1
|
Lee KP, Kim C. Photosynthetic ROS and retrograde signaling pathways. THE NEW PHYTOLOGIST 2024; 244:1183-1198. [PMID: 39286853 DOI: 10.1111/nph.20134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
Sessile plants harness mitochondria and chloroplasts to sense and adapt to diverse environmental stimuli. These complex processes involve the generation of pivotal signaling molecules, including reactive oxygen species (ROS), phytohormones, volatiles, and diverse metabolites. Furthermore, the specific modulation of chloroplast proteins, through activation or deactivation, significantly enhances the plant's capacity to engage with its dynamic surroundings. While existing reviews have extensively covered the role of plastidial retrograde modules in developmental and light signaling, our focus lies in investigating how chloroplasts leverage photosynthetic ROS to navigate environmental fluctuations and counteract oxidative stress, thereby sustaining primary metabolism. Unraveling the nuanced interplay between photosynthetic ROS and plant stress responses holds promise for uncovering new insights that could reinforce stress resistance and optimize net photosynthesis rates. This exploration aspires to pave the way for innovative strategies to enhance plant resilience and agricultural productivity amidst changing environmental conditions.
Collapse
Affiliation(s)
- Keun Pyo Lee
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
2
|
Abdul-Khalek N, Wimmer R, Overgaard MT, Gregersen Echers S. Decoding the impact of neighboring amino acids on ESI-MS intensity output through deep learning. J Proteomics 2024; 309:105322. [PMID: 39341565 DOI: 10.1016/j.jprot.2024.105322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/15/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Peptide-level quantification using mass spectrometry (MS) is no trivial task as the physicochemical properties affect both response and detectability. The specific amino acid (AA) sequence affects these properties, however the connection between sequence and intensity output remains poorly understood. In this work, we explore combinations of amino acid pairs (i.e., dimer motifs) to determine a potential relationship between the local amino acid environment and MS1 intensity. For this purpose, a deep learning (DL) model, consisting of an encoder-decoder with an attention mechanism, was built. The attention mechanism allowed to identify the most relevant motifs. Specific patterns were consistently observed where a bulky/aromatic and hydrophobic AA followed by a cationic AA as well as consecutive bulky/aromatic and hydrophobic AAs were found important for the prediction of the MS1 intensity. Correlating attention weights to mean MS1 intensities revealed that some important motifs, particularly containing Trp, His, and Cys, were linked with low responding peptides whereas motifs containing Lys and most bulky hydrophobic AAs were often associated with high responding peptides. Moreover, Asn-Gly was associated with low response. The model predicts MS1 response with a mean average percentage error of ∼11 % and a Pearson correlation coefficient of ∼0.64. While dimer representation of peptide sequences did not improve predictive capacity compared to single AA representation in earlier work, this work adds valuable insight for a better understanding of peptide response in MS analysis. SIGNIFICANCE: Mass spectrometry is not inherently quantitative, and the response of a compound relies not only on its concentration but also on the molecular composition. For mass spectrometry-based analysis of peptides, such as in bottom-up proteomics, this directly implies that the response cannot be used directly to quantify individual peptides. Moreover, the dependency of the response on the amino acid sequence of individual peptides remains poorly understood. Using a deep learning model based on a recurrent neural network with an attention mechanism, we here investigate how the presence of dimer motifs within a peptide affects the MS1 response through the analysis of intended equimolar peptide pools comprising almost 200,000 unique peptides in total. Not only do we identify certain dimer classes and specific dimers that substantially affect the MS1 response, but the model is also able to predict peptide intensity with low error rates within the independent test subset. The findings not only improve our understanding of the link between sequence and response for peptides but also highlight the potential of utilizing deep learning for developing methods allowing for absolute, label-free peptide quantification.
Collapse
Affiliation(s)
- Naim Abdul-Khalek
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg 9220, Denmark
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg 9220, Denmark
| | - Michael Toft Overgaard
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg 9220, Denmark
| | - Simon Gregersen Echers
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg 9220, Denmark..
| |
Collapse
|
3
|
Lee JW, Chen EY, Hu T, Perret R, Chaffee ME, Martinov T, Mureli S, McCurdy CL, Jones LA, Gafken PR, Chanana P, Su Y, Chapuis AG, Bradley P, Schmitt TM, Greenberg PD. Overcoming immune evasion from post-translational modification of a mutant KRAS epitope to achieve TCR-T cell-mediated antitumor activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.612965. [PMID: 39345486 PMCID: PMC11429761 DOI: 10.1101/2024.09.18.612965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
T cell receptor (TCR)-T cell immunotherapy, in which T cells are engineered to express a TCR targeting a tumor epitope, is a form of adoptive cell therapy (ACT) that has exhibited promise against various tumor types. Mutants of oncoprotein KRAS, particularly at glycine-12 (G12), are frequent drivers of tumorigenicity, making them attractive targets for TCR-T cell therapy. However, class I-restricted TCRs specifically targeting G12-mutant KRAS epitopes in the context of tumors expressing HLA-A2, the most common human HLA-A allele, have remained elusive despite evidence an epitope encompassing such mutations can bind HLA-A2 and induce T cell responses. We report post-translational modifications (PTMs) on this epitope may allow tumor cells to evade immunologic pressure from TCR-T cells. A lysine side chain-methylated KRAS G12V peptide, rather than the unmodified epitope, may be presented in HLA-A2 by tumor cells and impact TCR recognition. Using a novel computationally guided approach, we developed by mutagenesis TCRs that recognize this methylated peptide, enhancing tumor recognition and destruction. Additionally, we identified TCRs with similar functional activity in normal repertoires from primary T cells by stimulation with modified peptide, clonal expansion, and selection. Mechanistically, a gene knockout screen to identify mechanism(s) by which tumor cells methylate/demethylate this epitope unveiled SPT6 as a demethylating protein that could be targeted to improve effectiveness of these new TCRs. Our findings highlight the role of PTMs in immune evasion and suggest identifying and targeting such modifications should make effective ACTs available for a substantially greater range of tumors than the current therapeutic landscape. One-sentence summary Tumor cell methylation of KRAS G12V epitope in HLA-A2 permits immune evasion, and new TCRs were generated to overcome this with engineered cell therapy.
Collapse
|
4
|
König S, Marco HG, Gäde G. Oxidation Products of Tryptophan and Proline in Adipokinetic Hormones-Artifacts or Post-Translational Modifications? Life (Basel) 2023; 13:2315. [PMID: 38137917 PMCID: PMC10744910 DOI: 10.3390/life13122315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Adipokinetic hormones (AKHs) regulate important physiological processes in insects. AKHs are short peptides with blocked termini and Trp in position 8. Often, proline occupies position 6. Few post-translational modifications have been found, including hydroxyproline ([Hyp6]) and kynurenine. Our recent data suggest that the Hyp- and Kyn-containing AKHs occur more often than originally thought and we here investigate if they are natural or artifactual. METHODS From crude extracts of the corpora cardiaca (CC) of various insect species, AKHs were analyzed using liquid chromatography coupled to high-resolution mass spectrometry (LC-MS). Synthetic [Hyp6]-AKHs were tested in an in vivo metabolic assay. Freshly dissected Periplaneta americana and Blaberus atropos CCs (with precautions taken against oxidation) were analyzed. B. atropos CC were placed into a depolarizing saline and the released AKHs were measured. RESULTS Hyp was detected in several decapeptides from cockroaches. The modified form accompanied the AKH at concentrations below 7%. The [Hyp6]-AKHs of B. atropos were present in fresh CC preparations and were shown to be releasable from the CC ex vivo. Synthetic [Hyp6]-containing peptides tested positively in a hypertrehalosemic bioassay. Hydroxyprolination was also detected for Manto-CC from the termite Kalotermes flavicollis and for Tetsu-AKH of the grasshopper, Tetrix subulata. Oxidized Trp-containing forms of Nicve-AKH were found in species of the burying beetle genus Nicrophorus. CONCLUSIONS Trp oxidation is known to occur easily during sample handling and is likely the reason for the present findings. For hydroxyprolination, however, the experimental evidence suggests endogenous processes.
Collapse
Affiliation(s)
- Simone König
- IZKF Core Unit Proteomics, Interdisciplinary Center for Clinical Research, University of Münster, Röntgenstr. 21, 48149 Münster, Germany
| | - Heather G. Marco
- Department of Biological Sciences, University of Cape Town, Private Bag, Rondebosch, Cape Town 7700, South Africa; (H.G.M.); (G.G.)
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Private Bag, Rondebosch, Cape Town 7700, South Africa; (H.G.M.); (G.G.)
| |
Collapse
|
5
|
Gowthami N, Pursotham N, Dey G, Ghose V, Sathe G, Pruthi N, Shukla D, Gayathri N, Santhoshkumar R, Padmanabhan B, Chandramohan V, Mahadevan A, Srinivas Bharath MM. Neuroanatomical zones of human traumatic brain injury reveal significant differences in protein profile and protein oxidation: Implications for secondary injury events. J Neurochem 2023; 167:218-247. [PMID: 37694499 DOI: 10.1111/jnc.15953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023]
Abstract
Traumatic brain injury (TBI) causes significant neurological deficits and long-term degenerative changes. Primary injury in TBI entails distinct neuroanatomical zones, i.e., contusion (Ct) and pericontusion (PC). Their dynamic expansion could contribute to unpredictable neurological deterioration in patients. Molecular characterization of these zones compared with away from contusion (AC) zone is invaluable for TBI management. Using proteomics-based approach, we were able to distinguish Ct, PC and AC zones in human TBI brains. Ct was associated with structural changes (blood-brain barrier (BBB) disruption, neuroinflammation, axonal injury, demyelination and ferroptosis), while PC was associated with initial events of secondary injury (glutamate excitotoxicity, glial activation, accumulation of cytoskeleton proteins, oxidative stress, endocytosis) and AC displayed mitochondrial dysfunction that could contribute to secondary injury events and trigger long-term degenerative changes. Phosphoproteome analysis in these zones revealed that certain differentially phosphorylated proteins synergistically contribute to the injury events along with the differentially expressed proteins. Non-synaptic mitochondria (ns-mito) was associated with relatively more differentially expressed proteins (DEPs) compared to synaptosomes (Syn), while the latter displayed increased protein oxidation including tryptophan (Trp) oxidation. Proteomic analysis of immunocaptured complex I (CI) from Syn revealed increased Trp oxidation in Ct > PC > AC (vs. control). Oxidized W272 in the ND1 subunit of CI, revealed local conformational changes in ND1 and the neighboring subunits, as indicated by molecular dynamics simulation (MDS). Taken together, neuroanatomical zones in TBI show distinct protein profile and protein oxidation representing different primary and secondary injury events with potential implications for TBI pathology and neurological status of the patients.
