1
|
Le VT, Malik MS, Lin YJ, Liu YC, Chang YY, Ou YY. ATP_mCNN: Predicting ATP binding sites through pretrained language models and multi-window neural networks. Comput Biol Med 2025; 185:109541. [PMID: 39653625 DOI: 10.1016/j.compbiomed.2024.109541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 11/20/2024] [Accepted: 12/05/2024] [Indexed: 01/26/2025]
Abstract
Adenosine triphosphate plays a vital role in providing energy and enabling key cellular processes through interactions with binding proteins. The increasing amount of protein sequence data necessitates computational methods for identifying binding sites. However, experimental identification of adenosine triphosphate-binding residues remains challenging. To address the challenge, we developed a multi-window convolutional neural network architecture taking pre-trained protein language model embeddings as input features. In particular, multiple parallel convolutional layers scan for motifs localized to different window sizes. Max pooling extracts salient features concatenated across windows into a final multi-scale representation for residue-level classification. On benchmark datasets, our model achieves an area under the ROC curve of 0.95, significantly improving on prior sequence-based models and outperforming convolutional neural network baselines. This demonstrates the utility of pre-trained language models and multi-window convolutional neural networks for advanced sequence-based prediction of adenosine triphosphate-binding residues. Our approach provides a promising new direction for elucidating binding mechanisms and interactions from primary structure.
Collapse
Affiliation(s)
- Van-The Le
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li, 32003, Taiwan
| | - Muhammad-Shahid Malik
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li, 32003, Taiwan; Department of Computer Sciences, Karakoram International University, Gilgit-Baltistan, 15100, Pakistan
| | - Yi-Jing Lin
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li, 32003, Taiwan
| | - Yu-Chen Liu
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li, 32003, Taiwan
| | - Yan-Yun Chang
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li, 32003, Taiwan
| | - Yu-Yen Ou
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li, 32003, Taiwan; Graduate Program in Biomedical Informatics, Yuan Ze University, Chung-Li, 32003, Taiwan.
| |
Collapse
|
2
|
Baines C, Sargeant J, Fage CD, Pugh H, Alkhalaf LM, Challis GL, Oldham NJ. Native ESI-MS and Collision-Induced Unfolding (CIU) of the Complex between Bacterial Elongation Factor-Tu and the Antibiotic Enacyloxin IIa. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1490-1496. [PMID: 38830009 PMCID: PMC11228974 DOI: 10.1021/jasms.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024]
Abstract
Collision-induced unfolding (CIU) of protein ions, monitored by ion mobility-mass spectrometry, can be used to assess the stability of their compact gas-phase fold and hence provide structural information. The bacterial elongation factor EF-Tu, a key protein for mRNA translation in prokaryotes and hence a promising antibiotic target, has been studied by CIU. The major [M + 12H]12+ ion of EF-Tu unfolded in collision with Ar atoms between 40 and 50 V, corresponding to an Elab energy of 480-500 eV. Binding of the cofactor analogue GDPNP and the antibiotic enacyloxin IIa stabilized the compact fold of EF-Tu, although dissociation of the latter from the complex diminished its stabilizing effect at higher collision energies. Molecular dynamics simulations of the [M + 12H]12+ EF-Tu ion showed similar qualitative behavior to the experimental results.
Collapse
Affiliation(s)
- Cameron Baines
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United
Kingdom
| | - Jacob Sargeant
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Christopher D. Fage
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Hannah Pugh
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Lona M. Alkhalaf
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Gregory L. Challis
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Warwick
Integrative Synthetic Biology Centre, University
of Warwick, Coventry CV4 7AL, United Kingdom
- Department
of Biochemistry and Molecular Biology, Biomedicine Discovery Institute,
Monash University, Clayton, Victoria 3800, Australia
- ARC
Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria 3800, Australia
| | - Neil J. Oldham
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United
Kingdom
| |
Collapse
|
3
|
Lantz C, Wei B, Zhao B, Jung W, Goring AK, Le J, Miller J, Loo RRO, Loo JA. Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes. J Am Chem Soc 2022; 144:21826-21830. [PMID: 36441927 PMCID: PMC10017227 DOI: 10.1021/jacs.2c06726] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Native mass spectrometry (MS) of proteins and protein assemblies reveals size and binding stoichiometry, but elucidating structures to understand their function is more challenging. Native top-down MS (nTDMS), i.e., fragmentation of the gas-phase protein, is conventionally used to derive sequence information, locate post-translational modifications (PTMs), and pinpoint ligand binding sites. nTDMS also endeavors to dissociate covalent bonds in a conformation-sensitive manner, such that information about higher-order structure can be inferred from the fragmentation pattern. However, the activation/dissociation method used can greatly affect the resulting information on protein higher-order structure. Methods such as electron capture/transfer dissociation (ECD and ETD, or ExD) and ultraviolet photodissociation (UVPD) can produce product ions that are sensitive to structural features of protein complexes. For multi-subunit complexes, a long-held belief is that collisionally activated dissociation (CAD) induces unfolding and release of a subunit, and thus is not useful for higher-order structure characterization. Here we show not only that sequence information can be obtained directly from CAD of native protein complexes but that the fragmentation pattern can deliver higher-order structural information about their gas- and solution-phase structures. Moreover, CAD-generated internal fragments (i.e., fragments containing neither N-/C-termini) reveal structural aspects of protein complexes.
Collapse
Affiliation(s)
- Carter Lantz
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Benqian Wei
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Boyu Zhao
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Wonhyeuk Jung
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Andrew K Goring
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Jessie Le
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Justin Miller
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Rachel R Ogorzalek Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States.,UCLA-DOE Institute, University of California-Los Angeles, Los Angeles, California 90095, United States.,Molecular Biology Institute, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States.,Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, California 90095, United States.,UCLA-DOE Institute, University of California-Los Angeles, Los Angeles, California 90095, United States.,Molecular Biology Institute, University of California-Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
4
|
Liu R, Xia S, Li H. Native top-down mass spectrometry for higher-order structural characterization of proteins and complexes. MASS SPECTROMETRY REVIEWS 2022:e21793. [PMID: 35757976 DOI: 10.1002/mas.21793] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Progress in structural biology research has led to a high demand for powerful and yet complementary analytical tools for structural characterization of proteins and protein complexes. This demand has significantly increased interest in native mass spectrometry (nMS), particularly native top-down mass spectrometry (nTDMS) in the past decade. This review highlights recent advances in nTDMS for structural research of biological assemblies, with a particular focus on the extra multi-layers of information enabled by TDMS. We include a short introduction of sample preparation and ionization to nMS, tandem fragmentation techniques as well as mass analyzers and software/analysis pipelines used for nTDMS. We highlight unique structural information offered by nTDMS and examples of its broad range of applications in proteins, protein-ligand interactions (metal, cofactor/drug, DNA/RNA, and protein), therapeutic antibodies and antigen-antibody complexes, membrane proteins, macromolecular machineries (ribosome, nucleosome, proteosome, and viruses), to endogenous protein complexes. The challenges, potential, along with perspectives of nTDMS methods for the analysis of proteins and protein assemblies in recombinant and biological samples are discussed.
Collapse
Affiliation(s)
- Ruijie Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shujun Xia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Mak T, Rossjohn J, Littler DR, Liu M, Quinn RJ. Collision-Induced Affinity Selection Mass Spectrometry for Identification of Ligands. ACS BIO & MED CHEM AU 2022; 2:450-455. [PMID: 37101899 PMCID: PMC10125361 DOI: 10.1021/acsbiomedchemau.2c00021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hyphenated mass spectrometry has been used to identify ligands binding to proteins. It involves mixing protein and compounds, separation of protein-ligand complexes from unbound compounds, dissociation of the protein-ligand complex, separation to remove protein, and injection of the supernatant into a mass spectrometer to observe the ligand. Here we report collision-induced affinity selection mass spectrometry (CIAS-MS), which allows separation and dissociation inside the instrument. The quadrupole was used to select the ligand-protein complex and allow unbound molecules to be exhausted to vacuum. Collision-induced dissociation (CID) dissociated the protein-ligand complex, and the ion guide and resonance frequency were used to selectively detect the ligand. A known SARS-CoV-2 Nsp9 ligand, oridonin, was successfully detected when it was mixed with Nsp9. We provide proof-of-concept data that the CIAS-MS method can be used to identify binding ligands for any purified protein.
Collapse
Affiliation(s)
- Tin Mak
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3168, Australia
| | - Dene R. Littler
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3168, Australia
| | - Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Ronald J. Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| |
Collapse
|
6
|
Abstract
Native mass spectrometry (MS) involves the analysis and characterization of macromolecules, predominantly intact proteins and protein complexes, whereby as much as possible the native structural features of the analytes are retained. As such, native MS enables the study of secondary, tertiary, and even quaternary structure of proteins and other biomolecules. Native MS represents a relatively recent addition to the analytical toolbox of mass spectrometry and has over the past decade experienced immense growth, especially in enhancing sensitivity and resolving power but also in ease of use. With the advent of dedicated mass analyzers, sample preparation and separation approaches, targeted fragmentation techniques, and software solutions, the number of practitioners and novel applications has risen in both academia and industry. This review focuses on recent developments, particularly in high-resolution native MS, describing applications in the structural analysis of protein assemblies, proteoform profiling of─among others─biopharmaceuticals and plasma proteins, and quantitative and qualitative analysis of protein-ligand interactions, with the latter covering lipid, drug, and carbohydrate molecules, to name a few.
