1
|
Gosset-Erard C, Aubriet F, Leize-Wagner E, François YN, Chaimbault P. Hyphenation of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with separation methods: The art of compromises and the possible - A review. Talanta 2023; 257:124324. [PMID: 36780779 DOI: 10.1016/j.talanta.2023.124324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
This review provides an overview of the online hyphenation of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) with separation methods to date. The online coupling between separation techniques (gas and liquid chromatography, capillary electrophoresis) and FT-ICR MS essentially raises questions of compromise and is not look as straightforward as hyphenation with other analyzers (QTOF-MS for instance). FT-ICR MS requires time to reach its highest resolving power and accuracy in mass measurement capabilities whereas chromatographic and electrophoretic peaks are transient. In many applications, the strengths and the weaknesses of each technique are balanced by their hyphenation. Untargeted "Omics" (e.g. proteomics, metabolomics, petroleomics, …) is one of the main areas of application for FT-ICR MS hyphenated to online separation techniques because of the complexity of the sample. FT-ICR MS achieves the required high mass measurement accuracy to determine accurate molecular formulae and resolution for isobar distinction. Meanwhile separation techniques highlight isomers and reduce the ion suppression effects extending the dynamic range. Even if the implementation of FT-ICR MS hyphenated with online separation methods is a little trickier (the art of compromise), this review shows that it provides unparalleled results to the scientific community (the art of the possible), along with raising the issue of its future in the field with the relentless technological progress.
Collapse
Affiliation(s)
- Clarisse Gosset-Erard
- Université de Lorraine, LCP-A2MC, F-57000, Metz, France; Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de, Strasbourg, France.
| | | | - Emmanuelle Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de, Strasbourg, France.
| | - Yannis-Nicolas François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de, Strasbourg, France.
| | | |
Collapse
|
2
|
Zhu P, Nguyen KT, Estelle AB, Sluchanko NN, Mehl RA, Cooley RB. Genetic encoding of 3-nitro-tyrosine reveals the impacts of 14-3-3 nitration on client binding and dephosphorylation. Protein Sci 2023; 32:e4574. [PMID: 36691781 PMCID: PMC9926477 DOI: 10.1002/pro.4574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023]
Abstract
14-3-3 proteins are central hub regulators of hundreds of phosphorylated "client" proteins. They are subject to over 60 post-translational modifications (PTMs), yet little is known how these PTMs alter 14-3-3 function and its ability to regulate downstream signaling pathways. An often neglected, but well-documented 14-3-3 PTM found under physiological and immune-stimulatory conditions is the conversion of tyrosine to 3-nitro-tyrosine at several Tyr sites, two of which are located at sites considered important for 14-3-3 function: Y130 (β-isoform numbering) is located in the primary phospho-client peptide-binding groove, while Y213 is found on a secondary binding site that engages with clients for full 14-3-3/client complex formation and client regulation. By genetically encoding 3-nitro-tyrosine, we sought to understand if nitration at Y130 and Y213 effectively modulated 14-3-3 structure, function, and client complexation. The 1.5 Å resolution crystal structure of 14-3-3 nitrated at Y130 showed the nitro group altered the conformation of key residues in the primary binding site, while functional studies confirmed client proteins failed to bind this variant of 14-3-3. But, in contrast to other client-binding deficient variants, it did not localize to the nucleus. The 1.9 Å resolution structure of 14-3-3 nitrated at Y213 revealed unusual flexibility of its C-terminal α-helix resulting in domain swapping, suggesting additional structural plasticity though its relevance is not clear as this nitrated form retained its ability to bind clients. Collectively, our data suggest that nitration of 14-3-3 will alter downstream signaling systems, and if uncontrolled could result in global dysregulation of the 14-3-3 interactome.