Collapse
Affiliation(s)
- Niya Gowthami
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Nithya Pursotham
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Gourav Dey
- Proteomics and Bioinformatics Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
- Institute of Bioinformatics, Bengaluru, India
| | - Vivek Ghose
- Proteomics and Bioinformatics Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
- Institute of Bioinformatics, Bengaluru, India
| | - Gajanan Sathe
- Proteomics and Bioinformatics Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
- Institute of Bioinformatics, Bengaluru, India
| | - Nupur Pruthi
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Dhaval Shukla
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Narayanappa Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Rashmi Santhoshkumar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Balasundaram Padmanabhan
- Department of Biophysics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Vivek Chandramohan
- Department of Biotechnology, Siddaganga Institute of Technology (SIT), Tumakuru, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - M M Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| |
Collapse
|
6
|
Trimpin S, Inutan E, Coffinberger H, Hoang K, Yenchick F, Wager-Miller J, Pophristic M, Mackie K, McEwen CN. Instrumentation development, improvement, simplification, and miniaturization: The multifunctional plate source for use in mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2023; 29:276-291. [PMID: 37999746 DOI: 10.1177/14690667231211486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
In remembrance of Prof. Dr Przybylski, we are presenting a vision towards his beloved mass spectrometry (MS) and its far-reaching promises outside of the academic laboratory. Sub-atmospheric pressure (AP) ionization MS is well positioned to make a step-change in direct ionization, a concept that allows sublimation/evaporation ionization and mass analyses of volatile and nonvolatile molecules from clean or dirty samples, directly, accurately, sensitively, and in a straightforward manner that has the potential to expand the field of MS into unchartered application areas. Contrary to ambient ionization MS, ionization commences in the sub-AP region of the mass spectrometer, important for practical and safety reasons, and offers inter alia, simplicity, speed, sensitivity, and robustness directly from real-world samples without cleanup. The plate source concept, presented here, provides an easy to use, rapid, and direct sample introduction from AP into the sub-AP of a mass spectrometer. Utilizing sub-AP ionization MS based on the plate source concept, small to large molecules from various environments that would be deemed too dirty for some direct MS methods are demonstrated. The new source concept can be expanded to include multiple ionization methods using the same plate source "front end" without the need to vent the mass spectrometer between the different methods, thus allowing ionization of more compounds on the same mass spectrometer for which any one ionization method may be insufficient. Examples such as fentanyl, gamma-hydroxybutyric acid, clozapine, 1-propionyllysergic acid, hydrocodone angiotensin I and II, myoglobin, and carbonic anhydrase are included.
Collapse
Affiliation(s)
- Sarah Trimpin
- Wayne State University, Detroit, MI, USA
- Research and Development, MSTM, LLC, Philadelphia, PA, USA
| | - Ellen Inutan
- Department of Chemistry, Mindanao State University-Illigan Institute of Technology, Illigan City, Philippines
| | - Hope Coffinberger
- Research and Development, MSTM, LLC, Philadelphia, PA, USA
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, PA, USA
| | - Khoa Hoang
- Research and Development, MSTM, LLC, Philadelphia, PA, USA
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, PA, USA
| | | | - James Wager-Miller
- Psychological and Brain Sciences Campus, Indiana University, Bloomington, IN, USA
| | - Milan Pophristic
- Research and Development, MSTM, LLC, Philadelphia, PA, USA
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, PA, USA
| | - Ken Mackie
- Psychological and Brain Sciences Campus, Indiana University, Bloomington, IN, USA
| | - Charles N McEwen
- Research and Development, MSTM, LLC, Philadelphia, PA, USA
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, PA, USA
| |
Collapse
|
7
|
Chithra Y, Dey G, Ghose V, Chandramohan V, Gowthami N, Vasudev V, Srinivas Bharath MM. Mitochondrial Complex I Inhibition in Dopaminergic Neurons Causes Altered Protein Profile and Protein Oxidation: Implications for Parkinson's disease. Neurochem Res 2023:10.1007/s11064-023-03907-x. [PMID: 36964824 DOI: 10.1007/s11064-023-03907-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/26/2023]
Abstract
Mitochondrial dysfunction and oxidative stress are critical to neurodegeneration in Parkinson's disease (PD). Mitochondrial dysfunction in PD entails inhibition of the mitochondrial complex I (CI) in the dopaminergic neurons of substantia nigra. The events contributing to CI inhibition and downstream pathways are not completely elucidated. We conducted proteomic analysis in a dopaminergic neuronal cell line exposed individually to neurotoxic CI inhibitors: rotenone (Rot), paraquat (Pq) and 1-methyl-4-phenylpyridinium (MPP+). Mass spectrometry (MS) revealed the involvement of biological processes including cell death pathways, structural changes and metabolic processes among others, most of which were common across all models. The proteomic changes induced by Pq were significantly higher than those induced by Rot and MPP+. Altered metabolic processes included downregulated mitochondrial proteins such as CI subunits. MS of CI isolated from the models revealed oxidative post-translational modifications with Tryptophan (Trp) oxidation as the predominant modification. Further, 62 peptides in 22 subunits of CI revealed Trp oxidation with 16 subunits common across toxins. NDUFV1 subunit had the greatest number of oxidized Trp and Rot model displayed the highest number of Trp oxidation events compared to the other models. Molecular dynamics simulation (MDS) of NDUFV1 revealed that oxidized Trp 433 altered the local conformation thereby changing the distance between the Fe-S clusters, Fe-S 301(N1a) to Fe-S 502 (N3) and Fe-S 802 (N4) to Fe-S 801 (N5), potentially affecting the efficiency of electron transfer. The events triggered by the neurotoxins represent CI damage, mitochondrial dysfunction and neurodegeneration in PD.
Collapse
Affiliation(s)
- Yogeshachar Chithra
- Department of Bioscience, P.G. Center, Hemagangotri, University of Mysore, Hassan, Karnataka, 573220, India
| | - Gourav Dey
- Institute of Bioinformatics, International Tech Park, Bangalore, 560066, India
| | - Vivek Ghose
- Manipal Academy of Higher Education, Udupi, Karnataka, 576104, India
| | - Vivek Chandramohan
- Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, Karnataka, 572103, India
| | - Niya Gowthami
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), No. 2900, Hosur Road, Lakkasandra, Bangalore, 560029, India
| | - V Vasudev
- Department of Bioscience, P.G. Center, Hemagangotri, University of Mysore, Hassan, Karnataka, 573220, India
| | - M M Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), No. 2900, Hosur Road, Lakkasandra, Bangalore, 560029, India.
| |
Collapse
|
8
|
Effects of the Acetyltransferase p300 on Tumour Regulation from the Novel Perspective of Posttranslational Protein Modification. Biomolecules 2023; 13:biom13030417. [PMID: 36979352 PMCID: PMC10046601 DOI: 10.3390/biom13030417] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
p300 acts as a transcription coactivator and an acetyltransferase that plays an important role in tumourigenesis and progression. In previous studies, it has been confirmed that p300 is an important regulator in regulating the evolution of malignant tumours and it also has extensive functions. From the perspective of non-posttranslational modification, it has been proven that p300 can participate in regulating many pathophysiological processes, such as activating oncogene transcription, promoting tumour cell growth, inducing apoptosis, regulating immune function and affecting embryo development. In recent years, p300 has been found to act as an acetyltransferase that catalyses a variety of protein modification types, such as acetylation, propanylation, butyylation, 2-hydroxyisobutyration, and lactylation. Under the catalysis of this acetyltransferase, it plays its crucial tumourigenic driving role in many malignant tumours. Therefore, the function of p300 acetyltransferase has gradually become a research hotspot. From a posttranslational modification perspective, p300 is involved in the activation of multiple transcription factors and additional processes that promote malignant biological behaviours, such as tumour cell proliferation, migration, and invasion, as well as tumour cell apoptosis, drug resistance, and metabolism. Inhibitors of p300 have been developed and are expected to become novel anticancer drugs for several malignancies. We review the characteristics of the p300 protein and its functional role in tumour from the posttranslational modification perspective, as well as the current status of p300-related inhibitor research, with a view to gaining a comprehensive understanding of p300.
Collapse
|
9
|
Mori A, Masuda T, Ito S, Ohtsuki S. Human Hepatic Transporter Signature Peptides for Quantitative Targeted Absolute Proteomics: Selection, Digestion Efficiency, and Peptide Stability. Pharm Res 2022; 39:2965-2978. [PMID: 36131112 DOI: 10.1007/s11095-022-03387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Quantitative targeted absolute proteomics (QTAP) quantifies proteins by measuring the signature peptides produced from target proteins by trypsin digestion. The selection of signature peptides is critical for reliable peptide quantification. The purpose of this study was to comprehensively assess the digestion efficiency and stability of tryptic peptides and to identify optimal signature peptides for human hepatic transporters and membrane marker proteins. METHODS The plasma membrane fraction of the human liver was digested at different time points and the peptides were comprehensively quantified using quantitative proteomics. Transporters and membrane markers were quantified using the signature peptides by QTAP. RESULTS Tryptic peptides were classified into clusters with low digestion efficiency, low stability, and high digestion efficiency and stability. Using the cluster information, we found that a proline residue next to the digestion site or the peptide position in or close to the transmembrane domains lowers digestion efficiency. A peptide containing cysteine at the N-terminus or arginine-glycine lowers peptide stability. Based on this information and the time course of peptide quantification, optimal signature peptides were identified for human hepatic transporters and membrane markers. The quantification of transporters with multiple signature peptides yielded consistent absolute values with less than 30% of coefficient variants in human liver microsomes and homogenates. CONCLUSIONS The signature peptides selected in the present study enabled the reliable quantification of human hepatic transporters. The QTAP protocol using these optimal signature peptides provides quantitative data on hepatic transporters usable for integrated pharmacokinetic studies.