Collapse
Affiliation(s)
- Sem Tamara
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Maurits A. den Boer
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
7
|
Tucholski T, Ge Y. Fourier-transform ion cyclotron resonance mass spectrometry for characterizing proteoforms. MASS SPECTROMETRY REVIEWS 2022; 41:158-177. [PMID: 32894796 PMCID: PMC7936991 DOI: 10.1002/mas.21653] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 05/05/2023]
Abstract
Proteoforms contribute functional diversity to the proteome and aberrant proteoforms levels have been implicated in biological dysfunction and disease. Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), with its ultrahigh mass-resolving power, mass accuracy, and versatile tandem MS capabilities, has empowered top-down, middle-down, and native MS-based approaches for characterizing proteoforms and their complexes in biological systems. Herein, we review the features which make FT-ICR MS uniquely suited for measuring proteoform mass with ultrahigh resolution and mass accuracy; obtaining in-depth proteoform sequence coverage with expansive tandem MS capabilities; and unambiguously identifying and localizing post-translational and noncovalent modifications. We highlight examples from our body of work in which we have quantified and comprehensively characterized proteoforms from cardiac and skeletal muscle to better understand conditions such as chronic heart failure, acute myocardial infarction, and sarcopenia. Structural characterization of monoclonal antibodies and their proteoforms by FT-ICR MS and emerging applications, such as native top-down FT-ICR MS and high-throughput top-down FT-ICR MS-based proteomics at 21 T, are also covered. Historically, the information gleaned from FT-ICR MS analyses have helped provide biological insights. We predict FT-ICR MS will continue to enable the study of proteoforms of increasing size from increasingly complex endogenous mixtures and facilitate the benchmarking of sensitive and specific assays for clinical diagnostics. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Trisha Tucholski
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53706
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53705
| |
Collapse
|
8
|
Jeanne Dit Fouque K, Wellmann M, Leyva Bombuse D, Santos-Fernandez M, Cintron-Diaz YL, Gomez-Hernandez ME, Kaplan D, Voinov VG, Fernandez-Lima F. Effective discrimination of gas-phase peptide conformers using TIMS-ECD-ToF MS/MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5216-5223. [PMID: 34698320 PMCID: PMC8596503 DOI: 10.1039/d1ay01461g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the present work, four, well-studied, model peptides (e.g., substance P, bradykinin, angiotensin I and AT-Hook 3) were used to correlate structural information provided by ion mobility and ECD/CID fragmentation in a TIMS-q-EMS-ToF MS/MS platform, incorporporating an electromagnetostatic cell (EMS). The structural heterogeneity of the model peptides was observed by (i) multi-component ion mobility profiles (high ion mobility resolving power, R ∼115-145), and (ii) fast online characteristic ECD fragmentation patterns per ion mobility band (∼0.2 min). Particularly, it was demonstrated that all investigated species were probably conformers, involving cis/trans-isomerizations at X-Pro peptide bond, following the same protonation schemes, in good agreement with previous ion mobility and single point mutation experiments. The comparison between ion mobility selected ECD spectra and traditional FT-ICR ECD MS/MS spectra showed comparable ECD fragmentation efficiencies but differences in the ratio of radical (˙)/prime (') fragment species (H˙ transfer), which were associated with the differences in detection time after the electron capture event. The analysis of model peptides using online TIMS-q-EMSToF MS/MS provided complementary structural information on the intramolecular interactions that stabilize the different gas-phase conformations to those obtained by ion mobility or ECD alone.
Collapse
Affiliation(s)
- K Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
- Biomolecular Science Institute, Florida International University, Miami, FL 33199, USA
| | - M Wellmann
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Kiel 24098, Germany
| | - D Leyva Bombuse
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | - M Santos-Fernandez
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | - Y L Cintron-Diaz
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | - M E Gomez-Hernandez
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | - D Kaplan
- KapScience LLC, Tewksbury, MA 01876, USA
| | - V G Voinov
- e-MSion Inc., Corvallis, OR 97330, USA
- Linus Pauling Institute and Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - F Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
- Biomolecular Science Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
9
|
Srivastava R. Chemical reactivity and binding interactions in ribonucleic acid-peptide complexes. Proteins 2021; 90:765-775. [PMID: 34714954 DOI: 10.1002/prot.26272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022]
Abstract
The covalent and noncovalent backbone binding interactions in RNA-peptide complexes were studied by DFT methods. Four RNA structures R1(GGCUAGCC), R2(AAUCGAUU), R3(GGGAUCCC), and R4(AAAGCUUU) has been selected for eight protonated peptides (DR, ER, GR, KR, NGR, RR, tmeGnd (tme), and VR) interactions based on an experimental study (Anal Chem. 2019; 91:1659-1664). Chemical reactivity theory is used to study the reactivity of eight peptides with global descriptors. Lower hardness values reflected low stability and high reactivity for the protonated peptides. DR, ER, GR, KR, NGR, RR, and VR show lower value of ω, μ while tme has high value of ω, μ. Larger highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap for ER, GR, and KR showed greater structural stability for peptides. AutoDock and PatchDock results indicated that R1, R2, and R4 retain hairpin structures while interacting with peptide complexes. The calculated binding energies of (R1-R4)-peptide complexes from AutoDock tools are (1.49-11.12) kcal/mol. Results showed that the noncovalent interactions are stronger than the covalent interactions for R1-peptide complexes. The reason might be the transfer of proton from protonated ligand to deprotonated RNA, which has initiated the loss of the ligand. Also it has been observed that proton transfer has become energetically unfavorable in presence of additional hydrogen bonds which is predicted in the experimental results.
Collapse
Affiliation(s)
- Ruby Srivastava
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
10
|
Bennett JL, Nguyen GTH, Donald WA. Protein-Small Molecule Interactions in Native Mass Spectrometry. Chem Rev 2021; 122:7327-7385. [PMID: 34449207 DOI: 10.1021/acs.chemrev.1c00293] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Small molecule drug discovery has been propelled by the continual development of novel scientific methodologies to occasion therapeutic advances. Although established biophysical methods can be used to obtain information regarding the molecular mechanisms underlying drug action, these approaches are often inefficient, low throughput, and ineffective in the analysis of heterogeneous systems including dynamic oligomeric assemblies and proteins that have undergone extensive post-translational modification. Native mass spectrometry can be used to probe protein-small molecule interactions with unprecedented speed and sensitivity, providing unique insights into polydisperse biomolecular systems that are commonly encountered during the drug discovery process. In this review, we describe potential and proven applications of native MS in the study of interactions between small, drug-like molecules and proteins, including large multiprotein complexes and membrane proteins. Approaches to quantify the thermodynamic and kinetic properties of ligand binding are discussed, alongside a summary of gas-phase ion activation techniques that have been used to interrogate the structure of protein-small molecule complexes. We additionally highlight some of the key areas in modern drug design for which native mass spectrometry has elicited significant advances. Future developments and applications of native mass spectrometry in drug discovery workflows are identified, including potential pathways toward studying protein-small molecule interactions on a whole-proteome scale.
Collapse
Affiliation(s)
- Jack L Bennett
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Giang T H Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
11
|
Konermann L, Aliyari E, Lee JH. Mobile Protons Limit the Stability of Salt Bridges in the Gas Phase: Implications for the Structures of Electrosprayed Protein Ions. J Phys Chem B 2021; 125:3803-3814. [PMID: 33848419 DOI: 10.1021/acs.jpcb.1c00944] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Electrosprayed protein ions can retain native-like conformations. The intramolecular contacts that stabilize these compact gas-phase structures remain poorly understood. Recent work has uncovered abundant salt bridges in electrosprayed proteins. Salt bridges are zwitterionic BH+/A- contacts. The low dielectric constant in the vacuum strengthens electrostatic interactions, suggesting that salt bridges could be a key contributor to the retention of compact protein structures. A problem with this assertion is that H+ are mobile, such that H+ transfer can convert salt bridges into neutral B0/HA0 contacts. This possible salt bridge annihilation puts into question the role of zwitterionic motifs in the gas phase, and it calls for a detailed analysis of BH+/A- versus B0/HA0 interactions. Here, we investigate this issue using molecular dynamics (MD) simulations and electrospray experiments. MD data for short model peptides revealed that salt bridges with static H+ have dissociation energies around 700 kJ mol-1. The corresponding B0/HA0 contacts are 1 order of magnitude weaker. When considering the effects of mobile H+, BH+/A- bond energies were found to be between these two extremes, confirming that H+ migration can significantly weaken salt bridges. Next, we examined the protein ubiquitin under collision-induced unfolding (CIU) conditions. CIU simulations were conducted using three different MD models: (i) Positive-only runs with static H+ did not allow for salt bridge formation and produced highly expanded CIU structures. (ii) Zwitterionic runs with static H+ resulted in abundant salt bridges, culminating in much more compact CIU structures. (iii) Mobile H+ simulations allowed for the dynamic formation/annihilation of salt bridges, generating CIU structures intermediate between scenarios (i) and (ii). Our results uncover that mobile H+ limit the stabilizing effects of salt bridges in the gas phase. Failure to consider the effects of mobile H+ in MD simulations will result in unrealistic outcomes under CIU conditions.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Elnaz Aliyari
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Justin H Lee
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
12
|
Kim NH, Kim BW, Moon H, Yoo H, Kang RH, Hur JK, Oh Y, Kim BM, Kim D. AIEgen-based nanoprobe for the ATP sensing and imaging in cancer cells and embryonic stem cells. Anal Chim Acta 2021; 1152:338269. [PMID: 33648642 DOI: 10.1016/j.aca.2021.338269] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/14/2021] [Accepted: 01/28/2021] [Indexed: 11/29/2022]
Abstract
A turn-on fluorescent nanoprobe (named AAP-1), based on an aggregation-induced emission luminogen (AIEgen), is disclosed for the detection of adenosine triphosphate (ATP), which is an essential element in the biological system. Organic fluorophore (named TPE-TA) consists of tetraphenylethylene (TPE, sensing and signaling moiety) and mono-triamine (TA, sensing moiety), and it forms an aggregated form in aqueous media as a nanoprobe AAP-1. The nanoprobe AAP-1 has multiple electrostatic interactions as well as hydrophobic interactions with ATP, and it displays superior selectivity toward ATP, reliable sensitivity, with a detection limit around 0.275 ppb, and fast responsive (signal within 10 s). Such a fluorescent probe to monitor ATP has been actively pursued throughout fundamental and translational research areas. In vitro assay and a successful cellular ATP imaging application was demonstrated in cancer cells and embryonic stem cells. We expect that our work warrants further ATP-related studies throughout a variety of fields.