Collapse
Affiliation(s)
- Phillip Zhu
- Department of Biochemistry and Biophysics, 2011 Agricultural and Life SciencesOregon State UniversityCorvallisOregonUSA
| | - Kyle T. Nguyen
- Department of Biochemistry and Biophysics, 2011 Agricultural and Life SciencesOregon State UniversityCorvallisOregonUSA
| | - Aidan B. Estelle
- Department of Biochemistry and Biophysics, 2011 Agricultural and Life SciencesOregon State UniversityCorvallisOregonUSA
| | - Nikolai N. Sluchanko
- Federal Research Center of Biotechnology of the Russian Academy of SciencesA.N. Bach Institute of BiochemistryMoscowRussia
| | - Ryan A. Mehl
- Department of Biochemistry and Biophysics, 2011 Agricultural and Life SciencesOregon State UniversityCorvallisOregonUSA
| | - Richard B. Cooley
- Department of Biochemistry and Biophysics, 2011 Agricultural and Life SciencesOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
3
|
Porter JJ, Jang HS, Haque MM, Stuehr DJ, Mehl RA. Tyrosine nitration on calmodulin enhances calcium-dependent association and activation of nitric-oxide synthase. J Biol Chem 2019; 295:2203-2211. [PMID: 31914408 DOI: 10.1074/jbc.ra119.010999] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/19/2019] [Indexed: 12/14/2022] Open
Abstract
Production of reactive oxygen species caused by dysregulated endothelial nitric-oxide synthase (eNOS) activity is linked to vascular dysfunction. eNOS is a major target protein of the primary calcium-sensing protein calmodulin. Calmodulin is often modified by the main biomarker of nitroxidative stress, 3-nitrotyrosine (nitroTyr). Despite nitroTyr being an abundant post-translational modification on calmodulin, the mechanistic role of this modification in altering calmodulin function and eNOS activation has not been investigated. Here, using genetic code expansion to site-specifically nitrate calmodulin at its two tyrosine residues, we assessed the effects of these alterations on calcium binding by calmodulin and on binding and activation of eNOS. We found that nitroTyr-calmodulin retains affinity for eNOS under resting physiological calcium concentrations. Results from in vitro eNOS assays with calmodulin nitrated at Tyr-99 revealed that this nitration reduces nitric-oxide production and increases eNOS decoupling compared with WT calmodulin. In contrast, calmodulin nitrated at Tyr-138 produced more nitric oxide and did so more efficiently than WT calmodulin. These results indicate that the nitroTyr post-translational modification, like tyrosine phosphorylation, can impact calmodulin sensitivity for calcium and reveal Tyr site-specific gain or loss of functions for calmodulin-induced eNOS activation.
Collapse
Affiliation(s)
- Joseph J Porter
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Hyo Sang Jang
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Mohammad Mahfuzul Haque
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331.
| |
Collapse
|
4
|
Locard-Paulet M, Parra J, Albigot R, Mouton-Barbosa E, Bardi L, Burlet-Schiltz O, Marcoux J. VisioProt-MS: interactive 2D maps from intact protein mass spectrometry. Bioinformatics 2019; 35:679-681. [PMID: 30084957 PMCID: PMC6378940 DOI: 10.1093/bioinformatics/bty680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 07/13/2018] [Accepted: 08/06/2018] [Indexed: 12/21/2022] Open
Abstract
SUMMARY VisioProt-MS is designed to summarize and analyze intact protein and top-down proteomics data. It plots the molecular weights of eluting proteins as a function of their retention time, thereby allowing inspection of runs from liquid chromatography coupled to mass spectrometry (LC-MS). It also overlays MS/MS identification results. VisioProt-MS is compatible with outputs from many different top-down dedicated software. To our knowledge, this is the only open source standalone application that allows the dynamic comparison of several MS files, a prerequisite for comparative analysis of different biological conditions. With its dynamic rendering, this user-friendly web application facilitates inspection, comparison and export of publication quality 2 D maps from deconvoluted LC-MS run(s) and top-down proteomics data. AVAILABILITY AND IMPLEMENTATION The Shiny-based web application VisioProt-MS is suitable for non-R users. It can be found at https://masstools.ipbs.fr/mstools/visioprot-ms/ and the corresponding scripts are downloadable at https://github.com/mlocardpaulet/VisioProt-MS. It is governed by the CeCILL license (http://www.cecill.info).