Collapse
Affiliation(s)
- Ayano Mori
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Shingo Ito
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan. .,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
10
|
Tong Q, Liu H, Qi Q, Dai C, Yang T, Qian F. Development of a fully human anti-GITR antibody with potent antitumor activity using H2L2 mice. FEBS Open Bio 2022; 12:1542-1557. [PMID: 35674216 PMCID: PMC9340783 DOI: 10.1002/2211-5463.13451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/17/2022] [Accepted: 06/07/2022] [Indexed: 11/28/2022] Open
Abstract
Glucocorticoid‐induced TNF receptor‐related (GITR) can act as a co‐stimulatory receptor, representing a potential target for safely enhancing immunotherapy efficacy. GITR is triggered by a GITR ligand or an agonist antibody and activates CD8+ and CD4+ effector T cells, reducing tumor‐infiltrating Treg numbers and resulting in activation of immune responses and tumor cell destruction by effector T cells. GITR is an attractive target for immunotherapy, especially in combination therapy with immune checkpoint inhibitors, as is being explored in clinical trials. Using H2L2 transgenic mice encoding the human immunoglobulin variable region and hybridoma technology, we generated a panel of fully human antibodies that showed excellent specific affinity and strong activation of human T cells. After conversion to fully human antibodies and engineering modification, we obtained an anti‐GITR antibody hab019e2 with enhanced antitumor activity in a B‐hGITR MC38 mouse model compared to Tab9H6V3, an anti‐GITR antibody that activates T cells and inhibits Treg suppression from XenoMouse. As a fully human antibody with its posttranslational modification hot spot removed, the hab019e2 antibody exerted more potent therapeutic effects, and may have potential as a novel and developable antibody targeting GITR for follow‐up drug studies.
Collapse
Affiliation(s)
- Qiuli Tong
- Shanghai Public Health Clinical Center, Human Phenome Institute and School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Chempartner Co., Ltd, China
| | - Hu Liu
- Shanghai Chempartner Co., Ltd, China
| | | | | | | | - Feng Qian
- Shanghai Public Health Clinical Center, Human Phenome Institute and School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Li M, Kim C. Chloroplast ROS and stress signaling. PLANT COMMUNICATIONS 2022; 3:100264. [PMID: 35059631 PMCID: PMC8760138 DOI: 10.1016/j.xplc.2021.100264] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 05/23/2023]
Abstract
Chloroplasts overproduce reactive oxygen species (ROS) under unfavorable environmental conditions, and these ROS are implicated in both signaling and oxidative damage. There is mounting evidence for their roles in translating environmental fluctuations into distinct physiological responses, but their targets, signaling cascades, and mutualism and antagonism with other stress signaling cascades and within ROS signaling remain poorly understood. Great efforts made in recent years have shed new light on chloroplast ROS-directed plant stress responses, from ROS perception to plant responses, in conditional mutants of Arabidopsis thaliana or under various stress conditions. Some articles have also reported the mechanisms underlying the complexity of ROS signaling pathways, with an emphasis on spatiotemporal regulation. ROS and oxidative modification of affected target proteins appear to induce retrograde signaling pathways to maintain chloroplast protein quality control and signaling at a whole-cell level using stress hormones. This review focuses on these seemingly interconnected chloroplast-to-nucleus retrograde signaling pathways initiated by ROS and ROS-modified target molecules. We also discuss future directions in chloroplast stress research to pave the way for discovering new signaling molecules and identifying intersectional signaling components that interact in multiple chloroplast signaling pathways.
Collapse
|
12
|
A biosynthetic pathway to aromatic amines that uses glycyl-tRNA as nitrogen donor. Nat Chem 2022; 14:71-77. [PMID: 34725492 PMCID: PMC8758506 DOI: 10.1038/s41557-021-00802-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/27/2021] [Indexed: 11/12/2022]
Abstract
Aromatic amines in nature are typically installed with Glu or Gln as the nitrogen donor. Here we report a pathway that features glycyl-tRNA instead. During the biosynthesis of pyrroloiminoquinone-type natural products such as ammosamides, peptide-aminoacyl tRNA ligases append amino acids to the C-terminus of a ribosomally synthesized peptide. First, [Formula: see text] adds Trp in a Trp-tRNA-dependent reaction and the flavoprotein AmmC1 then carries out three hydroxylations of the indole ring of Trp. After oxidation to the corresponding ortho-hydroxy para-quinone, [Formula: see text] attaches Gly to the indole ring in a Gly-tRNA dependent fashion. Subsequent decarboxylation and hydrolysis results in an amino-substituted indole. Similar transformations are catalysed by orthologous enzymes from Bacillus halodurans. This pathway features three previously unknown biochemical processes using a ribosomally synthesized peptide as scaffold for non-ribosomal peptide extension and chemical modification to generate an amino acid-derived natural product.
Collapse
|
13
|
Hipper E, Blech M, Hinderberger D, Garidel P, Kaiser W. Photo-Oxidation of Therapeutic Protein Formulations: From Radical Formation to Analytical Techniques. Pharmaceutics 2021; 14:72. [PMID: 35056968 PMCID: PMC8779573 DOI: 10.3390/pharmaceutics14010072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022] Open
Abstract
UV and ambient light-induced modifications and related degradation of therapeutic proteins are observed during manufacturing and storage. Therefore, to ensure product quality, protein formulations need to be analyzed with respect to photo-degradation processes and eventually protected from light exposure. This task usually demands the application and combination of various analytical methods. This review addresses analytical aspects of investigating photo-oxidation products and related mediators such as reactive oxygen species generated via UV and ambient light with well-established and novel techniques.
Collapse
Affiliation(s)
- Elena Hipper
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany; (E.H.); (D.H.)
| | - Michaela Blech
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| | - Dariush Hinderberger
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany; (E.H.); (D.H.)
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| | - Wolfgang Kaiser
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| |
Collapse
|
14
|
Barkovits K, Chen W, Kohl M, Bracht T. Targeted Protein Quantification Using Parallel Reaction Monitoring (PRM). Methods Mol Biol 2021; 2228:145-157. [PMID: 33950489 DOI: 10.1007/978-1-0716-1024-4_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Targeted proteomics represents an efficient method to quantify proteins of interest with high sensitivity and accuracy. Targeted approaches were first established for triple quadrupole instruments, but the emergence of hybrid instruments allowing for high-resolution and accurate-mass measurements of MS/MS fragment ions enabled the development of parallel reaction monitoring (PRM). In PRM analysis, specific peptides are measured as representatives of proteins in complex samples, with the full product ion spectra being acquired, allowing for identification and quantification of the peptides. Ideally, corresponding stable isotope-labeled peptides are spiked into the analyzed samples to account for technical variation and enhance the precision. Here, we describe the development of a PRM assay including the selection of appropriate peptides that fulfill the criteria to serve as unique surrogates of the targeted proteins. We depict the sequential steps of method development and the generation of calibration curves. Furthermore, we present the open-access tool CalibraCurve for the determination of the linear concentration ranges and limits of quantification (LOQ).
Collapse
Affiliation(s)
- Katalin Barkovits
- Medizinisches Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum, Germany.,Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Weiqiang Chen
- Medizinisches Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum, Germany.,Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Michael Kohl
- Medizinisches Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum, Germany.,Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Thilo Bracht
- Medizinisches Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum, Germany. .,Medical Proteome Analysis, Center for Proteindiagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany. .,Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany.
| |
Collapse
|
15
|
Coagulation factor IX analysis in bioreactor cell culture supernatant predicts quality of the purified product. Commun Biol 2021; 4:390. [PMID: 33758337 PMCID: PMC7988164 DOI: 10.1038/s42003-021-01903-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
Coagulation factor IX (FIX) is a complex post-translationally modified human serum glycoprotein and high-value biopharmaceutical. The quality of recombinant FIX (rFIX), especially complete γ-carboxylation, is critical for rFIX clinical efficacy. Bioreactor operating conditions can impact rFIX production and post-translational modifications (PTMs). With the goal of optimizing rFIX production, we developed a suite of Data Independent Acquisition Mass Spectrometry (DIA-MS) proteomics methods and used these to investigate rFIX yield, γ-carboxylation, other PTMs, and host cell proteins during bioreactor culture and after purification. We detail the dynamics of site-specific PTM occupancy and structure on rFIX during production, which correlated with the efficiency of purification and the quality of the purified product. We identified new PTMs in rFIX near the GLA domain which could impact rFIX GLA-dependent purification and function. Our workflows are applicable to other biologics and expression systems, and should aid in the optimization and quality control of upstream and downstream bioprocesses.
Collapse
|
16
|
Schmidt J, Smith AR, Magnin M, Racle J, Devlin JR, Bobisse S, Cesbron J, Bonnet V, Carmona SJ, Huber F, Ciriello G, Speiser DE, Bassani-Sternberg M, Coukos G, Baker BM, Harari A, Gfeller D. Prediction of neo-epitope immunogenicity reveals TCR recognition determinants and provides insight into immunoediting. CELL REPORTS MEDICINE 2021; 2:100194. [PMID: 33665637 PMCID: PMC7897774 DOI: 10.1016/j.xcrm.2021.100194] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 12/11/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
CD8+ T cell recognition of peptide epitopes plays a central role in immune responses against pathogens and tumors. However, the rules that govern which peptides are truly recognized by existing T cell receptors (TCRs) remain poorly understood, precluding accurate predictions of neo-epitopes for cancer immunotherapy. Here, we capitalize on recent (neo-)epitope data to train a predictor of immunogenic epitopes (PRIME), which captures molecular properties of both antigen presentation and TCR recognition. PRIME not only improves prioritization of neo-epitopes but also correlates with T cell potency and unravels biophysical determinants of TCR recognition that we experimentally validate. Analysis of cancer genomics data reveals that recurrent mutations tend to be less frequent in patients where they are predicted to be immunogenic, providing further evidence for immunoediting in human cancer. PRIME will facilitate identification of pathogen epitopes in infectious diseases and neo-epitopes in cancer immunotherapy.