Collapse
Affiliation(s)
- Na Hee Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Byeong Wook Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heechang Moon
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hajung Yoo
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Rae Hyung Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Junho K Hur
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea; Department of Genetics, College of Medicine, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Yohan Oh
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea; Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, 04763, Republic of Korea.
| | - B Moon Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; Center for Converging Humanities, Kyung Hee University, Seoul, 02447, Republic of Korea; Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
13
|
Exploring the structure and dynamics of macromolecular complexes by native mass spectrometry. J Proteomics 2020; 222:103799. [DOI: 10.1016/j.jprot.2020.103799] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/23/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022]
|
14
|
Dremann DN, Chow CS. The use of electrospray ionization mass spectrometry to monitor RNA-ligand interactions. Methods Enzymol 2020; 623:315-337. [PMID: 31239052 DOI: 10.1016/bs.mie.2019.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
RNAs are drawing increasing attention as potential therapeutic targets. A significant challenge in the RNA drug discovery process is identification of compounds that not only disrupt the natural functions of RNA by binding with high affinity, but also do so selectively. Assessing the binding mode of small molecules with RNA is important for understanding how they select their binding site and impart their mechanism of action. A number of complementary assays are often employed for analysis of the binding mode and to determine selectivity. One important technique that gives information about the binding affinity and stoichiometry is electrospray ionization mass spectrometry (ESI MS). More recent methods have also revealed the usefulness of ESI MS in determining the binding loci of small molecules on RNA.
Collapse
|
15
|
Chen S, Gong X, Tan H, Liu Y, He L, Ouyang J. Study of the noncovalent interactions between phenolic acid and lysozyme by cold spray ionization mass spectrometry (CSI-MS), multi-spectroscopic and molecular docking approaches. Talanta 2020; 211:120762. [PMID: 32070628 DOI: 10.1016/j.talanta.2020.120762] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/29/2022]
Abstract
Elucidating the recognition mechanisms of the noncovalent interactions between pharmaceutical molecules and proteins is important for understanding drug delivery in vivo, and for the further rapid screening of clinical drug candidates and biomarkers. In this work, a strategy based on cold spray ionization mass spectrometry (CSI-MS), combined with fluorescence, circular dichroism (CD), Fourier transform infrared spectroscopy (FTIR), and molecular docking methods, was developed and applied to the study of the noncovalent interactions between phenolic acid and lysozyme (Lys). Based on the real characterization of noncovalent complex, the detailed binding parameters, as well as the protein conformational changes and specific binding sites could be obtained. CSI-MS and tandem mass spectrometry (MS/MS) technique were used to investigate the phenolic acid-Lys complexes and the structure-affinity relationship, and to assess their structural composition and gas phase stability. The binding affinity was obtained by direct and indirect MS methods. The fluorescence spectra showed that the intrinsic fluorescence quenching of Lys in solution was a static quenching mechanism caused by complex formation, which supported the MS results. The CD and FTIR spectra revealed that phenolic acid changed the secondary structure of Lys and increased the α-helix content, indicating an increase in the tryptophan (W) hydrophobicity near the protein binding site resulting in a conformational alteration of the protein. In addition, molecular docking studies were performed to investigate the binding sites and binding modes of phenolic acid on Lys. This strategy can more comprehensively and truly characterize the noncovalent interactions and can guide further research on the interactions of phenolic acid with other proteins.
Collapse
Affiliation(s)
- Su Chen
- National Institutes for Food and Drug Control, Beijing, 102629, China; College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xin Gong
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Hongwei Tan
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yang Liu
- National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Lan He
- National Institutes for Food and Drug Control, Beijing, 102629, China.
| | - Jin Ouyang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
16
|
Lermyte F, Everett J, Lam YPY, Wootton CA, Brooks J, Barrow MP, Telling ND, Sadler PJ, O'Connor PB, Collingwood JF. Metal Ion Binding to the Amyloid β Monomer Studied by Native Top-Down FTICR Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2123-2134. [PMID: 31350722 PMCID: PMC6805827 DOI: 10.1007/s13361-019-02283-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 05/22/2023]
Abstract
Native top-down mass spectrometry is a fast, robust biophysical technique that can provide molecular-scale information on the interaction between proteins or peptides and ligands, including metal cations. Here we have analyzed complexes of the full-length amyloid β (1-42) monomer with a range of (patho)physiologically relevant metal cations using native Fourier transform ion cyclotron resonance mass spectrometry and three different fragmentation methods-collision-induced dissociation, electron capture dissociation, and infrared multiphoton dissociation-all yielding consistent results. Amyloid β is of particular interest as its oligomerization and aggregation are major events in the etiology of Alzheimer's disease, and it is known that interactions between the peptide and bioavailable metal cations have the potential to significantly damage neurons. Those metals which exhibited the strongest binding to the peptide (Cu2+, Co2+, Ni2+) all shared a very similar binding region containing two of the histidine residues near the N-terminus (His6, His13). Notably, Fe3+ bound to the peptide only when stabilized toward hydrolysis, aggregation, and precipitation by a chelating ligand, binding in the region between Ser8 and Gly25. We also identified two additional binding regions near the flexible, hydrophobic C-terminus, where other metals (Mg2+, Ca2+, Mn2+, Na+, and K+) bound more weakly-one centered on Leu34, and one on Gly38. Unexpectedly, collisional activation of the complex formed between the peptide and [CoIII(NH3)6]3+ induced gas-phase reduction of the metal to CoII, allowing the peptide to fragment via radical-based dissociation pathways. This work demonstrates how native mass spectrometry can provide new insights into the interactions between amyloid β and metal cations.
Collapse
Affiliation(s)
- Frederik Lermyte
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK.
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - James Everett
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, Staffordshire, ST4 7QB, UK
| | - Yuko P Y Lam
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Jake Brooks
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| | - Mark P Barrow
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Neil D Telling
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, Staffordshire, ST4 7QB, UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Peter B O'Connor
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | |
Collapse
|
17
|
Mehaffey MR, Schardon CL, Novelli ET, Cammarata MB, Webb LJ, Fast W, Brodbelt JS. Investigation of GTP-dependent dimerization of G12X K-Ras variants using ultraviolet photodissociation mass spectrometry. Chem Sci 2019; 10:8025-8034. [PMID: 31853358 PMCID: PMC6837035 DOI: 10.1039/c9sc01032g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/14/2019] [Indexed: 12/14/2022] Open
Abstract
Mutations in the GTPase enzyme K-Ras, specifically at codon G12, remain the most common genetic alterations in human cancers. The mechanisms governing activation of downstream signaling pathways and how they relate back to the identity of the mutation have yet to be completely defined. Here we use native mass spectrometry (MS) combined with ultraviolet photodissociation (UVPD) to investigate the impact of three G12X mutations (G12C, G12V, G12S) on the homodimerization of K-Ras as well as heterodimerization with a downstream effector protein, Raf. Electrospray ionization (ESI) was used to transfer complexes of WT or G12X K-Ras bound to guanosine 5'-diphosphate (GDP) or GppNHp (non-hydrolyzable analogue of GTP) into the gas phase. Relative abundances of homo- or hetero-dimer complexes were estimated from ESI-MS spectra. K-Ras + Raf heterocomplexes were activated with UVPD to probe structural changes responsible for observed differences in the amount of heterocomplex formed for each variant. Holo (ligand-bound) fragment ions resulting from photodissociation suggest the G12X mutants bind Raf along the expected effector binding region (β-interface) but may interact with Raf via an alternative α-interface as well. Variations in backbone cleavage efficiencies during UV photoactivation of each variant were used to relate mutation identity to structural changes that might impact downstream signaling. Specifically, oncogenic upregulation for hydrogen-bonding amino acid substitutions (G12C, G12S) is achieved by stabilizing β-interface interactions with Raf, while a bulkier, hydrophobic G12V substitution leads to destabilization of this interface and instead increases the proximity of residues along the α-helical bundles. This study deciphers new pieces of the complex puzzle of how different K-Ras mutations exert influence in downstream signaling.
Collapse
Affiliation(s)
- M Rachel Mehaffey
- Department of Chemistry , University of Texas at Austin , Austin , TX 78712-0165 , USA . ; Tel: +1-512-471-0028
| | - Christopher L Schardon
- Division of Chemical Biology and Medicinal Chemistry , College of Pharmacy , University of Texas at Austin , Austin , TX 78712 , USA
| | - Elisa T Novelli
- Department of Chemistry , University of Texas at Austin , Austin , TX 78712-0165 , USA . ; Tel: +1-512-471-0028
| | - Michael B Cammarata
- Department of Chemistry , University of Texas at Austin , Austin , TX 78712-0165 , USA . ; Tel: +1-512-471-0028
| | - Lauren J Webb
- Department of Chemistry , University of Texas at Austin , Austin , TX 78712-0165 , USA . ; Tel: +1-512-471-0028
| | - Walter Fast
- Division of Chemical Biology and Medicinal Chemistry , College of Pharmacy , University of Texas at Austin , Austin , TX 78712 , USA
| | - Jennifer S Brodbelt
- Department of Chemistry , University of Texas at Austin , Austin , TX 78712-0165 , USA . ; Tel: +1-512-471-0028
| |
Collapse
|
18
|
Vušurović J, Breuker K. Relative Strength of Noncovalent Interactions and Covalent Backbone Bonds in Gaseous RNA-Peptide Complexes. Anal Chem 2019; 91:1659-1664. [PMID: 30614682 PMCID: PMC6335609 DOI: 10.1021/acs.analchem.8b05387] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interactions of ribonucleic acids (RNA) with basic ligands such as proteins or aminoglycosides play a key role in fundamental biological processes. Native top-down mass spectrometry (MS) has recently been extended to binding site mapping of RNA-ligand interactions by collisionally activated dissociation, without the need for laborious sample preparation procedures. The technique relies on the preservation of noncovalent interactions at energies that are sufficiently high to cause RNA backbone cleavage. In this study, we address the question of how many and what types of noncovalent interactions allow for binding site mapping by top-down MS. We show that proton transfer from protonated ligand to deprotonated RNA within salt bridges initiates loss of the ligand, but that proton transfer becomes energetically unfavorable in the presence of additional hydrogen bonds such that the noncovalent interactions remain stronger than the covalent RNA backbone bonds.
