemistry, Florida State University,
95 Chieftain Way, Tallahassee, Florida 32310-4390, United States
| | - Christopher L. Hendrickson
- Department
of Chemistry and
Biochemistry, Florida State University,
95 Chieftain Way, Tallahassee, Florida 32310-4390, United States
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, 1800
East Paul Dirac Drive, Tallahassee, Florida 32310-4005, United States
| | - Alan G. Marshall
- Department
of Chemistry and
Biochemistry, Florida State University,
95 Chieftain Way, Tallahassee, Florida 32310-4390, United States
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, 1800
East Paul Dirac Drive, Tallahassee, Florida 32310-4005, United States
| |
Collapse
|
18
|
Wan TC, Tosh DK, Du L, Gizewski ET, Jacobson KA, Auchampach JA. Polyamidoamine (PAMAM) dendrimer conjugate specifically activates the A3 adenosine receptor to improve post-ischemic/reperfusion function in isolated mouse hearts. BMC Pharmacol 2011; 11:11. [PMID: 22039965 PMCID: PMC3247180 DOI: 10.1186/1471-2210-11-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 10/31/2011] [Indexed: 02/07/2023] Open
Abstract
Background When stimulated by small molecular agonists, the A3 adenosine receptor (AR) mediates cardioprotective effects without inducing detrimental hemodynamic side effects. We have examined pharmacologically the protective properties of a multivalent dendrimeric conjugate of a nucleoside as a selective multivalent agonist for the mouse A3AR. Results A PAMAM dendrimer fully substituted by click chemistry on its peripheral groups with 64 moieties of a nucleoside agonist was shown to be potent and selective in binding to the mouse A3AR and effective in cardioprotection in an isolated mouse heart model of ischemia/reperfusion (I/R) injury. This conjugate MRS5246 and a structurally related model compound MRS5233 displayed binding Ki values of 0.04 and 3.94 nM, respectively, and were potent in in vitro functional assays to inhibit cAMP production. A methanocarba (bicyclo[3.1.0]hexane) ring system in place of ribose maintained a North conformation that is preferred at the A3AR. These analogues also contained a triazole linker along with 5'-N-methyl-carboxamido and 2-alkynyl substitution, previously shown to be associated with species-independent A3AR selectivity. Both MRS5233 and MRS5246 (1 and 10 nM) were effective at increasing functional recovery of isolated mouse hearts after 20 min ischemia followed by 45 min reperfusion. A statistically significant greater improvement in the left ventricular developed pressure (LVDP) by MRS5246 compared to MRS5233 occurred when the hearts were observed throughout reperfusion. Unliganded PAMAM dendrimer alone did not have any effect on functional recovery of isolated perfused mouse hearts. 10 nM MRS5246 did not improve functional recovery after I/R in hearts from A3AR gene "knock-out" (A3KO) mice compared to control, indicating the effects of MRS5246 were A3AR-specific. Conclusions Covalent conjugation to a versatile drug carrier enhanced the functional potency and selectivity at the mouse A3AR and maintained the cardioprotective properties. Thus, this large molecular weight conjugate is not prevented from extravasation through the coronary microvasculature.