Collapse
Affiliation(s)
- Julien Schmidt
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland
| | - Angela R Smith
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Morgane Magnin
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland
| | - Julien Racle
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Jason R Devlin
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Sara Bobisse
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland
| | - Julien Cesbron
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland
| | | | - Santiago J Carmona
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Florian Huber
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland
| | - Giovanni Ciriello
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.,Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Daniel E Speiser
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland
| | - Brian M Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Alexandre Harari
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland.,Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - David Gfeller
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| |
Collapse
|
17
|
Burdman I, Burckhardt BB. Human prorenin determination by hybrid immunocapture liquid chromatography/mass spectrometry: A mixed-solvent-triggered digestion utilizing D-optimal design. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8932. [PMID: 32845569 DOI: 10.1002/rcm.8932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/03/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Human prorenin, representing the precursor of mature renin, has been discussed as a potential biomarker, e.g. in diagnosing primary hyperaldosteronism or diabetes-induced nephropathy. Currently, only immunoassays are available for prorenin quantification. As the similarity of prorenin to active renin impedes its accurate determination by immunoassay, mass spectrometry appears as an accurate alternative for differentiation of that protein. METHODS Immunoaffinity purification plus a mixed-solvent-triggered digestion was combined with liquid chromatography/mass spectrometry (LC/MS) to enable a fast, sensitive, and less laboratory-intensive approach to the quantification of prorenin. Statistical experimental planning, which is known as Design of Experiments (DOE), was used to identify the optimal conditions for the generation of the signature peptides within a manageable number of experiments. The efficiency of the mixed-solvent-triggered digestion by trypsin was investigated using four different organic solvents: acetonitrile, acetone, tetrahydrofuran and methanol. RESULTS By utilizing a D-optimal design, we found that the optimal mixed-solvent type for the generation of both signature peptides was acetonitrile at a concentration of 84% and an incubation temperature of 16°C. Using the mixed-solvent-triggered digestion, the procedure time allowed a fast analysis of active renin and prorenin with a short digestion time of 98 min. This optimized mixed-solvent-triggered digestion procedure was applied to detect renin and prorenin successfully in human plasma by the newly developed hybrid approach. CONCLUSIONS The identification of unique surrogates for human prorenin enabled the mass spectrometric differentiation between the two similar proteins. The novel hybrid approach successfully proved its ability to purify, detect and distinguish between prorenin and active renin in human plasma.
Collapse
Affiliation(s)
- Ilja Burdman
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University, Universitaetsstr. 1, Dusseldorf, Germany
| | - Bjoern B Burckhardt
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University, Universitaetsstr. 1, Dusseldorf, Germany
| |
Collapse
|
18
|
Abdildinova A, Gong YD. Traceless solid-phase synthesis and β-turn propensity of 1,3-thiazole-based peptidomimetics. RSC Adv 2020; 11:1050-1056. [PMID: 35423674 PMCID: PMC8693395 DOI: 10.1039/d0ra10127c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022] Open
Abstract
The design and solid-phase synthesis of 1,3-thiazole-based peptidomimetic molecules is described. The solid-phase synthesis was based on the utilization of a traceless linker strategy. The synthesis starts from the conversion of chloromethyl polystyrene resin to the resin with a sulfur linker unit. The key intermediate 4-amino-thiazole-5-carboxylic acid resin is prepared in three steps from Merrifield resin. The amide coupling proceeded at the C4 and C5 positions via an Fmoc solid-phase peptide synthesis strategy. After cleavage, the final compounds were obtained in moderate yields (average 9%, 11-step overall yields) with high purities (≥87%). Geometric measurements of Cα distances and dihedral angles along with an rmsd of 0.5434 for attachment with Cα of the β-turn template suggest type IV β-turn structural motifs. Additionally, the physicochemical properties of the molecules have been evaluated.
Collapse
Affiliation(s)
- Aizhan Abdildinova
- Innovative Drug Library Research Center, Department of Chemistry, College of Science, Dongguk University 30, Pildong-ro 1-gil, Jung-gu Seoul 04620 Korea
| | - Young-Dae Gong
- Innovative Drug Library Research Center, Department of Chemistry, College of Science, Dongguk University 30, Pildong-ro 1-gil, Jung-gu Seoul 04620 Korea
| |
Collapse
|
19
|
Lenčo J, Šemlej T, Khalikova MA, Fabrik I, Švec F. Sense and Nonsense of Elevated Column Temperature in Proteomic Bottom-up LC-MS Analyses. J Proteome Res 2020; 20:420-432. [PMID: 33085896 DOI: 10.1021/acs.jproteome.0c00479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Elevated column temperature represents a simple means for improving chromatographic separation of peptides. Here, we demonstrated the advantages of the column temperature in peptide separation using state-of-the-art columns. More importantly, we also determined how temperature can impair proteomic bottom-up analyses. We found that an elevated temperature in combination with the acidic pH of the mobile phase induced in-column peptide hydrolysis with high specificity to Asp and accelerated five modification reactions of amino acids. The positive effects of temperature dominated in the 30 min long gradients since the column operated at 90 °C provided the largest number of identified peptides and proteins. However, the adverse effects of temperature on peptide integrity in longer liquid chromatography-mass spectrometry (LC-MS) analyses required its reduction to obtain optimum results. The largest number of peptides was identified using the column maintained at 75 °C in 60 min long gradients, at 60 °C in 120 min long gradients, and at 45 °C in 240 min long gradients. Our results indicate that no universal column temperature exists for bottom-up LC-MS analyses. Quite the contrary, the temperature setting must be selected rationally to exploit the full capabilities of the state-of-the-art mass spectrometers in proteomic LC-MS analyses, with the gradient time being a critical factor.
Collapse
Affiliation(s)
- Juraj Lenčo
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| | - Tomáš Šemlej
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| | - Maria A Khalikova
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| | - Ivo Fabrik
- Biomedical Research Center, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic
| | - František Švec
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
20
|
Salih KJ, Duncan O, Li L, O'Leary B, Fenske R, Trösch J, Millar AH. Impact of oxidative stress on the function, abundance, and turnover of the Arabidopsis 80S cytosolic ribosome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:128-139. [PMID: 32027433 DOI: 10.1111/tpj.14713] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/05/2020] [Accepted: 01/23/2020] [Indexed: 05/22/2023]
Abstract
Abiotic stress in plants causes accumulation of reactive oxygen species (ROS) leading to the need for new protein synthesis to defend against ROS and to replace existing proteins that are damaged by oxidation. Functional plant ribosomes are critical for these activities, however we know little about the impact of oxidative stress on plant ribosome abundance, turnover, and function. Using Arabidopsis cell culture as a model system, we induced oxidative stress using 1 µm of H2 O2 or 5 µm menadione to more than halve cell growth rate and limit total protein content. We show that ribosome content on a total cell protein basis decreased in oxidatively stressed cells. However, overall protein synthesis rates on a ribosome abundance basis showed the resident ribosomes retained their function in oxidatively stressed cells. 15 N progressive labelling was used to calculate the rate of ribosome synthesis and degradation to track the fate of 62 r-proteins. The degradation rates and the synthesis rates of most r-proteins slowed following oxidative stress leading to an ageing population of ribosomes in stressed cells. However, there were exceptions to this trend; r-protein RPS14C doubled its degradation rate in both oxidative treatments. Overall, we show that ribosome abundance decreases and their age increases with oxidative stress in line with loss of cell growth rate and total cellular protein amount, but ribosome function of the ageing ribosomes appeared to be maintained concomittently with differences in the turnover rate and abundance of specific ribosomal proteins. Data are available via ProteomeXchange with identifier PXD012840.
Collapse
Affiliation(s)
- Karzan J Salih
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, 6009, Crawley, WA, Australia
- Pharmaceutical Chemistry Department, Medical and Applied Science College, Charmo University, 46023, Chamchamal-Sulaimani, Kurdistan Region, Iraq
| | - Owen Duncan
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, 6009, Crawley, WA, Australia
| | - Lei Li
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, 6009, Crawley, WA, Australia
- College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Brendan O'Leary
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, 6009, Crawley, WA, Australia
| | - Ricarda Fenske
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, 6009, Crawley, WA, Australia
| | - Josua Trösch
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, 6009, Crawley, WA, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, 6009, Crawley, WA, Australia
| |
Collapse
|
21
|
Zajec M, Jacobs JFM, de Kat Angelino CM, Dekker LJM, Stingl C, Luider TM, De Rijke YB, VanDuijn MM. Integrating Serum Protein Electrophoresis with Mass Spectrometry, A New Workflow for M-Protein Detection and Quantification. J Proteome Res 2020; 19:2845-2853. [DOI: 10.1021/acs.jproteome.9b00705] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Marina Zajec
- Department of Neurology, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Clinical Chemistry, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Joannes F. M. Jacobs
- Department of Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Corrie M. de Kat Angelino
- Department of Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Lennard J. M. Dekker
- Department of Neurology, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Christoph Stingl
- Department of Neurology, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Theo M. Luider
- Department of Neurology, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Yolanda B. De Rijke
- Department of Clinical Chemistry, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Martijn M. VanDuijn
- Department of Neurology, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
22
|
Bayer M, Tsiskarishvili N, Stegemann A, Böhm M, König S. Fast oxidation of α-melanocyte-stimulating hormone and derived peptides under laboratory conditions causes irreproducible results-Insights from studies of prolylcarboxypeptidase in human cell types. Pigment Cell Melanoma Res 2019; 33:378-382. [PMID: 31837203 DOI: 10.1111/pcmr.12852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 11/21/2019] [Accepted: 12/10/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Malte Bayer
- Core Unit Proteomics, Interdisciplinary Center for Clinical Research, University of Münster, Münster, Germany
| | | | - Agatha Stegemann
- Department of Dermatology, University of Münster, Münster, Germany
| | - Markus Böhm
- Department of Dermatology, University of Münster, Münster, Germany
| | - Simone König
- Core Unit Proteomics, Interdisciplinary Center for Clinical Research, University of Münster, Münster, Germany
| |
Collapse
|
23
|
•OH oxidation of methionine in the presence of discrete water molecules: DFT, QTAIM and valence bond analyses. Struct Chem 2019. [DOI: 10.1007/s11224-019-01438-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Chen Y, Doud E, Stone T, Xin L, Hong W, Li Y. Rapid global characterization of immunoglobulin G1 following oxidative stress. MAbs 2019; 11:1089-1100. [PMID: 31156028 PMCID: PMC6748588 DOI: 10.1080/19420862.2019.1625676] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Although peroxide and leachable metal-induced chemical modifications are among the most important quality attributes in bioprocess development, there is no mainstream characterization method covering all common modifications theoretically possible on therapeutic proteins that also gives consistent results quickly. Here, we describe a method for rapid and consistent global characterization of leachable metals- or peroxide-stressed immunoglobulin (Ig) G1 monoclonal antibodies (mAbs). Using two independent protease digestions, data-independent acquisition and data-dependent acquisition liquid chromatography high-resolution mass spectrometry, we monitored 55 potential chemical modifications on trastuzumab, a humanized IgG1 mAb. Processing templates including all observed peptides were developed on Skyline to consistently monitor all modifications throughout the stress conditions for both enzymatic digestions. The Global Characterization Data Processing Site, a universal automated data processing application, was created to batch process data, plot modification trends for peptides, generate sortable and downloadable modification tables, and produce Jmol code for three-dimensional structural models of the analyzed protein. In total, 53 sites on the mAb were found to be modified. Oxidation rates generally increased with the peroxide concentration, while leachable metals alone resulted in lower rates of modifications but more oxidative degradants. Multiple chemical modifications were found on IgG1 surfaces known to interact with FcɣRIII, complement protein C1q, and FcRn, potentially affecting activity. The combination of Skyline templates and the Global Characterization Data Processing Site results in a universally applicable assay allowing users to batch process numerous modifications. Applying this new method to stability studies will promote a broader and deeper understanding of stress modifications on therapeutic proteins.