Collapse
Affiliation(s)
- Jovana Vušurović
- Institut für Organische Chemie and Center for Molecular Biosciences Innsbruck (CMBI) , Universität Innsbruck , Innrain 80-82 , 6020 Innsbruck , Austria
| | - Kathrin Breuker
- Institut für Organische Chemie and Center for Molecular Biosciences Innsbruck (CMBI) , Universität Innsbruck , Innrain 80-82 , 6020 Innsbruck , Austria
| |
Collapse
|
19
|
Łącki MK, Lermyte F, Miasojedow B, Startek MP, Sobott F, Valkenborg D, Gambin A. masstodon: A Tool for Assigning Peaks and Modeling Electron Transfer Reactions in Top-Down Mass Spectrometry. Anal Chem 2019; 91:1801-1807. [DOI: 10.1021/acs.analchem.8b01479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mateusz K. Łącki
- University Medical Center, Johannes Gutenberg University, Mainz D-55131, Germany
| | - Frederik Lermyte
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp 2020, Belgium
- Centre for Proteomics, University of Antwerp, Antwerp 2000, Belgium
- School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Błażej Miasojedow
- Department of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw 02-097, Poland
| | - Michał P. Startek
- Department of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw 02-097, Poland
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp 2020, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Dirk Valkenborg
- Centre for Proteomics, University of Antwerp, Antwerp 2000, Belgium
- Flemish Institute for Technological Research (VITO), Mol 2400, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Hasselt 3500, Belgium
| | - Anna Gambin
- Department of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw 02-097, Poland
| |
Collapse
|
20
|
Busch F, Van Aernum ZL, Ju Y, Yan J, Gilbert JD, Quintyn RS, Bern M, Wysocki VH. Localization of Protein Complex Bound Ligands by Surface-Induced Dissociation High-Resolution Mass Spectrometry. Anal Chem 2018; 90:12796-12801. [PMID: 30299922 PMCID: PMC7307135 DOI: 10.1021/acs.analchem.8b03263] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Surface-induced dissociation (SID) is a powerful means of deciphering protein complex quaternary structures due to its capability of yielding dissociation products that reflect the native structures of protein complexes in solution. Here we explore the suitability of SID to locate the ligand binding sites in protein complexes. We studied C-reactive protein (CRP) pentamer, which contains a ligand binding site within each subunit, and cholera toxin B (CTB) pentamer, which contains a ligand binding site between each adjacent subunit. SID dissects ligand-bound CRP into subcomplexes with each subunit carrying predominantly one ligand. In contrast, SID of ligand-bound CTB results in the generation of subcomplexes with a ligand distribution reflective of two subunits contributing to each ligand binding site. SID thus has potential application in localizing sites of small ligand binding for multisubunit protein-ligand complexes.
Collapse
Affiliation(s)
- Florian Busch
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Zachary L. Van Aernum
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Yue Ju
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jing Yan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Joshua D. Gilbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Royston S. Quintyn
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Marshall Bern
- Protein Metrics Inc., 20863 Stevens Creek Blvd., Suite 450, Cupertino, California 95014, USA
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
21
|
Lermyte F, Valkenborg D, Loo JA, Sobott F. Radical solutions: Principles and application of electron-based dissociation in mass spectrometry-based analysis of protein structure. MASS SPECTROMETRY REVIEWS 2018; 37:750-771. [PMID: 29425406 PMCID: PMC6131092 DOI: 10.1002/mas.21560] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 05/11/2023]
Abstract
In recent years, electron capture (ECD) and electron transfer dissociation (ETD) have emerged as two of the most useful methods in mass spectrometry-based protein analysis, evidenced by a considerable and growing body of literature. In large part, the interest in these methods is due to their ability to induce backbone fragmentation with very little disruption of noncovalent interactions which allows inference of information regarding higher order structure from the observed fragmentation behavior. Here, we review the evolution of electron-based dissociation methods, and pay particular attention to their application in "native" mass spectrometry, their mechanism, determinants of fragmentation behavior, and recent developments in available instrumentation. Although we focus on the two most widely used methods-ECD and ETD-we also discuss the use of other ion/electron, ion/ion, and ion/neutral fragmentation methods, useful for interrogation of a range of classes of biomolecules in positive- and negative-ion mode, and speculate about how this exciting field might evolve in the coming years.
Collapse
Affiliation(s)
- Frederik Lermyte
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - Dirk Valkenborg
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Agoralaan, Diepenbeek, Belgium
- Applied Bio and Molecular Systems, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Joseph A Loo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California
- UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, California
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
22
|
Wongkongkathep P, Han JY, Choi TS, Yin S, Kim HI, Loo JA. Native Top-Down Mass Spectrometry and Ion Mobility MS for Characterizing the Cobalt and Manganese Metal Binding of α-Synuclein Protein. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1870-1880. [PMID: 29951842 PMCID: PMC6087494 DOI: 10.1007/s13361-018-2002-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/27/2018] [Accepted: 05/29/2018] [Indexed: 05/22/2023]
Abstract
Structural characterization of intrinsically disordered proteins (IDPs) has been a major challenge in the field of protein science due to limited capabilities to obtain full-length high-resolution structures. Native ESI-MS with top-down MS was utilized to obtain structural features of protein-ligand binding for the Parkinson's disease-related protein, α-synuclein (αSyn), which is natively unstructured. Binding of heavy metals has been implicated in the accelerated formation of αSyn aggregation. Using high-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry, native top-down MS with various fragmentation methods, including electron capture dissociation (ECD), collisional activated dissociation (CAD), and multistage tandem MS (MS3), deduced the binding sites of cobalt and manganese to the C-terminal region of the protein. Ion mobility MS (IM-MS) revealed a collapse toward compacted states of αSyn upon metal binding. The combination of native top-down MS and IM-MS provides structural information of protein-ligand interactions for intrinsically disordered proteins. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Piriya Wongkongkathep
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jong Yoon Han
- Department of Chemistry, Korea University, Seoul, Republic of Korea
| | - Tae Su Choi
- Department of Chemistry, Korea University, Seoul, Republic of Korea
| | - Sheng Yin
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Hugh I Kim
- Department of Chemistry, Korea University, Seoul, Republic of Korea
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, UCLA Molecular Biology Institute, and UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
23
|
Brahim B, Tabet JC, Alves S. Positive and negative ion mode comparison for the determination of DNA/peptide noncovalent binding sites through the formation of "three-body" noncovalent fragment ions. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2018; 24:168-177. [PMID: 29232990 DOI: 10.1177/1469066717735672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Gas-phase fragmentation of single strand DNA-peptide noncovalent complexes is investigated in positive and negative electrospray ionization modes.Collision-induced dissociation experiments, performed on the positively charged noncovalent complex precursor ions, have confirmed the trend previously observed in negative ion mode, i.e. a high stability of noncovalent complexes containing very basic peptidic residues (i.e. R > K) and acidic nucleotide units (i.e. Thy units), certainly incoming from the existence of salt bridge interactions. Independent of the ion polarity, stable noncovalent complex precursor ions were found to dissociate preferentially through covalent bond cleavages of the partners without disrupting noncovalent interactions. The resulting DNA fragment ions were found to be still noncovalently linked to the peptides. Additionally, the losses of an internal nucleic fragment producing "three-body" noncovalent fragment ions were also observed in both ion polarities, demonstrating the spectacular salt bridge interaction stability. The identical fragmentation patterns (regardless of the relative fragment ion abundances) observed in both polarities have shown a common location of salt bridge interaction certainly preserved from solution. Nonetheless, most abundant noncovalent fragment ions (and particularly three-body ones) are observed from positively charged noncovalent complexes. Therefore, we assume that, independent of the preexisting salt bridge interaction and zwitterion structures, multiple covalent bond cleavages from single-stranded DNA/peptide complexes rely on an excess of positive charges in both electrospray ionization ion polarities.
Collapse
Affiliation(s)
- Bessem Brahim
- Sorbonne Universités - UPMC Paris 06, Institut Parisien de Chimie Moléculaire (IPCM) University, Paris, France
| | - Jean-Claude Tabet
- Sorbonne Universités - UPMC Paris 06, Institut Parisien de Chimie Moléculaire (IPCM) University, Paris, France
| | - Sandra Alves
- Sorbonne Universités - UPMC Paris 06, Institut Parisien de Chimie Moléculaire (IPCM) University, Paris, France
| |
Collapse
|
24
|
Mehaffey MR, Cammarata MB, Brodbelt JS. Tracking the Catalytic Cycle of Adenylate Kinase by Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2018; 90:839-846. [PMID: 29188992 PMCID: PMC5750083 DOI: 10.1021/acs.analchem.7b03591] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The complex interplay of dynamic protein plasticity and specific side-chain interactions with substrate molecules that allows enzymes to catalyze reactions has yet to be fully unraveled. Top-down ultraviolet photodissociation (UVPD) mass spectrometry is used to track snapshots of conformational fluctuations in the phosphotransferase adenylate kinase (AK) throughout its active reaction cycle by characterization of complexes containing AK and each of four different adenosine phosphate ligands. Variations in efficiencies of UVPD backbone cleavages were consistently observed for three α-helices and the adenosine binding regions for AK complexes representing different steps of the catalytic cycle, implying that these stretches of the protein sample various structural microstates as the enzyme undergoes global open-to-closed transitions. Focusing on the conformational impact of recruiting or releasing the Mg2+ cofactor highlights two loop regions for which fragmentation increases upon UVPD, signaling an increase in loop flexibility as the metal cation disrupts the loop interactions with the substrate ligands. Additionally, the observation of holo ions and variations in UVPD backbone cleavage efficiency at R138 implicate this conserved active site residue in stabilizing the donor phosphoryl group during catalysis. This study showcases the utility of UVPD-MS to provide insight into conformational fluctuations of single residues for active enzymes.
Collapse
Affiliation(s)
- M. Rachel Mehaffey
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712
| | | | | |
Collapse
|
25
|
Vušurović J, Schneeberger E, Breuker K. Interactions of Protonated Guanidine and Guanidine Derivatives with Multiply Deprotonated RNA Probed by Electrospray Ionization and Collisionally Activated Dissociation. ChemistryOpen 2017; 6:739-750. [PMID: 29226062 PMCID: PMC5715244 DOI: 10.1002/open.201700143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/06/2017] [Indexed: 11/25/2022] Open
Abstract
Interactions of ribonucleic acid (RNA) with guanidine and guanidine derivatives are important features in RNA-protein and RNA-drug binding. Here we have investigated noncovalently bound complexes of an 8-nucleotide RNA and six different ligands, all of which have a guanidinium moiety, by using electrospray ionization (ESI) and collisionally activated dissociation (CAD) mass spectrometry (MS). The order of complex stability correlated almost linearly with the number of ligand atoms that can potentially be involved in hydrogen-bond or salt-bridge interactions with the RNA, but not with the proton affinity of the ligands. However, ligand dissociation of the complex ions in CAD was generally accompanied by proton transfer from ligand to RNA, which indicated conversion of salt-bridge into hydrogen-bond interactions. The relative stabilities and dissociation pathways of [RNA+m L-n H] n- complexes with different stoichiometries (m=1-5) and net charge (n= 2-5) revealed both specific and unspecific ligand binding to the RNA.