Collapse
Affiliation(s)
- Marie Locard-Paulet
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Parra
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Renaud Albigot
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Emmanuelle Mouton-Barbosa
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laurent Bardi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
5
|
Chen X, Lee J, Wu H, Tsang AW, Furdui CM. Mass Spectrometry in Advancement of Redox Precision Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:327-358. [PMID: 31347057 PMCID: PMC9236553 DOI: 10.1007/978-3-030-15950-4_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Redox (portmanteau of reduction-oxidation) reactions involve the transfer of electrons between chemical species in biological processes fundamental to life. It is of outmost importance that cells maintain a healthy redox state by balancing the action of oxidants and antioxidants; failure to do so leads to a multitude of diseases including cancer, diabetes, fibrosis, autoimmune diseases, and cardiovascular and neurodegenerative diseases. From the perspective of precision medicine, it is therefore beneficial to interrogate the redox phenotype of the individual-similar to the use of genomic sequencing-in order to design tailored strategies for disease prevention and treatment. This chapter provides an overview of redox metabolism and focuses on how mass spectrometry (MS) can be applied to advance our knowledge in redox biology and precision medicine.
Collapse
Affiliation(s)
- Xiaofei Chen
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Hanzhi Wu
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Allen W Tsang
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
- Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA.
- Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
6
|
Patrie SM. Top-Down Mass Spectrometry: Proteomics to Proteoforms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 919:171-200. [PMID: 27975217 DOI: 10.1007/978-3-319-41448-5_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This chapter highlights many of the fundamental concepts and technologies in the field of top-down mass spectrometry (TDMS), and provides numerous examples of contributions that TD is making in biology, biophysics, and clinical investigations. TD workflows include variegated steps that may include non-specific or targeted preparative strategies, orthogonal liquid chromatography techniques, analyte ionization, mass analysis, tandem mass spectrometry (MS/MS) and informatics procedures. This diversity of experimental designs has evolved to manage the large dynamic range of protein expression and diverse physiochemical properties of proteins in proteome investigations, tackle proteoform microheterogeneity, as well as determine structure and composition of gas-phase proteins and protein assemblies.
Collapse
Affiliation(s)
- Steven M Patrie
- Computational and Systems Biology & Biomedical Engineering Graduate Programs, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
7
|
Verrastro I, Pasha S, Jensen KT, Pitt AR, Spickett CM. Mass spectrometry-based methods for identifying oxidized proteins in disease: advances and challenges. Biomolecules 2015; 5:378-411. [PMID: 25874603 PMCID: PMC4496678 DOI: 10.3390/biom5020378] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/20/2015] [Accepted: 03/23/2015] [Indexed: 01/02/2023] Open
Abstract
Many inflammatory diseases have an oxidative aetiology, which leads to oxidative damage to biomolecules, including proteins. It is now increasingly recognized that oxidative post-translational modifications (oxPTMs) of proteins affect cell signalling and behaviour, and can contribute to pathology. Moreover, oxidized proteins have potential as biomarkers for inflammatory diseases. Although many assays for generic protein oxidation and breakdown products of protein oxidation are available, only advanced tandem mass spectrometry approaches have the power to localize specific oxPTMs in identified proteins. While much work has been carried out using untargeted or discovery mass spectrometry approaches, identification of oxPTMs in disease has benefitted from the development of sophisticated targeted or semi-targeted scanning routines, combined with chemical labeling and enrichment approaches. Nevertheless, many potential pitfalls exist which can result in incorrect identifications. This review explains the limitations, advantages and challenges of all of these approaches to detecting oxidatively modified proteins, and provides an update on recent literature in which they have been used to detect and quantify protein oxidation in disease.