Collapse
Affiliation(s)
- Yao Chen
- a Process Development, Catalent Pharma Solutions, Inc , Bloomington , IN , USA
| | - Emma Doud
- a Process Development, Catalent Pharma Solutions, Inc , Bloomington , IN , USA
| | - Todd Stone
- a Process Development, Catalent Pharma Solutions, Inc , Bloomington , IN , USA
| | - Lun Xin
- a Process Development, Catalent Pharma Solutions, Inc , Bloomington , IN , USA
| | - Wei Hong
- a Process Development, Catalent Pharma Solutions, Inc , Bloomington , IN , USA
| | - Yunsong Li
- a Process Development, Catalent Pharma Solutions, Inc , Bloomington , IN , USA
| |
Collapse
|
25
|
Schweikart F, Hulthe G. HPLC–UV–MS Analysis: A Source for Severe Oxidation Artifacts. Anal Chem 2019; 91:1748-1751. [DOI: 10.1021/acs.analchem.8b05845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fritz Schweikart
- Advanced Drug Delivery, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg 43183, Sweden
| | - Gustaf Hulthe
- Pharmaceutical Technology & Development, AstraZeneca R&D, Gothenburg 43183, Sweden
| |
Collapse
|
26
|
Pavon JA, Xiao L, Li X, Zhao J, Aldredge D, Dank E, Fridman A, Liu YH. Selective Tryptophan Oxidation of Monoclonal Antibodies: Oxidative Stress and Modeling Prediction. Anal Chem 2019; 91:2192-2200. [DOI: 10.1021/acs.analchem.8b04768] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jorge Alexander Pavon
- Process Research & Development, Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Li Xiao
- Modeling and Informatics, Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Xiaojuan Li
- Process Research & Development, Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Jia Zhao
- Process Research & Development, Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Danielle Aldredge
- Process Research & Development, Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Eugene Dank
- Process Research & Development, Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Alex Fridman
- Process Research & Development, Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Yan-Hui Liu
- Process Research & Development, Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| |
Collapse
|
27
|
Miller SE, Rizzo AI, Waldbauer JR. Postnovo: Postprocessing Enables Accurate and FDR-Controlled de Novo Peptide Sequencing. J Proteome Res 2018; 17:3671-3680. [PMID: 30277077 DOI: 10.1021/acs.jproteome.8b00278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
De novo sequencing offers an alternative to database search methods for peptide identification from mass spectra. Since it does not rely on a predetermined database of expected or potential sequences in the sample, de novo sequencing is particularly appropriate for samples lacking a well-defined or comprehensive reference database. However, the low accuracy of many de novo sequence predictions has prevented the widespread use of the variety of sequencing tools currently available. Here, we present a new open-source tool, Postnovo, that postprocesses de novo sequence predictions to find high-accuracy results. Postnovo uses a predictive model to rescore and rerank candidate sequences in a manner akin to database search postprocessing tools such as Percolator. Postnovo leverages the output from multiple de novo sequencing tools in its own analyses, producing many times the length of amino acid sequence information (including both full- and partial-length peptide sequences) at an equivalent false discovery rate (FDR) compared to any individual tool. We present a methodology to reliably screen the sequence predictions to a desired FDR given the Postnovo sequence score. We validate Postnovo with multiple data sets and demonstrate its ability to identify proteins that are missed by database search even in samples with paired reference databases.
Collapse
Affiliation(s)
- Samuel E Miller
- Department of the Geophysical Sciences , University of Chicago , 5734 South Ellis Avenue , Chicago , Illinois 60637 , United States
| | - Adriana I Rizzo
- Department of the Geophysical Sciences , University of Chicago , 5734 South Ellis Avenue , Chicago , Illinois 60637 , United States
| | - Jacob R Waldbauer
- Department of the Geophysical Sciences , University of Chicago , 5734 South Ellis Avenue , Chicago , Illinois 60637 , United States
| |
Collapse
|
28
|
Wang T, Nha Tran TT, Andreazza HJ, Bilusich D, Brinkworth CS, Bowie JH. Negative ion cleavages of (M-H) - anions of peptides. Part 3. Post-translational modifications. MASS SPECTROMETRY REVIEWS 2018; 37:3-21. [PMID: 27018865 DOI: 10.1002/mas.21501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 03/03/2015] [Indexed: 06/05/2023]
Abstract
It is now 25 years since we commenced the study of the negative-ion fragmentations of peptides and we have recently concluded this research with investigations of the negative-ion chemistry of most post-translational functional groups. Our first negative-ion peptide review (Bowie, Brinkworth, & Dua, 2002) dealt with the characteristic backbone fragmentations and side-chain cleavages from (M-H)- ions of underivatized peptides, while the second (Bilusich & Bowie, 2009) included negative-ion backbone cleavages for Ser and Cys and some initial data on some post-translational groups including disulfides. This third and final review provides a brief summary of the major backbone and side chain cleavages outlined before (Bowie, Brinkworth, & Dua, 2002) and describes the quantum mechanical hydrogen tunneling associated with some proton transfers in enolate anion/enolate systems. The review then describes, in more depth, the negative-ion cleavages of the post-translational groups Kyn, isoAsp, pyroglu, disulfides, phosphates, and sulfates. Particular emphasis is devoted to disulfides (both intra- and intermolecular) and phosphates because of the extensive and spectacular anion chemistry shown by these groups. © 2016 Wiley Periodicals, Inc. Mass Spec Rev.
Collapse
Affiliation(s)
- Tianfang Wang
- Department of Chemistry, The University of Adelaide, South Australia, 5005, Australia
- Genecology Research Centre, University of the Sunshine Coast, Queensland, 4556, Australia
| | - T T Nha Tran
- Department of Chemistry, The University of Adelaide, South Australia, 5005, Australia
- Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Hayley J Andreazza
- Department of Chemistry, The University of Adelaide, South Australia, 5005, Australia
| | - Daniel Bilusich
- Department of Chemistry, The University of Adelaide, South Australia, 5005, Australia
- Defence Science and Technology Organisation, Salisbury, PO Box 1500, South Australia, 5108, Australia
| | - Craig S Brinkworth
- Department of Chemistry, The University of Adelaide, South Australia, 5005, Australia
- Defence Science and Technology Organisation, Land Division, Fishermans Bend, Victoria, 3207, Australia
| | - John H Bowie
- Department of Chemistry, The University of Adelaide, South Australia, 5005, Australia
| |
Collapse
|
29
|
Marques EF, Medeiros MHG, Di Mascio P. Lysozyme oxidation by singlet molecular oxygen: Peptide characterization using [ 18 O]-labeling oxygen and nLC-MS/MS. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:739-751. [PMID: 28801970 DOI: 10.1002/jms.3983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/24/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
Singlet molecular oxygen (1 O2 ) is generated in biological systems and reacts with different biomolecules. Proteins are a major target for 1 O2 , and His, Tyr, Met, Cys, and Trp are oxidized at physiological pH. In the present study, the modification of lysozyme protein by 1 O2 was investigated using mass spectrometry approaches. The experimental findings showed methionine, histidine, and tryptophan oxidation. The experiments were achieved using [18 O]-labeled 1 O2 released from thermolabile endoperoxides in association with nano-scale liquid chromatography coupled to electrospray ionization mass spectrometry. The structural characterization by nLC-MS/MS of the amino acids in the tryptic peptides of the proteins showed addition of [18 O]-labeling atoms in different amino acids.
Collapse
Affiliation(s)
- Emerson Finco Marques
- Departamento de Bioquímica and Departamento de Química Fundamental Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Marisa H G Medeiros
- Departamento de Bioquímica and Departamento de Química Fundamental Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica and Departamento de Química Fundamental Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
30
|
Powell T, Bowra S, Cooper HJ. Subcritical Water Hydrolysis of Peptides: Amino Acid Side-Chain Modifications. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1775-1786. [PMID: 28516297 PMCID: PMC5556142 DOI: 10.1007/s13361-017-1676-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/02/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
Previously we have shown that subcritical water may be used as an alternative to enzymatic digestion in the proteolysis of proteins for bottom-up proteomics. Subcritical water hydrolysis of proteins was shown to result in protein sequence coverages greater than or equal to that obtained following digestion with trypsin; however, the percentage of peptide spectral matches for the samples treated with trypsin were consistently greater than for those treated with subcritical water. This observation suggests that in addition to cleavage of the peptide bond, subcritical water treatment results in other hydrolysis products, possibly due to modifications of amino acid side chains. Here, a model peptide comprising all common amino acid residues (VQSIKCADFLHYMENPTWGR) and two further model peptides (VCFQYMDRGDR and VQSIKADFLHYENPTWGR) were treated with subcritical water with the aim of probing any induced amino acid side-chain modifications. The hydrolysis products were analyzed by direct infusion electrospray tandem mass spectrometry, either collision-induced dissociation or electron transfer dissociation, and liquid chromatography collision-induced dissociation tandem mass spectrometry. The results show preferential oxidation of cysteine to sulfinic and sulfonic acid, and oxidation of methionine. In the absence of cysteine and methionine, oxidation of tryptophan was observed. In addition, water loss from aspartic acid and C-terminal amidation were observed in harsher subcritical water conditions. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Thomas Powell
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Steve Bowra
- Phytatec (UK) Ltd., Plas Gogerddan, Aberystwyth, SY23 3EB, UK
| | - Helen J Cooper
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
31
|
Bjerrum EJ, Jensen JH, Tolborg JL. pICalculax: Improved Prediction of Isoelectric Point for Modified Peptides. J Chem Inf Model 2017; 57:1723-1727. [PMID: 28671456 DOI: 10.1021/acs.jcim.7b00030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The isoelectric point of a peptide is a physicochemical property that can be accurately predicted from the sequence of the peptide when the peptide is built from natural amino acids. Peptides can however have chemical modifications, such as phosphorylations, amidations, and unnatural amino acids, which can result in erroneous predictions if not accounted for. Here we report on an open source program, pICalculax, which in an extensible way can handle pI calculations of modified peptides. Tests on a database of modified peptides and experimentally determined pI values show an improvement in pI predictions when taking the modifications into account. The correlation coefficient improves from 0.45 to 0.91, and the root-mean-square deviation likewise improves from 3.3 to 0.9. The program is available at https://github.com/EBjerrum/pICalculax.