Collapse
Affiliation(s)
- Jovana Vušurović
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Eva‐Maria Schneeberger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
26
|
Zhang J, Loo RRO, Loo JA. Structural Characterization of a Thrombin-Aptamer Complex by High Resolution Native Top-Down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1815-1822. [PMID: 28755259 PMCID: PMC5711526 DOI: 10.1007/s13361-017-1751-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/11/2017] [Accepted: 06/30/2017] [Indexed: 05/12/2023]
Abstract
Native mass spectrometry (MS) with electrospray ionization (ESI) has evolved as an invaluable tool for the characterization of intact native proteins and non-covalently bound protein complexes. Here we report the structural characterization by high resolution native top-down MS of human thrombin and its complex with the Bock thrombin binding aptamer (TBA), a 15-nucleotide DNA with high specificity and affinity for thrombin. Accurate mass measurements revealed that the predominant form of native human α-thrombin contains a glycosylation mass of 2205 Da, corresponding to a sialylated symmetric biantennary oligosaccharide structure without fucosylation. Native MS showed that thrombin and TBA predominantly form a 1:1 complex under near physiological conditions (pH 6.8, 200 mM NH4OAc), but the binding stoichiometry is influenced by the solution ionic strength. In 20 mM ammonium acetate solution, up to two TBAs were bound to thrombin, whereas increasing the solution ionic strength destabilized the thrombin-TBA complex and 1 M NH4OAc nearly completely dissociated the complex. This observation is consistent with the mediation of thrombin-aptamer binding through electrostatic interactions and it is further consistent with the human thrombin structure that contains two anion binding sites on the surface. Electron capture dissociation (ECD) top-down MS of the thrombin-TBA complex performed with a high resolution 15 Tesla Fourier transform ion cyclotron resonance (FTICR) mass spectrometer showed the primary binding site to be at exosite I located near the N-terminal sequence of the heavy chain, consistent with crystallographic data. High resolution native top-down MS is complementary to traditional structural biology methods for structurally characterizing native proteins and protein-DNA complexes. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jiang Zhang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Rachel R Ogorzalek Loo
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Molecular Biology Institute, and UCLA/DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA, 90095, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Molecular Biology Institute, and UCLA/DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
27
|
Eschweiler JD, Kerr R, Rabuck-Gibbons J, Ruotolo BT. Sizing Up Protein-Ligand Complexes: The Rise of Structural Mass Spectrometry Approaches in the Pharmaceutical Sciences. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:25-44. [PMID: 28301749 DOI: 10.1146/annurev-anchem-061516-045414] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Capturing the dynamic interplay between proteins and their myriad interaction partners is critically important for advancing our understanding of almost every biochemical process and human disease. The importance of this general area has spawned many measurement methods capable of assaying such protein complexes, and the mass spectrometry-based structural biology methods described in this review form an important part of that analytical arsenal. Here, we survey the basic principles of such measurements, cover recent applications of the technology that have focused on protein-small-molecule complexes, and discuss the bright future awaiting this group of technologies.
Collapse
Affiliation(s)
| | - Richard Kerr
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109;
| | | | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109;
| |
Collapse
|
28
|
Cammarata M, Thyer R, Lombardo M, Anderson A, Wright D, Ellington A, Brodbelt JS. Characterization of trimethoprim resistant E. coli dihydrofolate reductase mutants by mass spectrometry and inhibition by propargyl-linked antifolates. Chem Sci 2017; 8:4062-4072. [PMID: 29967675 PMCID: PMC6020862 DOI: 10.1039/c6sc05235e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/24/2017] [Indexed: 12/12/2022] Open
Abstract
Native mass spectrometry, size exclusion chromatography, and kinetic assays were employed to study trimethoprim resistance in E. coli caused by mutations P21L and W30R of dihydrofolate reductase.
Pathogenic Escherichia coli, one of the primary causes of urinary tract infections, has shown significant resistance to the most popular antibiotic, trimethoprim (TMP), which inhibits dihydrofolate reductase (DHFR). The resistance is modulated by single point mutations of DHFR. The impact of two clinically relevant mutations, P21L and W30R, on the activity of DHFR was evaluated via measurement of Michaelis–Menten and inhibitory kinetics, and structural characterization was undertaken by native mass spectrometry with ultraviolet photodissociation (UVPD). Compared to WT-DHFR, both P21L and W30R mutants produced less stable complexes with TMP in the presence of co-factor NADPH as evidenced by the relative abundances of complexes observed in ESI mass spectra. Moreover, based on variations in the fragmentation patterns obtained by UVPD mass spectrometry of binary and ternary DHFR complexes, notable structural changes were localized to the substrate binding pocket for W30R and to the M20 loop region as well as the C-terminal portion containing the essential G–H functional loop for the P21L mutant. The results suggest that the mutations confer resistance through distinctive mechanisms. A novel propargyl-linked antifolate compound 1038 was shown to be a reasonably effective inhibitor of the P21L mutant.
Collapse
Affiliation(s)
- Michael Cammarata
- Department of Chemistry , University of Texas , Austin , TX 78712 , USA .
| | - Ross Thyer
- Center for Systems and Synthetic Biology , University of Texas , Austin , TX 78712 , USA
| | - Michael Lombardo
- Department of Pharmaceutical Sciences , University of Connecticut , Storrs , CT 06269 , USA
| | - Amy Anderson
- Department of Pharmaceutical Sciences , University of Connecticut , Storrs , CT 06269 , USA
| | - Dennis Wright
- Department of Pharmaceutical Sciences , University of Connecticut , Storrs , CT 06269 , USA
| | - Andrew Ellington
- Center for Systems and Synthetic Biology , University of Texas , Austin , TX 78712 , USA
| | | |
Collapse
|
29
|
Li H, Sheng Y, McGee W, Cammarata M, Holden D, Loo JA. Structural Characterization of Native Proteins and Protein Complexes by Electron Ionization Dissociation-Mass Spectrometry. Anal Chem 2017; 89:2731-2738. [PMID: 28192979 DOI: 10.1021/acs.analchem.6b02377] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mass spectrometry (MS) has played an increasingly important role in the identification and structural and functional characterization of proteins. In particular, the use of tandem mass spectrometry has afforded one of the most versatile methods to acquire structural information for proteins and protein complexes. The unique nature of electron capture dissociation (ECD) for cleaving protein backbone bonds while preserving noncovalent interactions has made it especially suitable for the study of native protein structures. However, the intra- and intermolecular interactions stabilized by hydrogen bonds and salt bridges can hinder the separation of fragments even with preactivation, which has become particularly problematic for the study of large macromolecular proteins and protein complexes. Here, we describe the capabilities of another activation method, 30 eV electron ionization dissociation (EID), for the top-down MS characterization of native protein-ligand and protein-protein complexes. Rich structural information that cannot be delivered by ECD can be generated by EID. EID allowed for the comparison of the gas-phase and the solution-phase structural stability and unfolding process of human carbonic anhydrase I (HCA-I). In addition, the EID fragmentation patterns reflect the structural similarities and differences among apo-, Zn-, and Cu,Zn-superoxide dismutase (SOD1) dimers. In particular, the structural changes due to Cu-binding and a point mutation (G41D) were revealed by EID-MS. The performance of EID was also compared to that of 193 nm ultraviolet photodissociation (UVPD), which allowed us to explore their qualitative similarities and differences as potential valuable tools for the MS study of native proteins and protein complexes.
Collapse
Affiliation(s)
- Huilin Li
- Department of Biological Chemistry, David Geffen School of Medicine, University of California , Los Angeles, California 90095, United States
| | - Yuewei Sheng
- Department of Chemistry and Biochemistry, UCLA/DOE Institute of Genomics and Proteomics, and UCLA Molecular Biology Institute, University of California , Los Angeles, California 90095, United States
| | - William McGee
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Michael Cammarata
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Dustin Holden
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Joseph A Loo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California , Los Angeles, California 90095, United States.,Department of Chemistry and Biochemistry, UCLA/DOE Institute of Genomics and Proteomics, and UCLA Molecular Biology Institute, University of California , Los Angeles, California 90095, United States
| |
Collapse
|
30
|
Schneeberger E, Breuker K. Native Top-Down Mass Spectrometry of TAR RNA in Complexes with a Wild-Type tat Peptide for Binding Site Mapping. Angew Chem Int Ed Engl 2017; 56:1254-1258. [PMID: 28000363 PMCID: PMC5299493 DOI: 10.1002/anie.201610836] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Indexed: 12/18/2022]
Abstract
Ribonucleic acids (RNA) frequently associate with proteins in many biological processes to form more or less stable complex structures. The characterization of RNA-protein complex structures and binding interfaces by nuclear magnetic resonance (NMR) spectroscopy, X-ray crystallography, or strategies based on chemical crosslinking, however, can be quite challenging. Herein, we have explored the use of an alternative method, native top-down mass spectrometry (MS), for probing of complex stoichiometry and protein binding sites at the single-residue level of RNA. Our data show that the electrostatic interactions between HIV-1 TAR RNA and a peptide comprising the arginine-rich binding region of tat protein are sufficiently strong in the gas phase to survive phosphodiester backbone cleavage of RNA by collisionally activated dissociation (CAD), thus allowing its use for probing tat binding sites in TAR RNA by top-down MS. Moreover, the MS data reveal time-dependent 1:2 and 1:1 stoichiometries of the TAR-tat complexes and suggest structural rearrangements of TAR RNA induced by binding of tat peptide.