Collapse
Affiliation(s)
- Tina C Wan
- Department of Pharmacology/Toxicology and the Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- Steffen M. Weidner
- Federal Institute for Materials Research and Testing (BAM), D-12489 Berlin, Richard-Willstaetter-Strasse 11, Germany, and Department of Chemistry, Wayne State University, 5101 Cass Avenue, 33 Chemistry, Detroit, Michigan 48202
| | - Sarah Trimpin
- Federal Institute for Materials Research and Testing (BAM), D-12489 Berlin, Richard-Willstaetter-Strasse 11, Germany, and Department of Chemistry, Wayne State University, 5101 Cass Avenue, 33 Chemistry, Detroit, Michigan 48202
| |
Collapse
|
20
|
Kaczorowska MA, Hotze ACG, Hannon MJ, Cooper HJ. Electron capture dissociation mass spectrometry of metallo-supramolecular complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:300-309. [PMID: 20004114 DOI: 10.1016/j.jasms.2009.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 10/21/2009] [Accepted: 10/26/2009] [Indexed: 05/28/2023]
Abstract
The electron capture dissociation (ECD) of metallo-supramolecular dinuclear triple-stranded helicate Fe(2)L(3)(4+) ions was determined by Fourier transform ion cyclotron resonance mass spectrometry. Initial electron capture by the di-iron(II) triple helicate ions produces dinuclear double-stranded complexes analogous to those seen in solution with the monocationic metal centers Cu(I) or Ag(I). The gas-phase fragmentation behavior [ECD, collision-induced dissociation (CID), and infrared multiphoton dissociation (IRMPD)] of the di-iron double-stranded complexes, (i.e., MS(3) of the ECD product) was compared with the ECD, CID, and IRMPD of the Cu(I) and Ag(I) complexes generated from solution. The results suggest that iron-bound dimers may be of the form Fe(I)(2)L(2)(2+) and that ECD by metallo-complexes allows access, in the gas phase, to oxidation states and coordination chemistry that cannot be accessed in solution.
Collapse
Affiliation(s)
- Malgorzata A Kaczorowska
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | | | | | |
Collapse
|
21
|
Gruendling T, Weidner S, Falkenhagen J, Barner-Kowollik C. Mass spectrometry in polymer chemistry: a state-of-the-art up-date. Polym Chem 2010. [DOI: 10.1039/b9py00347a] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Kaczorowska MA, Cooper HJ. Characterization of polyphosphoesters by Fourier transform ion cyclotron resonance mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:2238-2247. [PMID: 19786355 DOI: 10.1016/j.jasms.2009.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 08/14/2009] [Accepted: 08/17/2009] [Indexed: 05/28/2023]
Abstract
FT-ICR mass spectrometry, together with collision-induced dissociation and electron capture dissociation, has been used to characterize the polyphosphoester poly[1,4-bis(hydroxyethyl)terephthalate-alt-ethyloxyphosphate] and its degradation products. Three degradation pathways were elucidated: hydrolysis of the phosphate-[1,4-bis(hydroxyethyl)terephthalate] bonds; hydrolysis of the phosphate-ethoxy bonds; and hydrolysis of the ethyl-terephthalate bonds. The dominant degradation reactions were those that involved the phosphate groups. This work constitutes the first application of mass spectrometry to the characterization of polyphosphoesters and demonstrates the suitability of high mass accuracy FT-ICR mass spectrometry, with CID and ECD, for the structural analysis of polyphosphoesters and their degradation products.
Collapse
Affiliation(s)
- Malgorzata A Kaczorowska
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
23
|
Kaczorowska MA, Cooper HJ. Electron capture dissociation and collision-induced dissociation of metal ion (Ag(+), Cu(2+), Zn(2+), Fe(2+), and Fe(3+)) complexes of polyamidoamine (PAMAM) dendrimers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:674-681. [PMID: 19196522 PMCID: PMC2667233 DOI: 10.1016/j.jasms.2008.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 12/03/2008] [Accepted: 12/06/2008] [Indexed: 05/27/2023]
Abstract
The electron capture dissociation (ECD) and collision-induced dissociation (CID) of complexes of polyamidoamine (PAMAM) dendrimers with metal ions Ag(+), Cu(2+), Zn(2+), Fe(2+), and Fe(3+) were determined by Fourier transform ion cyclotron resonance mass spectrometry. Complexes were of the form [PD + M + mH](5+) where PD = generation two PAMAM dendrimer with amidoethanol surface groups, M = metal ion, m = 2-4. Complementary information regarding the site and coordination chemistry of the metal ions can be obtained from the two techniques. The results suggest that complexes of Fe(3+) and Cu(2+) are coordinated via both core tertiary amines, whereas coordination of Ag(+) involves a single core tertiary amine. The Zn(2+) and Fe(2+) complexes do not appear to involve coordination by the dendrimer core.
Collapse
Affiliation(s)
| | - Helen J. Cooper
- Address reprint requests to Dr. Helen J. Cooper, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|