Collapse
Affiliation(s)
- Esben J Bjerrum
- Wildcard Pharmaceutical Consulting , Frødings Alle 41, 2860 Søborg, Denmark.,Biochemfusion Aps , Løvspringsvej 4C, 1.tv, 2920 Charlottenlund, Denmark
| | - Jan H Jensen
- Biochemfusion Aps , Løvspringsvej 4C, 1.tv, 2920 Charlottenlund, Denmark
| | | |
Collapse
|
32
|
Nadler WM, Waidelich D, Kerner A, Hanke S, Berg R, Trumpp A, Rösli C. MALDI versus ESI: The Impact of the Ion Source on Peptide Identification. J Proteome Res 2017; 16:1207-1215. [PMID: 28176526 DOI: 10.1021/acs.jproteome.6b00805] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For mass spectrometry-based proteomic analyses, electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) are the commonly used ionization techniques. To investigate the influence of the ion source on peptide detection in large-scale proteomics, an optimized GeLC/MS workflow was developed and applied either with ESI/MS or with MALDI/MS for the proteomic analysis of different human cell lines of pancreatic origin. Statistical analysis of the resulting data set with more than 72 000 peptides emphasized the complementary character of the two methods, as the percentage of peptides identified with both approaches was as low as 39%. Significant differences between the resulting peptide sets were observed with respect to amino acid composition, charge-related parameters, hydrophobicity, and modifications of the detected peptides and could be linked to factors governing the respective ion yields in ESI and MALDI.
Collapse
Affiliation(s)
- Wiebke Maria Nadler
- German Cancer Research Center and HI-STEM gGmbH , Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | - Alexander Kerner
- German Cancer Research Center and HI-STEM gGmbH , Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Sabrina Hanke
- German Cancer Research Center and HI-STEM gGmbH , Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Regina Berg
- Department of Chemistry, University of Zurich , Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Andreas Trumpp
- German Cancer Research Center and HI-STEM gGmbH , Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Christoph Rösli
- German Cancer Research Center and HI-STEM gGmbH , Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
33
|
Schöneich C. Novel chemical degradation pathways of proteins mediated by tryptophan oxidation: tryptophan side chain fragmentation. J Pharm Pharmacol 2017; 70:655-665. [DOI: 10.1111/jphp.12688] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 12/11/2016] [Indexed: 01/04/2023]
Abstract
Abstract
Objectives
This minireview focuses on novel degradation pathways of proteins in solution via intermediary tryptophan (Trp) radical cations, which are generated via photo-induced electron transfer to suitable acceptors such as disulfide bonds.
Methods
Gas-phase mass spectrometry studies had indicated the potential for Trp radical cations to fragment via release of 3-methylene-3H-indol-1-ium from the side chain. HPLC-MS/MS analysis demonstrates that analogous fragmentation reactions occur during the exposure of peptides and proteins to light or accelerated stability testing.
Key findings
The light exposure of selected peptides and monoclonal antibodies leads to the conversion of Trp to glycine (Gly) or glycine hydroperoxide (GlyOOH), where GlyOOH could be reduced to hydroxyglycine, which undergoes subsequent cleavage. Product formation is consistent with Cα–Cβ fragmentation of intermediary Trp radical cations. For the peptide octreotide and specific glycoforms of IgG1 Fc domains, Trp side chain cleavage in aqueous solution is indicated by the formation of 3-methyleneindolenine (3-MEI), which adds to nucleophilic side chains, for example to Lys residues adjacent to the original Trp residues.
Conclusions
Trp side chain cleavage leads to novel reaction products on specific peptide and protein sequences, which may have consequences for potency and immunogenicity.
Collapse
Affiliation(s)
- Christian Schöneich
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, USA
| |
Collapse
|
34
|
Kabadi PG, Sankaran PK, Palanivelu DV, Adhikary L, Khedkar A, Chatterjee A. Mass Spectrometry Based Mechanistic Insights into Formation of Tris Conjugates: Implications on Protein Biopharmaceutics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1677-1685. [PMID: 27488315 DOI: 10.1007/s13361-016-1447-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/23/2016] [Accepted: 07/05/2016] [Indexed: 06/06/2023]
Abstract
We present here extensive mass spectrometric studies on the formation of a Tris conjugate with a therapeutic monoclonal antibody. The results not only demonstrate the reactive nature of the Tris molecule but also the sequence and reaction conditions that trigger this reactivity. The results corroborate the fact that proteins are, in general, prone to conjugation and/or adduct formation reactions and any modification due to this essentially leads to formation of impurities in a protein sample. Further, the results demonstrate that the conjugation reaction happens via a succinimide intermediate and has sequence specificity. Additionally, the data presented in this study also shows that the Tris formation is produced in-solution and is not an in-source phenomenon. We believe that the facts given here will open further avenues on exploration of Tris as a conjugating agent as well as ensure that the use of Tris or any ionic buffer in the process of producing a biopharmaceutical drug is monitored closely for the presence of such conjugate formation. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Pradeep G Kabadi
- Molecular Characterization Laboratory, Biocon Research Limited, Biocon Limited, Biocon Park, Bommasandra - Jigani Link Road, Bommasandra Industrial Area Phase IV, Bangalore, 560099, India
| | - Praveen Kallamvalliillam Sankaran
- Molecular Characterization Laboratory, Biocon Research Limited, Biocon Limited, Biocon Park, Bommasandra - Jigani Link Road, Bommasandra Industrial Area Phase IV, Bangalore, 560099, India
| | - Dinesh V Palanivelu
- Molecular Characterization Laboratory, Biocon Research Limited, Biocon Limited, Biocon Park, Bommasandra - Jigani Link Road, Bommasandra Industrial Area Phase IV, Bangalore, 560099, India
| | - Laxmi Adhikary
- Molecular Characterization Laboratory, Biocon Research Limited, Biocon Limited, Biocon Park, Bommasandra - Jigani Link Road, Bommasandra Industrial Area Phase IV, Bangalore, 560099, India
| | - Anand Khedkar
- Molecular Characterization Laboratory, Biocon Research Limited, Biocon Limited, Biocon Park, Bommasandra - Jigani Link Road, Bommasandra Industrial Area Phase IV, Bangalore, 560099, India
| | - Amarnath Chatterjee
- Molecular Characterization Laboratory, Biocon Research Limited, Biocon Limited, Biocon Park, Bommasandra - Jigani Link Road, Bommasandra Industrial Area Phase IV, Bangalore, 560099, India.
| |
Collapse
|
35
|
Scuderi D, Ignasiak MT, Serfaty X, de Oliveira P, Houée Levin C. Tandem mass spectrometry and infrared spectroscopy as a tool to identify peptide oxidized residues. Phys Chem Chem Phys 2016; 17:25998-6007. [PMID: 26292724 DOI: 10.1039/c5cp03223g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The final products obtained by the oxidation of small model peptides containing the thioether function, either methionine or S-methyl cysteine, have been characterized by tandem mass spectrometry and IR Multiple Photon Dissociation (IRMPD) spectroscopy. The modified positions have been clearly identified by the CID-MS(2) fragmentation mass spectra with or without loss of sulfenic acid, as well as by the vibrational signature of the sulfoxide bond at around 1000 cm(-1). The oxidation of the thioether function did not lead to the same products in these model peptides. The sulfoxide and sulfone (to a lesser extent) have been clearly identified as final products of the oxidation of S-methyl-glutathione (GS-Me). Decarboxylation or hydrogen loss are the major oxidation pathways in GS-Me, while they have not been observed in tryptophan-methionine and methionine-tryptophan (Trp-Met and Met-Trp). Interestingly, tryptophan is oxidized in the dipeptide Met-Trp, while that is not the case in the reverse sequence (Trp-Met).
Collapse
Affiliation(s)
- D Scuderi
- Laboratoire de Chimie Physique, Université Paris Sud, 91405 Orsay Cedex, France.
| | | | | | | | | |
Collapse
|
36
|
Serra A, Hemu X, Nguyen GKT, Nguyen NTK, Sze SK, Tam JP. A high-throughput peptidomic strategy to decipher the molecular diversity of cyclic cysteine-rich peptides. Sci Rep 2016; 6:23005. [PMID: 26965458 PMCID: PMC4786859 DOI: 10.1038/srep23005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 02/25/2016] [Indexed: 01/03/2023] Open
Abstract
Cyclotides are plant cyclic cysteine-rich peptides (CRPs). The cyclic nature is reported to be gene-determined with a precursor containing a cyclization-competent domain which contains an essential C-terminal Asn/Asp (Asx) processing signal recognized by a cyclase. Linear forms of cyclotides are rare and are likely uncyclizable because they lack this essential C-terminal Asx signal (uncyclotide). Here we show that in the cyclotide-producing plant Clitoria ternatea, both cyclic and acyclic products, collectively named cliotides, can be bioprocessed from the same cyclization-competent precursor. Using an improved peptidomic strategy coupled with the novel Asx-specific endopeptidase butelase 2 to linearize cliotides at a biosynthetic ligation site for transcriptomic analysis, we characterized 272 cliotides derived from 38 genes. Several types of post-translational modifications of the processed cyclotides were observed, including deamidation, oxidation, hydroxylation, dehydration, glycosylation, methylation, and truncation. Taken together, our results suggest that cyclotide biosynthesis involves 'fuzzy' processing of precursors into both cyclic and linear forms as well as post-translational modifications to achieve molecular diversity, which is a commonly found trait of natural product biosynthesis.