Collapse
Affiliation(s)
- Eva‐Maria Schneeberger
- Institut für Organische Chemie and Center for Molecular Biosciences Innsbruck (CMBI)Universität InnsbruckInnrain 80-826020InnsbruckAustria
| | - Kathrin Breuker
- Institut für Organische Chemie and Center for Molecular Biosciences Innsbruck (CMBI)Universität InnsbruckInnrain 80-826020InnsbruckAustria
| |
Collapse
|
31
|
Schneeberger E, Breuker K. Native Top‐Down Mass Spectrometry of TAR RNA in Complexes with a Wild‐Type tat Peptide for Binding Site Mapping. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201610836] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Eva‐Maria Schneeberger
- Institut für Organische Chemie and Center for Molecular Biosciences Innsbruck (CMBI) Universität Innsbruck Innrain 80-82 6020 Innsbruck Austria
| | - Kathrin Breuker
- Institut für Organische Chemie and Center for Molecular Biosciences Innsbruck (CMBI) Universität Innsbruck Innrain 80-82 6020 Innsbruck Austria
| |
Collapse
|
32
|
Holden DD, Brodbelt JS. Ultraviolet Photodissociation of Native Proteins Following Proton Transfer Reactions in the Gas Phase. Anal Chem 2016; 88:12354-12362. [PMID: 28193062 DOI: 10.1021/acs.analchem.6b03565] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The growing use of mass spectrometry in the field of structural biology has catalyzed the development of many new strategies to examine intact proteins in the gas phase. Native mass spectrometry methods have further accelerated the need for methods that can manipulate proteins and protein complexes while minimizing disruption of noncovalent interactions critical for stabilizing conformations. Proton-transfer reactions (PTR) in the gas phase offer the ability to effectively modulate the charge states of proteins, allowing decongestion of mass spectra through separation of overlapping species. PTR was combined with ultraviolet photodissociation (UVPD) to probe the degree of structural changes that occur upon charge reduction reactions in the gas phase. For protein complexes myoglobin·heme (17.6 kDa) and dihydrofolate reductase·methotrexate (19.4 kDa), minor changes were found in the fragmentation patterns aside from some enhancement of fragmentation near the N- and C-terminal regions consistent with slight fraying. After finding little perturbation was caused by charge reduction using PTR, homodimeric superoxide dismutase/CuZn (31.4 kDa) was subjected to PTR in order to separate overlapping monomer and dimer species of the protein that were observed at identical m/z values.
Collapse
Affiliation(s)
- Dustin D Holden
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
33
|
Native Mass Spectrometry in Fragment-Based Drug Discovery. Molecules 2016; 21:molecules21080984. [PMID: 27483215 PMCID: PMC6274484 DOI: 10.3390/molecules21080984] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/14/2016] [Accepted: 07/23/2016] [Indexed: 11/17/2022] Open
Abstract
The advent of native mass spectrometry (MS) in 1990 led to the development of new mass spectrometry instrumentation and methodologies for the analysis of noncovalent protein-ligand complexes. Native MS has matured to become a fast, simple, highly sensitive and automatable technique with well-established utility for fragment-based drug discovery (FBDD). Native MS has the capability to directly detect weak ligand binding to proteins, to determine stoichiometry, relative or absolute binding affinities and specificities. Native MS can be used to delineate ligand-binding sites, to elucidate mechanisms of cooperativity and to study the thermodynamics of binding. This review highlights key attributes of native MS for FBDD campaigns.
Collapse
|
34
|
Loo RRO, Loo JA. Salt Bridge Rearrangement (SaBRe) Explains the Dissociation Behavior of Noncovalent Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:975-90. [PMID: 27052739 PMCID: PMC4865452 DOI: 10.1007/s13361-016-1375-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 02/28/2016] [Accepted: 03/01/2016] [Indexed: 05/11/2023]
Abstract
Native electrospray ionization-mass spectrometry, with gas-phase activation and solution compositions that partially release subcomplexes, can elucidate topologies of macromolecular assemblies. That so much complexity can be preserved in gas-phase assemblies is remarkable, although a long-standing conundrum has been the differences between their gas- and solution-phase decompositions. Collision-induced dissociation of multimeric noncovalent complexes typically distributes products asymmetrically (i.e., by ejecting a single subunit bearing a large percentage of the excess charge). That unexpected behavior has been rationalized as one subunit "unfolding" to depart with more charge. We present an alternative explanation based on heterolytic ion-pair scission and rearrangement, a mechanism that inherently partitions charge asymmetrically. Excessive barriers to dissociation are circumvented in this manner, when local charge rearrangements access a lower-barrier surface. An implication of this ion pair consideration is that stability differences between high- and low-charge state ions usually attributed to Coulomb repulsion may, alternatively, be conveyed by attractive forces from ion pairs (salt bridges) stabilizing low-charge state ions. Should the number of ion pairs be roughly inversely related to charge, symmetric dissociations would be favored from highly charged complexes, as observed. Correlations between a gas-phase protein's size and charge reflect the quantity of restraining ion pairs. Collisionally-facilitated salt bridge rearrangement (SaBRe) may explain unusual size "contractions" seen for some activated, low charge state complexes. That some low-charged multimers preferentially cleave covalent bonds or shed small ions to disrupting noncovalent associations is also explained by greater ion pairing in low charge state complexes. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Rachel R Ogorzalek Loo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA.
| | - Joseph A Loo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA.
- UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
35
|
Yao Y, Richards MR, Kitova EN, Klassen JS. Influence of Sulfolane on ESI-MS Measurements of Protein-Ligand Affinities. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:498-506. [PMID: 26667179 DOI: 10.1007/s13361-015-1312-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/22/2015] [Accepted: 11/24/2015] [Indexed: 06/05/2023]
Abstract
The results of an investigation into the influence of sulfolane, a commonly used supercharging agent, on electrospray ionization mass spectrometry (ESI-MS) measurements of protein-ligand affinities are described. Binding measurements carried out on four protein-carbohydrate complexes, lysozyme with β-D-GlcNAc-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc-(1→4)-D-GlcNAc, a single chain variable fragment and α-D-Gal-(1→2)-[α-D-Abe-(1→3)]-α-D-Man-OCH3, cholera toxin B subunit homopentamer with β-D-Gal-(1→3)-β-D-GalNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β-D-Gal-(1→4)-β-D-Glc, and a fragment of galectin 3 and α-L-Fuc-(1→2)-β-D-Gal-(1→3)-β-D-GlcNAc-(1→3)-β-D-Gal-(1→4)-β-D-Glc, revealed that sulfolane generally reduces the apparent (as measured by ESI-MS) protein-ligand affinities. To establish the origin of this effect, a detailed study was undertaken using the lysozyme-tetrasaccharide interaction as a model system. Measurements carried out using isothermal titration calorimetry (ITC), circular dichroism, and nuclear magnetic resonance spectroscopies reveal that sulfolane reduces the binding affinity in solution but does not cause any significant change in the higher order structure of lysozyme or to the intermolecular interactions. These observations confirm that changes to the structure of lysozyme in bulk solution are not responsible for the supercharging effect induced by sulfolane. Moreover, the agreement between the ESI-MS and ITC-derived affinities indicates that there is no dissociation of the complex during ESI or in the gas phase (i.e., in-source dissociation). This finding suggests that supercharging of lysozyme by sulfolane is not related to protein unfolding during the ESI process. Binding measurements performed using liquid sample desorption ESI-MS revealed that protein supercharging with sulfolane can be achieved without a reduction in affinity.
Collapse
Affiliation(s)
- Yuyu Yao
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Michele R Richards
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Elena N Kitova
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - John S Klassen
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
| |
Collapse
|
36
|
Affiliation(s)
- Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
37
|
Patrie SM. Top-Down Mass Spectrometry: Proteomics to Proteoforms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 919:171-200. [PMID: 27975217 DOI: 10.1007/978-3-319-41448-5_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This chapter highlights many of the fundamental concepts and technologies in the field of top-down mass spectrometry (TDMS), and provides numerous examples of contributions that TD is making in biology, biophysics, and clinical investigations. TD workflows include variegated steps that may include non-specific or targeted preparative strategies, orthogonal liquid chromatography techniques, analyte ionization, mass analysis, tandem mass spectrometry (MS/MS) and informatics procedures. This diversity of experimental designs has evolved to manage the large dynamic range of protein expression and diverse physiochemical properties of proteins in proteome investigations, tackle proteoform microheterogeneity, as well as determine structure and composition of gas-phase proteins and protein assemblies.
Collapse
Affiliation(s)
- Steven M Patrie
- Computational and Systems Biology & Biomedical Engineering Graduate Programs, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
38
|
Marcoux J, Cianférani S. Towards integrative structural mass spectrometry: Benefits from hybrid approaches. Methods 2015; 89:4-12. [DOI: 10.1016/j.ymeth.2015.05.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 05/06/2015] [Accepted: 05/25/2015] [Indexed: 01/10/2023] Open
|
39
|
Cammarata MB, Thyer R, Rosenberg J, Ellington A, Brodbelt JS. Structural Characterization of Dihydrofolate Reductase Complexes by Top-Down Ultraviolet Photodissociation Mass Spectrometry. J Am Chem Soc 2015; 137:9128-35. [PMID: 26125523 DOI: 10.1021/jacs.5b04628] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The stepwise reduction of dihydrofolate to tetrahydrofolate entails significant conformational changes of dihydrofolate reductase (DHFR). Binary and ternary complexes of DHFR containing cofactor NADPH, inhibitor methotrexate (MTX), or both NADPH and MTX were characterized by 193 nm ultraviolet photodissociation (UVPD) mass spectrometry. UVPD yielded over 80% sequence coverage of DHFR and resulted in production of fragment ions that revealed the interactions between DHFR and each ligand. UVPD of the binary DHFR·NADPH and DHFR·MTX complexes led to an unprecedented number of fragment ions containing either an N- or C-terminal protein fragment still bound to the ligand via retention of noncovalent interactions. In addition, holo-fragments retaining both ligands were observed upon UVPD of the ternary DHFR·NADPH·MTX complex. The combination of extensive holo and apo fragment ions allowed the locations of the NADPH and MTX ligands to be mapped, with NADPH associated with the adenosine binding domain of DHFR and MTX interacting with the loop domain. These findings are consistent with previous crystallographic evidence. Comparison of the backbone cleavage propensities for apo DHFR and its holo counterparts revealed significant variations in UVPD fragmentation in the regions expected to experience conformational changes upon binding NADPH, MTX, or both ligands. In particular, the subdomain rotation and loop movements, which are believed to occur upon formation of the transition state of the ternary complex, are reflected in the UVPD mass spectra. The UVPD spectra indicate enhanced backbone cleavages in regions that become more flexible or show suppressed backbone cleavages for those regions either shielded by the ligand or involved in new intramolecular interactions. This study corroborates the versatility of 193 nm UVPD mass spectrometry as a sensitive technique to track enzymatic cycles that involve conformational rearrangements.
Collapse
Affiliation(s)
- Michael B Cammarata
- †Department of Chemistry and ‡Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ross Thyer
- †Department of Chemistry and ‡Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jake Rosenberg
- †Department of Chemistry and ‡Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrew Ellington
- †Department of Chemistry and ‡Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- †Department of Chemistry and ‡Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
40
|
Schennach M, Breuker K. Probing Protein Structure and Folding in the Gas Phase by Electron Capture Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1059-67. [PMID: 25868904 PMCID: PMC4475247 DOI: 10.1007/s13361-015-1088-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/19/2015] [Accepted: 01/27/2015] [Indexed: 05/11/2023]
Abstract
The established methods for the study of atom-detailed protein structure in the condensed phases, X-ray crystallography and nuclear magnetic resonance spectroscopy, have recently been complemented by new techniques by which nearly or fully desolvated protein structures are probed in gas-phase experiments. Electron capture dissociation (ECD) is unique among these as it provides residue-specific, although indirect, structural information. In this Critical Insight article, we discuss the development of ECD for the structural probing of gaseous protein ions, its potential, and limitations.
Collapse
Affiliation(s)
- Moritz Schennach
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
41
|
Boeri Erba E, Petosa C. The emerging role of native mass spectrometry in characterizing the structure and dynamics of macromolecular complexes. Protein Sci 2015; 24:1176-92. [PMID: 25676284 DOI: 10.1002/pro.2661] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/06/2015] [Accepted: 02/06/2015] [Indexed: 12/31/2022]
Abstract
Mass spectrometry (MS) is a powerful tool for determining the mass of biomolecules with high accuracy and sensitivity. MS performed under so-called "native conditions" (native MS) can be used to determine the mass of biomolecules that associate noncovalently. Here we review the application of native MS to the study of protein-ligand interactions and its emerging role in elucidating the structure of macromolecular assemblies, including soluble and membrane protein complexes. Moreover, we discuss strategies aimed at determining the stoichiometry and topology of subunits by inducing partial dissociation of the holo-complex. We also survey recent developments in "native top-down MS", an approach based on Fourier Transform MS, whereby covalent bonds are broken without disrupting non-covalent interactions. Given recent progress, native MS is anticipated to play an increasingly important role for researchers interested in the structure of macromolecular complexes.
Collapse
Affiliation(s)
- Elisabetta Boeri Erba
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, F-38044, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), DSV, IBS, F-38044, Grenoble, France.,Centre National de la Recherche Scientifique (CNRS), IBS, F-38044, Grenoble, France
| | - Carlo Petosa
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, F-38044, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), DSV, IBS, F-38044, Grenoble, France.,Centre National de la Recherche Scientifique (CNRS), IBS, F-38044, Grenoble, France
| |
Collapse
|
42
|
Zhang J, Ogorzalek Loo RR, Loo JA. Increasing Fragmentation of Disulfide-Bonded Proteins for Top-Down Mass Spectrometry by Supercharging. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2015; 377:546-556. [PMID: 26028988 PMCID: PMC4448141 DOI: 10.1016/j.ijms.2014.07.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The disulfide bond is an important post-translational modification to form and maintain the native structure and biological functions of proteins. Characterization of disulfide bond linkages is therefore of essential interest in the structural elucidation of proteins. Top-down mass spectrometry (MS) of disulfide-bonded proteins has been hindered by relatively low sequence coverage due to disulfide cross-linking. In this study, we employed top-down ESI-MS with Fourier-transform ion cyclotron resonance (FT-ICR) MS with electron capture dissociation (ECD) and collisionally activated dissociation (CAD) to study the fragmentation of supercharged proteins with multiple intramolecular disulfide bonds. With charge enhancement upon the addition of sulfolane to the analyte solution, improved protein fragmentation and disulfide bond cleavage efficiency was observed for proteins including bovine β-lactoglobulin, soybean trypsin inhibitor, human proinsulin, and chicken lysozyme. Both the number and relative abundances of product ions representing disulfide cleavage increase with increasing charge states for the proteins studied. Our studies suggest supercharging ESI-MS is a promising tool to aid in the top-down MS analysis of disulfide-bonded proteins, providing potentially useful information for the determination of disulfide bond linkages.
Collapse
Affiliation(s)
- Jiang Zhang
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California, 90095, United States
| | - Rachel R. Ogorzalek Loo
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Los Angeles, California, 90095, United States
- UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, California, 90095, United States
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California, 90095, United States
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Los Angeles, California, 90095, United States
- UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, California, 90095, United States
- Corresponding author. Tel.: +1 310 794 7023; fax: +1 310 206 4038. (J.A. Loo)
| |
Collapse
|
43
|
Zhang J, Reza Malmirchegini G, Clubb RTCT, Loo JA. Native top-down mass spectrometry for the structural characterization of human hemoglobin. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:221-31. [PMID: 26307702 PMCID: PMC4731028 DOI: 10.1255/ejms.1340] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Native mass spectrometry (MS) has become an invaluable tool for the characterization of proteins and noncovalent protein complexes under near physiological solution conditions. Here we report the structural characterization of human hemoglobin (Hb), a 64 kDa oxygen-transporting protein complex, by high resolution native top-down MS using electrospray ionization and a 15-Tesla Fourier transform ion cyclotron resonance mass spectrometer. Native MS preserves the noncovalent interactions between the globin subunits, and electron capture dissociation (ECD) produces fragments directly from the intact Hb complex without dissociating the subunits. Using activated ion ECD, we observe the gradual unfolding process of the Hb complex in the gas phase. Without protein ion activation, the native Hb shows very limited ECD fragmentation from the N-termini, suggesting a tightly packed structure of the native complex and therefore a low fragmentation efficiency. Precursor ion activation allows a steady increase in N-terminal fragment ions, while the C-terminal fragments remain limited (38 c ions and four z ions on the α chain; 36 c ions and two z ions on the β chain). This ECD fragmentation pattern suggests that upon activation, the Hb complex starts to unfold from the N-termini of both subunits, whereas the C-terminal regions and therefore the potential regions involved in the subunit binding interactions remain intact. ECD-MS of the Hb dimer shows similar fragmentation patterns as the Hb tetramer, providing further evidence for the hypothesized unfolding process of the Hb complex in the gas phase. Native top-down ECD-MS allows efficient probing of the Hb complex structure and the subunit binding interactions in the gas phase. It may provide a fast and effective means to probe the structure of novel protein complexes that are intractable to traditional structural characterization tools.
Collapse
Affiliation(s)
| | | | - Robert T Clubb T Clubb
- Department of Chemistry and Biochemistry, UCLA/DOE Institute of Genomics and Proteomics, University of California, Los Angeles, California, 90095, United States.
| | - Joseph A Loo
- De partment of Chemistry and Biochemistry, Department of Biological Chemistry, David Geffen School of Medicine, UCLA/DOE Institute of Genomics and Proteomics, University of California, Los Angeles, California, 90095, United States.
| |
Collapse
|
44
|
Li H, Wongkongkathep P, Van Orden SL, Loo RRO, Loo JA. Revealing ligand binding sites and quantifying subunit variants of noncovalent protein complexes in a single native top-down FTICR MS experiment. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:2060-8. [PMID: 24912433 PMCID: PMC4444062 DOI: 10.1007/s13361-014-0928-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 05/11/2023]
Abstract
"Native" mass spectrometry (MS) has been proven to be increasingly useful for structural biology studies of macromolecular assemblies. Using horse liver alcohol dehydrogenase (hADH) and yeast alcohol dehydrogenase (yADH) as examples, we demonstrate that rich information can be obtained in a single native top-down MS experiment using Fourier transform ion cyclotron mass spectrometry (FTICR MS). Beyond measuring the molecular weights of the protein complexes, isotopic mass resolution was achieved for yeast ADH tetramer (147 kDa) with an average resolving power of 412,700 at m/z 5466 in absorption mode, and the mass reflects that each subunit binds to two zinc atoms. The N-terminal 89 amino acid residues were sequenced in a top-down electron capture dissociation (ECD) experiment, along with the identifications of the zinc binding site at Cys46 and a point mutation (V58T). With the combination of various activation/dissociation techniques, including ECD, in-source dissociation (ISD), collisionally activated dissociation (CAD), and infrared multiphoton dissociation (IRMPD), 40% of the yADH sequence was derived directly from the native tetramer complex. For hADH, native top-down ECD-MS shows that both E and S subunits are present in the hADH sample, with a relative ratio of 4:1. Native top-down ISD of the hADH dimer shows that each subunit (E and S chains) binds not only to two zinc atoms, but also the NAD/NADH ligand, with a higher NAD/NADH binding preference for the S chain relative to the E chain. In total, 32% sequence coverage was achieved for both E and S chains.