Collapse
Affiliation(s)
- Aida Serra
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Xinya Hemu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Giang K. T. Nguyen
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Ngan T. K. Nguyen
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - James P. Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| |
Collapse
|
37
|
Ramallo Guevara C, Philipp O, Hamann A, Werner A, Osiewacz HD, Rexroth S, Rögner M, Poetsch A. Global Protein Oxidation Profiling Suggests Efficient Mitochondrial Proteome Homeostasis During Aging. Mol Cell Proteomics 2016; 15:1692-709. [PMID: 26884511 DOI: 10.1074/mcp.m115.055616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Indexed: 11/06/2022] Open
Abstract
The free radical theory of aging is based on the idea that reactive oxygen species (ROS) may lead to the accumulation of age-related protein oxidation. Because themajority of cellular ROS is generated at the respiratory electron transport chain, this study focuses on the mitochondrial proteome of the aging model Podospora anserina as target for ROS-induced damage. To ensure the detection of even low abundant modified peptides, separation by long gradient nLC-ESI-MS/MS and an appropriate statistical workflow for iTRAQ quantification was developed. Artificial protein oxidation was minimized by establishing gel-free sample preparation in the presence of reducing and iron-chelating agents. This first large scale, oxidative modification-centric study for P. anserina allowed the comprehensive quantification of 22 different oxidative amino acid modifications, and notably the quantitative comparison of oxidized and nonoxidized protein species. In total 2341 proteins were quantified. For 746 both protein species (unmodified and oxidatively modified) were detected and the modification sites determined. The data revealed that methionine residues are preferably oxidized. Further prominent identified modifications in decreasing order of occurrence were carbonylation as well as formation of N-formylkynurenine and pyrrolidinone. Interestingly, for the majority of proteins a positive correlation of changes in protein amount and oxidative damage were noticed, and a general decrease in protein amounts at late age. However, it was discovered that few proteins changed in oxidative damage in accordance with former reports. Our data suggest that P. anserina is efficiently capable to counteract ROS-induced protein damage during aging as long as protein de novo synthesis is functioning, ultimately leading to an overall constant relationship between damaged and undamaged protein species. These findings contradict a massive increase in protein oxidation during aging and rather suggest a protein damage homeostasis mechanism even at late age.
Collapse
Affiliation(s)
- Carina Ramallo Guevara
- From the ‡Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, Bochum-44801, Germany
| | - Oliver Philipp
- §Molecular Developmental Biology, Faculty of Biosciences and Cluster of Excellence 'Macromolecular Complexes', Johann Wolfgang Goethe University, Frankfurt am Main-60438, Germany; ¶Molecular Bioinformatics, Faculty of Computer Science and Mathematics and Cluster of Excellence 'Macromolecular Complexes', Johann Wolfgang Goethe University, Frankfurt am Main-60325, Germany
| | - Andrea Hamann
- §Molecular Developmental Biology, Faculty of Biosciences and Cluster of Excellence 'Macromolecular Complexes', Johann Wolfgang Goethe University, Frankfurt am Main-60438, Germany
| | - Alexandra Werner
- §Molecular Developmental Biology, Faculty of Biosciences and Cluster of Excellence 'Macromolecular Complexes', Johann Wolfgang Goethe University, Frankfurt am Main-60438, Germany
| | - Heinz D Osiewacz
- §Molecular Developmental Biology, Faculty of Biosciences and Cluster of Excellence 'Macromolecular Complexes', Johann Wolfgang Goethe University, Frankfurt am Main-60438, Germany
| | - Sascha Rexroth
- From the ‡Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, Bochum-44801, Germany
| | - Matthias Rögner
- From the ‡Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, Bochum-44801, Germany
| | - Ansgar Poetsch
- From the ‡Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, Bochum-44801, Germany;
| |
Collapse
|
38
|
Bush DR, Zang L, Belov AM, Ivanov AR, Karger BL. High Resolution CZE-MS Quantitative Characterization of Intact Biopharmaceutical Proteins: Proteoforms of Interferon-β1. Anal Chem 2015; 88:1138-46. [DOI: 10.1021/acs.analchem.5b03218] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- David R. Bush
- Barnett
Institute, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Li Zang
- Analytical
Development Department, Biogen, Cambridge, Massachusetts 02142, United States
| | - Arseniy M. Belov
- Barnett
Institute, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Alexander R. Ivanov
- Barnett
Institute, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Barry L. Karger
- Barnett
Institute, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
| |
Collapse
|
39
|
Ehrenshaft M, Deterding LJ, Mason RP. Tripping up Trp: Modification of protein tryptophan residues by reactive oxygen species, modes of detection, and biological consequences. Free Radic Biol Med 2015; 89:220-8. [PMID: 26393422 PMCID: PMC4684788 DOI: 10.1016/j.freeradbiomed.2015.08.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 08/07/2015] [Accepted: 08/08/2015] [Indexed: 01/22/2023]
Abstract
Proteins comprise a majority of the dry weight of a cell, rendering them a major target for oxidative modification. Oxidation of proteins can result in significant alterations in protein molecular mass such as breakage of the polypeptide backbone and/or polymerization of monomers into dimers, multimers, and sometimes insoluble aggregates. Protein oxidation can also result in structural changes to amino acid residue side chains, conversions that have only a modest effect on protein size but can have widespread consequences for protein function. There are a wide range of rate constants for amino acid reactivity, with cysteine, methionine, tyrosine, phenylalanine, and tryptophan having the highest rate constants with commonly encountered biological oxidants. Free tryptophan and tryptophan protein residues react at a diffusion-limited rate with hydroxyl radical and also have high rate constants for reactions with singlet oxygen and ozone. Although oxidation of proteins in general and tryptophan residues specifically can have effects detrimental to the health of cells and organisms, some modifications are neutral, whereas others contribute to the function of the protein in question or may act as a signal that damaged proteins need to be replaced. This review provides a brief overview of the chemical mechanisms by which tryptophan residues become oxidized, presents both the strengths and the weaknesses of some of the techniques used to detect these oxidative interactions, and discusses selected examples of the biological consequences of tryptophan oxidation in proteins from animals, plants, and microbes.
Collapse
Affiliation(s)
- Marilyn Ehrenshaft
- Immunity, Inflammation and Disease Laboratory and National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | - Leesa J Deterding
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Ronald P Mason
- Immunity, Inflammation and Disease Laboratory and National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
40
|
Yu TY, Morton JD, Clerens S, Dyer JM. Proteomic Investigation of Protein Profile Changes and Amino Acid Residue Level Modification in Cooked Lamb Meat: The Effect of Boiling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9112-9123. [PMID: 26381020 DOI: 10.1021/acs.jafc.5b03324] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Hydrothermal treatment (heating in water) is a common method of general food processing and preparation. For red-meat-based foods, boiling is common; however, how the molecular level effects of this treatment correlate to the overall food properties is not yet well-understood. The effects of differing boiling times on lamb meat and the resultant cooking water were here examined through proteomic evaluation. The longer boiling time was found to result in increased protein aggregation involving particularly proteins such as glyceraldehyde-3-phosphate dehydrogenase, as well as truncation in proteins such as in α-actinin-2. Heat-induced protein backbone cleavage was observed adjacent to aspartic acid and asparagine residues. Side-chain modifications of amino acid residues resulting from the heating, including oxidation of phenylalanine and formation of carboxyethyllysine, were characterized in the cooked samples. Actin and myoglobin bands from the cooked meat per se remained visible on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, even after significant cooking time. These proteins were also found to be the major source of observed heat-induced modifications. This study provides new insights into molecular-level modifications occurring in lamb meat proteins during boiling and a protein chemistry basis for better understanding the effect of this common treatment on the nutritional and functional properties of red-meat-based foods.
Collapse
Affiliation(s)
- Tzer-Yang Yu
- Food & Bio-Based Products, AgResearch Lincoln Research Centre , Private Bag 4749, Christchurch 8140, New Zealand
- Wine, Food & Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University , P.O. Box 85084, Canterbury 7647, New Zealand
| | - James D Morton
- Wine, Food & Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University , P.O. Box 85084, Canterbury 7647, New Zealand
| | - Stefan Clerens
- Food & Bio-Based Products, AgResearch Lincoln Research Centre , Private Bag 4749, Christchurch 8140, New Zealand
- Biomolecular Interaction Centre, University of Canterbury , Private Bag 4800, Christchurch 8140, New Zealand
| | - Jolon M Dyer
- Food & Bio-Based Products, AgResearch Lincoln Research Centre , Private Bag 4749, Christchurch 8140, New Zealand
- Wine, Food & Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University , P.O. Box 85084, Canterbury 7647, New Zealand
- Riddet Institute, Massey University , Palmerston North 4442, New Zealand
- Biomolecular Interaction Centre, University of Canterbury , Private Bag 4800, Christchurch 8140, New Zealand
| |
Collapse
|
41
|
Zheng S, Zhang K, Tian S, He X, Zhang Y. Identification of Two Novel Modifications at Tryptophan Residues. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1787-1790. [PMID: 26238325 DOI: 10.1007/s13361-015-1217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 06/04/2023]
Abstract
Protein post-translational modifications (PTMs) play important roles in cellular physiology. Mass spectrometry (MS) has been developed into a powerful tool to identify all possible protein modifications. Herein, we describe our efforts to deduce the structures of two unknown modifications at tryptophan (Trp) residues (W + 92 Da and W + 108 Da). The two modifications were further confirmed by aligning the MS/MS fragmentation of synthetic peptide with in-vivo peptide identified. Finally, the mimic experiment elucidated how two Trp modifications occur. This study, therefore, expands current knowledge of Trp modifications.
Collapse
Affiliation(s)
- Shuzhen Zheng
- Department of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Kai Zhang
- Department of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.
- Department of Biochemistry and Molecular Biology & Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, People's Republic of China.
| | - Shanshan Tian
- Department of Biochemistry and Molecular Biology & Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Xiwen He
- Department of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Yukui Zhang
- Department of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.
- National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
| |
Collapse
|
42
|
Forstenlehner IC, Holzmann J, Toll H, Huber CG. Site-Specific Characterization and Absolute Quantification of Pegfilgrastim Oxidation by Top-Down High-Performance Liquid Chromatography–Mass Spectrometry. Anal Chem 2015; 87:9336-43. [DOI: 10.1021/acs.analchem.5b02029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ines C. Forstenlehner
- Christian
Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
- Department
of Molecular Biology, Division of Chemistry and Bioanalytics, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Johann Holzmann
- Department
of Molecular Biology, Division of Chemistry and Bioanalytics, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
- Analytical
Characterization Biopharmaceuticals, Sandoz GmbH, Biochemiestrasse
10, 6250 Kundl, Austria
| | - Hansjörg Toll
- Department
of Molecular Biology, Division of Chemistry and Bioanalytics, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
- Analytical
Characterization Biopharmaceuticals, Sandoz GmbH, Biochemiestrasse
10, 6250 Kundl, Austria
| | - Christian G. Huber
- Christian
Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
- Department
of Molecular Biology, Division of Chemistry and Bioanalytics, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| |
Collapse
|
43
|
Ellervik C, Vaught J. Preanalytical Variables Affecting the Integrity of Human Biospecimens in Biobanking. Clin Chem 2015; 61:914-34. [DOI: 10.1373/clinchem.2014.228783] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/13/2015] [Indexed: 12/20/2022]
Abstract
Abstract
BACKGROUND
Most errors in a clinical chemistry laboratory are due to preanalytical errors. Preanalytical variability of biospecimens can have significant effects on downstream analyses, and controlling such variables is therefore fundamental for the future use of biospecimens in personalized medicine for diagnostic or prognostic purposes.
CONTENT
The focus of this review is to examine the preanalytical variables that affect human biospecimen integrity in biobanking, with a special focus on blood, saliva, and urine. Cost efficiency is discussed in relation to these issues.
SUMMARY
The quality of a study will depend on the integrity of the biospecimens. Preanalytical preparations should be planned with consideration of the effect on downstream analyses. Currently such preanalytical variables are not routinely documented in the biospecimen research literature. Future studies using biobanked biospecimens should describe in detail the preanalytical handling of biospecimens and analyze and interpret the results with regard to the effects of these variables.
Collapse
Affiliation(s)
- Christina Ellervik
- Department of Research, Nykoebing Falster Hospital, Nykoebing Falster, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA
| | - Jim Vaught
- International Society for Biological and Environmental Repositories, Vancouver, Canada
- Editor-in-Chief, Biopreservation and Biobanking, Vancouver, Canada
| |
Collapse
|
44
|
Bults P, van de Merbel NC, Bischoff R. Quantification of biopharmaceuticals and biomarkers in complex biological matrices: a comparison of liquid chromatography coupled to tandem mass spectrometry and ligand binding assays. Expert Rev Proteomics 2015; 12:355-74. [DOI: 10.1586/14789450.2015.1050384] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Verrastro I, Pasha S, Jensen KT, Pitt AR, Spickett CM. Mass spectrometry-based methods for identifying oxidized proteins in disease: advances and challenges. Biomolecules 2015; 5:378-411. [PMID: 25874603 PMCID: PMC4496678 DOI: 10.3390/biom5020378] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/20/2015] [Accepted: 03/23/2015] [Indexed: 01/02/2023] Open
Abstract
Many inflammatory diseases have an oxidative aetiology, which leads to oxidative damage to biomolecules, including proteins. It is now increasingly recognized that oxidative post-translational modifications (oxPTMs) of proteins affect cell signalling and behaviour, and can contribute to pathology. Moreover, oxidized proteins have potential as biomarkers for inflammatory diseases. Although many assays for generic protein oxidation and breakdown products of protein oxidation are available, only advanced tandem mass spectrometry approaches have the power to localize specific oxPTMs in identified proteins. While much work has been carried out using untargeted or discovery mass spectrometry approaches, identification of oxPTMs in disease has benefitted from the development of sophisticated targeted or semi-targeted scanning routines, combined with chemical labeling and enrichment approaches. Nevertheless, many potential pitfalls exist which can result in incorrect identifications. This review explains the limitations, advantages and challenges of all of these approaches to detecting oxidatively modified proteins, and provides an update on recent literature in which they have been used to detect and quantify protein oxidation in disease.
Collapse
Affiliation(s)
- Ivan Verrastro
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Sabah Pasha
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Karina Tveen Jensen
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Andrew R Pitt
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| |
Collapse
|
46
|
Mörtstedt H, Ali N, Kåredal M, Jacobsson H, Rietz E, Diab KK, Nielsen J, Jönsson BAG, Lindh CH. Targeted proteomic analyses of nasal lavage fluid in persulfate-challenged hairdressers with bleaching powder-associated rhinitis. J Proteome Res 2015; 14:860-73. [PMID: 25546367 DOI: 10.1021/pr5009306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hairdressers have an increased risk for developing airway symptoms, for example, asthma and rhinitis. Persulfates, which are oxidizing agents in bleaching powder, are considered important causal agents for these symptoms. However, the underlying mechanisms are unclear. The aim was therefore to measure proteomic changes in nasal lavage fluid from persulfate-challenged subjects to identify proteins potentially involved in the pathogenesis of bleaching powder-associated rhinitis or candidate effect biomarkers for persulfate. Also, oxidized peptides were measured to evaluate their usefulness as biomarkers for persulfate exposure or effect, for example, oxidative stress. Samples from hairdressers with and without bleaching powder-associated rhinitis were analyzed with liquid chromatography tandem mass spectrometry using selected reaction monitoring to target 246 proteins and five oxidized peptides. Pathway analysis was applied to obtain a functional overview of the proteins. Several proteins involved in biologically meaningful pathways, functions, or disorders, for example, inflammatory responses, oxidative stress, epithelium integrity, and dermatological disorders, changed after the persulfate challenge. A list with nine proteins that appeared to be affected by the persulfate challenge and should be followed up was defined. An albumin peptide containing oxidized tryptophan increased 2 h and 5 h after the challenge but not after 20 min, which indicates that such peptides may be useful as oxidative stress biomarkers.
Collapse
Affiliation(s)
- Harriet Mörtstedt
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University , SE-221 85 Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Li W, Kerwin JL, Schiel J, Formolo T, Davis D, Mahan A, Benchaar SA. Structural Elucidation of Post-Translational Modifications in Monoclonal Antibodies. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1201.ch003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Wenzhou Li
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - James L. Kerwin
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - John Schiel
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Trina Formolo
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Darryl Davis
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Andrew Mahan
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Sabrina A. Benchaar
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
48
|
Ortiz-Martinez M, Winkler R, García-Lara S. Preventive and therapeutic potential of peptides from cereals against cancer. J Proteomics 2014; 111:165-83. [PMID: 24727098 DOI: 10.1016/j.jprot.2014.03.044] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/13/2014] [Accepted: 03/31/2014] [Indexed: 01/08/2023]
Abstract
Epidemiological studies have shown that regular consumption of food based on whole-grain cereals and their products is associated with reduced risks of various types of degenerative chronic diseases. Food proteins are considered an important source of nutraceutical peptides and amino acids that can exert biological functions to promote health and prevent disease, including cancer. There have been several reports on peptides with anti-tumour activity in recent years. Plant-derived peptides, such as rapeseed, amaranth and soybean lunasin have received main attention. In this review, we extend this vision to analyse the evidence of current advances in peptides in cereals such as wheat, maize, rice, barley, rye and pseudocereals compared with soybean. We also show evidence of several mechanisms through which bioactive peptide exerts anti-tumour activity. Finally, we report the current status of major strategies for the fractionation, isolation and characterisation of bioactive peptides in cereals. BIOLOGICAL SIGNIFICANCE In recent reports, it has been shown that peptides are an interesting alternative in the search for new treatments for cancer. One of the most studied sources of these peptides is food proteins; however, a review that includes more recent findings for cereals as a potential source of bioactive peptides in the treatment of cancer, the techniques for their isolation and characterisation and the assays used to prove their bioactivity is not available. This review can be used as a tool in the search for new sources of anti-cancer peptides. The authors have no conflicts of interest, financial or otherwise.
Collapse
Affiliation(s)
| | - Robert Winkler
- Dep. of Biotechnology and Biochemistry, CINVESTAV Unidad Irapuato, Irapuato Gto., Mexico
| | | |
Collapse
|
49
|
Dong Q, Yan X, Kilpatrick LE, Liang Y, Mirokhin YA, Roth JS, Rudnick PA, Stein SE. Tandem mass spectral libraries of peptides in digests of individual proteins: Human Serum Albumin (HSA). Mol Cell Proteomics 2014; 13:2435-49. [PMID: 24889059 DOI: 10.1074/mcp.o113.037135] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
This work presents a method for creating a mass spectral library containing tandem spectra of identifiable peptide ions in the tryptic digestion of a single protein. Human serum albumin (HSA(1)) was selected for this purpose owing to its ubiquity, high level of characterization and availability of digest data. The underlying experimental data consisted of ∼3000 one-dimensional LC-ESI-MS/MS runs with ion-trap fragmentation. In order to generate a wide range of peptides, studies covered a broad set of instrument and digestion conditions using multiple sources of HSA and trypsin. Computer methods were developed to enable the reliable identification and reference spectrum extraction of all peptide ions identifiable by current sequence search methods. This process made use of both MS2 (tandem) spectra and MS1 (electrospray) data. Identified spectra were generated for 2918 different peptide ions, using a variety of manually-validated filters to ensure spectrum quality and identification reliability. The resulting library was composed of 10% conventional tryptic and 29% semitryptic peptide ions, along with 42% tryptic peptide ions with known or unknown modifications, which included both analytical artifacts and post-translational modifications (PTMs) present in the original HSA. The remaining 19% contained unexpected missed-cleavages or were under/over alkylated. The methods described can be extended to create equivalent spectral libraries for any target protein. Such libraries have a number of applications in addition to their known advantages of speed and sensitivity, including the ready re-identification of known PTMs, rejection of artifact spectra and a means of assessing sample and digestion quality.
Collapse
Affiliation(s)
- Qian Dong
- From the ‡Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8362, Gaithersburg, Maryland 20899, United States
| | - Xinjian Yan
- From the ‡Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8362, Gaithersburg, Maryland 20899, United States
| | - Lisa E Kilpatrick
- From the ‡Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8362, Gaithersburg, Maryland 20899, United States
| | - Yuxue Liang
- From the ‡Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8362, Gaithersburg, Maryland 20899, United States
| | - Yuri A Mirokhin
- From the ‡Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8362, Gaithersburg, Maryland 20899, United States
| | - Jeri S Roth
- From the ‡Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8362, Gaithersburg, Maryland 20899, United States
| | - Paul A Rudnick
- From the ‡Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8362, Gaithersburg, Maryland 20899, United States
| | - Stephen E Stein
- From the ‡Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8362, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
50
|
Abstract
Numerous oxidative modifications to proteins and amino acids have been identified with most susceptible, to varying degrees, of some form of oxidative modification. The consequence of oxidation on protein structure and function reveals that some of these modifications are functionally important. The discovery and accurate characterization/description of existing and new modifications requires modern instrumentation, great care, and attention to detail, especially if the modifications are present in low stoichiometric quantities or they only exist transiently. The focus of this brief review is on the use of mass spectrometry, protein chemistry, and proteomics methods and tools to identify oxidatively modified proteins and peptides along with the characterization of specific sites. Many of the specialized mass spectrometry technologies and techniques are becoming more widely available in research laboratories with mass spectrometry or proteomics facilities allowing even non-expert researchers in the field to accurately determine modifications. Illustrative examples of some approaches are provided from the author's work, collaborative research projects, and elsewhere.
Collapse
|