Collapse
Affiliation(s)
- Huilin Li
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, 90095, USA
| | - Piriya Wongkongkathep
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | | | - Rachel R. Ogorzalek Loo
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, 90095, USA
| | - Joseph A. Loo
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
- Correspondence to: Joseph A. Loo;
| |
Collapse
|
45
|
Ogorzalek Loo RR, Lakshmanan R, Loo JA. What protein charging (and supercharging) reveal about the mechanism of electrospray ionization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1675-93. [PMID: 25135609 PMCID: PMC4163133 DOI: 10.1007/s13361-014-0965-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 06/13/2014] [Accepted: 07/08/2014] [Indexed: 05/11/2023]
Abstract
Understanding the charging mechanism of electrospray ionization is central to overcoming shortcomings such as ion suppression or limited dynamic range, and explaining phenomena such as supercharging. Towards that end, we explore what accumulated observations reveal about the mechanism of electrospray. We introduce the idea of an intermediate region for electrospray ionization (and other ionization methods) to account for the facts that solution charge state distributions (CSDs) do not correlate with those observed by ESI-MS (the latter bear more charge) and that gas phase reactions can reduce, but not increase, the extent of charging. This region incorporates properties (e.g., basicities) intermediate between solution and gas phase. Assuming that droplet species polarize within the high electric field leads to equations describing ion emission resembling those from the equilibrium partitioning model. The equations predict many trends successfully, including CSD shifts to higher m/z for concentrated analytes and shifts to lower m/z for sprays employing smaller emitter opening diameters. From this view, a single mechanism can be formulated to explain how reagents that promote analyte charging ("supercharging") such as m-NBA, sulfolane, and 3-nitrobenzonitrile increase analyte charge from "denaturing" and "native" solvent systems. It is suggested that additives' Brønsted basicities are inversely correlated to their ability to shift CSDs to lower m/z in positive ESI, as are Brønsted acidities for negative ESI. Because supercharging agents reduce an analyte's solution ionization, excess spray charge is bestowed on evaporating ions carrying fewer opposing charges. Brønsted basicity (or acidity) determines how much ESI charge is lost to the agent (unavailable to evaporating analyte).
Collapse
Affiliation(s)
- Rachel R Ogorzalek Loo
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Los Angeles, CA, 90095, USA,
| | | | | |
Collapse
|
46
|
O'Brien JP, Li W, Zhang Y, Brodbelt JS. Characterization of native protein complexes using ultraviolet photodissociation mass spectrometry. J Am Chem Soc 2014; 136:12920-8. [PMID: 25148649 DOI: 10.1021/ja505217w] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ultraviolet photodissociation (UVPD) mass spectrometry (MS) was used to characterize the sequences of proteins in native protein-ligand and protein-protein complexes and to provide auxiliary information about the binding sites of the ligands and protein-protein interfaces. UVPD outperformed collisional induced dissociation (CID), higher-energy collisional dissociation (HCD), and electron transfer dissociation (ETD) in terms of yielding the most comprehensive diagnostic primary sequence information about the proteins in the complexes. UVPD also generated noncovalent fragment ions containing a portion of the protein still bound to the ligand which revealed some insight into the nature of the binding sites of myoglobin/heme, eIF4E/m(7)GTP, and human peptidyl-prolyl cis-trans isomerase 1 (Pin1) in complex with the peptide derived from the C-terminal domain of RNA polymerase II (CTD). Noncovalently bound protein-protein fragment ions from oligomeric β-lactoglobulin dimers and hexameric insulin complexes were also produced upon UVPD, providing some illumination of tertiary and quaternary protein structural features.
Collapse
Affiliation(s)
- John P O'Brien
- Department of Chemistry, ‡Department of Molecular Biosciences, and §Institute for Cellular and Molecular Biology, The University of Texas at Austin , 105 East 24th Street Stop A5300, Austin, Texas 78712, United States
| | | | | | | |
Collapse
|
47
|
Boeri Erba E. Investigating macromolecular complexes using top-down mass spectrometry. Proteomics 2014; 14:1259-70. [PMID: 24723549 DOI: 10.1002/pmic.201300333] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 04/03/2014] [Accepted: 04/08/2014] [Indexed: 12/25/2022]
Abstract
MS has emerged as an important tool to investigate noncovalent interactions between proteins and various ligands (e.g. other proteins, small molecules, or drugs). In particular, ESI under so-called "native conditions" (a.k.a. "native MS") has considerably expanded the scope of such investigations. For instance, ESI quadrupole time of flight (Q-TOF) instruments have been used to probe the precise stoichiometry of protein assemblies, the interactions between subunits and the position of subunits within the complex (i.e. defining core and peripheral subunits). This review highlights several illustrative native Q-TOF-based investigations and recent seminal contributions of top-down MS (i.e. Fourier transform (FT) MS) to the characterization of noncovalent complexes. Combined top-down and native MS, recently demonstrated in "high-mass modified" orbitrap mass spectrometers, and further improvements needed for the enhanced investigation of biologically significant noncovalent interactions by MS will be discussed.
Collapse
Affiliation(s)
- Elisabetta Boeri Erba
- Institute of Structural Biology (Institut de Biologie Structurale), Centre National de la Recherche Scientifique (CNRS), University of Grenoble Alpes (Université de Grenoble Alpes), Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), DSV, Grenoble, France
| |
Collapse
|
48
|
Liu J, Konermann L. Cation-induced stabilization of protein complexes in the gas phase: mechanistic insights from hemoglobin dissociation studies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:595-603. [PMID: 24452299 DOI: 10.1007/s13361-013-0814-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/13/2013] [Accepted: 12/14/2013] [Indexed: 06/03/2023]
Abstract
Collision-induced dissociation (CID) of electrosprayed protein complexes usually involves asymmetric charge partitioning, where a single unfolded chain gets ejected that carries a disproportionately large fraction of charge. Using hemoglobin (Hb) tetramers as model system, we confirm earlier reports that bound metal ions can stabilize protein complexes under CID conditions. We examine the mechanism underlying this effect. Nonvolatile salts cause extensive adduct formation. Significant stabilization was observed for Mg(2+) and Ca(2+), whereas K(+), Rb(+), and Cs(+) had no effect. Precursor ion selection was used to examine Hb subpopulations with well-defined metal binding levels. K(+), Rb(+), and Cs(+)-adducted tetramers eject monomers that carry roughly one-quarter of the metal ions that were bound to the precursor. This demonstrates that charge migration during CID is exclusively due to proton transfer, not metal ion transfer. Also, replacement of highly mobile charge carriers (protons) with less mobile species (metal ions) does not exert a stabilizing influence under the conditions used here. Interestingly, Hb carrying stabilizing ions (Mg(2+) and Ca(2+)) generates monomeric CID products that are metal depleted. This effect is attributed to a combination of two factors: (1) Me(2+) binding stabilizes Hb via formation of chelation bridges (e.g., R-COO(-) Me(2+) (-)OOC-R); the more Me(2+) a subunit contains the more stable it is. (2) More than ~90% of the tetramers contain at least one subunit with a below-average number of Me(2+). The prevalence of monomeric CID products with depleted Me(2+) levels is caused by the tendency of these low metal-containing subunits to undergo preferential unfolding/ejection.
Collapse
Affiliation(s)
- JiangJiang Liu
- Department of Chemistry, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | | |
Collapse
|
49
|
Acharya S, Safaie BM, Wongkongkathep P, Ivanova MI, Attar A, Klärner FG, Schrader T, Loo JA, Bitan G, Lapidus LJ. Molecular basis for preventing α-synuclein aggregation by a molecular tweezer. J Biol Chem 2014; 289:10727-10737. [PMID: 24567327 DOI: 10.1074/jbc.m113.524520] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent work on α-synuclein has shown that aggregation is controlled kinetically by the rate of reconfiguration of the unstructured chain, such that the faster the reconfiguration, the slower the aggregation. In this work we investigate this relationship by examining α-synuclein in the presence of a small molecular tweezer, CLR01, which binds selectively to Lys side chains. We find strong binding to multiple Lys within the chain as measured by fluorescence and mass-spectrometry and a linear increase in the reconfiguration rate with concentration of the inhibitor. Top-down mass-spectrometric analysis shows that the main binding of CLR01 to α-synuclein occurs at the N-terminal Lys-10/Lys-12. Photo-induced cross-linking of unmodified proteins (PICUP) analysis shows that under the conditions used for the fluorescence analysis, α-synuclein is predominantly monomeric. The results can be successfully modeled using a kinetic scheme in which two aggregation-prone monomers can form an encounter complex that leads to further oligomerization but can also dissociate back to monomers if the reconfiguration rate is sufficiently high. Taken together, the data provide important insights into the preferred binding site of CLR01 on α-synuclein and the mechanism by which the molecular tweezer prevents self-assembly into neurotoxic aggregates by α-synuclein and presumably other amyloidogenic proteins.
Collapse
Affiliation(s)
- Srabasti Acharya
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48823
| | - Brian M Safaie
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095
| | - Piriya Wongkongkathep
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California 90095
| | - Magdalena I Ivanova
- Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, California 90095
| | - Aida Attar
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095; Brain Research Institute, University of California at Los Angeles, Los Angeles, California 90095
| | - Frank-Gerrit Klärner
- Institute of Organic Chemistry and Center for Medical Biotechnology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Thomas Schrader
- Institute of Organic Chemistry and Center for Medical Biotechnology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California 90095; Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, California 90095; Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095; Brain Research Institute, University of California at Los Angeles, Los Angeles, California 90095; Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095
| | - Lisa J Lapidus
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48823.
| |
Collapse
|
50
|
Li H, Wolff JJ, Van Orden SL, Loo JA. Native top-down electrospray ionization-mass spectrometry of 158 kDa protein complex by high-resolution Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 2014; 86:317-20. [PMID: 24313806 PMCID: PMC3908771 DOI: 10.1021/ac4033214] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) delivers high resolving power, mass measurement accuracy, and the capabilities for unambiguously sequencing by a top-down MS approach. Here, we report isotopic resolution of a 158 kDa protein complex, tetrameric aldolase with an average absolute deviation of 0.36 ppm and an average resolving power of ~520 000 at m/z 6033 for the 26+ charge state in magnitude mode. Phase correction further improves the resolving power and average absolute deviation by 1.3-fold. Furthermore, native top-down electron capture dissociation (ECD) enables the sequencing of 168 C-terminal amino acid (AA) residues out of 463 total AAs. Combining the data from top-down MS of native and denatured aldolase complexes, a total of 56% of the total backbone bonds were cleaved. The observation of complementary product ion pairs confirms the correctness of the sequence and also the accuracy of the mass fitting of the isotopic distribution of the aldolase tetramer. Top-down MS of the native protein provides complementary sequence information to top-down ECD and collisonally activated dissociation (CAD) MS of the denatured protein. Moreover, native top-down ECD of aldolase tetramer reveals that ECD fragmentation is not limited only to the flexible regions of protein complexes and that regions located on the surface topology are prone to ECD cleavage.
Collapse
Affiliation(s)
- Huilin Li
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Jeremy J. Wolff
- Bruker Daltonics, 40 Manning Road, Billerica, MA, 01821, USA
| | | | - Joseph A. Loo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|