Collapse
Affiliation(s)
- Ivan Verrastro
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Sabah Pasha
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Karina Tveen Jensen
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Andrew R Pitt
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| |
Collapse
|
8
|
Multiple proteases to localize oxidation sites. PLoS One 2015; 10:e0116606. [PMID: 25775238 PMCID: PMC4361631 DOI: 10.1371/journal.pone.0116606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/12/2014] [Indexed: 11/19/2022] Open
Abstract
Proteins present in cellular environments with high levels of reactive oxygen and nitrogen species and/or low levels of antioxidants are highly susceptible to oxidative post-translational modification (PTM). Irreversible oxidative PTMs can generate a complex distribution of modified protein molecules, recently termed as proteoforms. Using ubiquitin as a model system, we mapped oxidative modification sites using trypsin, Lys-C, and Glu-C peptides. Several M+16 Da proteoforms were detected as well as proteoforms that include other previously unidentified oxidative modifications. This work highlights the use of multiple protease digestions to give insights to the complexity of oxidative modifications possible in bottom-up analyses.
Collapse
|
9
|
Butterfield DA, Perluigi M, Reed T, Muharib T, Hughes CP, Robinson RAS, Sultana R. Redox proteomics in selected neurodegenerative disorders: from its infancy to future applications. Antioxid Redox Signal 2012; 17:1610-55. [PMID: 22115501 PMCID: PMC3448942 DOI: 10.1089/ars.2011.4109] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 11/21/2011] [Accepted: 11/23/2011] [Indexed: 12/12/2022]
Abstract
Several studies demonstrated that oxidative damage is a characteristic feature of many neurodegenerative diseases. The accumulation of oxidatively modified proteins may disrupt cellular functions by affecting protein expression, protein turnover, cell signaling, and induction of apoptosis and necrosis, suggesting that protein oxidation could have both physiological and pathological significance. For nearly two decades, our laboratory focused particular attention on studying oxidative damage of proteins and how their chemical modifications induced by reactive oxygen species/reactive nitrogen species correlate with pathology, biochemical alterations, and clinical presentations of Alzheimer's disease. This comprehensive article outlines basic knowledge of oxidative modification of proteins and lipids, followed by the principles of redox proteomics analysis, which also involve recent advances of mass spectrometry technology, and its application to selected age-related neurodegenerative diseases. Redox proteomics results obtained in different diseases and animal models thereof may provide new insights into the main mechanisms involved in the pathogenesis and progression of oxidative-stress-related neurodegenerative disorders. Redox proteomics can be considered a multifaceted approach that has the potential to provide insights into the molecular mechanisms of a disease, to find disease markers, as well as to identify potential targets for drug therapy. Considering the importance of a better understanding of the cause/effect of protein dysfunction in the pathogenesis and progression of neurodegenerative disorders, this article provides an overview of the intrinsic power of the redox proteomics approach together with the most significant results obtained by our laboratory and others during almost 10 years of research on neurodegenerative disorders since we initiated the field of redox proteomics.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Stastna M, Van Eyk JE. Analysis of protein isoforms: can we do it better? Proteomics 2012; 12:2937-48. [PMID: 22888084 DOI: 10.1002/pmic.201200161] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/12/2012] [Accepted: 06/18/2012] [Indexed: 12/23/2022]
Abstract
Protein isoforms/splice variants can play important roles in various biological processes and can potentially be used as biomarkers or therapeutic targets/mediators. Thus, there is a need for efficient and, importantly, accurate methods to distinguish and quantify specific protein isoforms. Since protein isoforms can share a high percentage of amino acid sequence homology and dramatically differ in their cellular concentration, the task for accuracy and efficiency in methodology and instrumentation is challenging. The analysis of intact proteins has been perceived to provide a more accurate and complete result for isoform identification/quantification in comparison to analysis of the corresponding peptides that arise from protein enzymatic digestion. Recently, novel approaches have been explored and developed that can possess the accuracy and reliability important for protein isoform differentiation and isoform-specific peptide targeting. In this review, we discuss the recent development in methodology and instrumentation for enhanced detection of protein isoforms as well as the examples of their biological importance.
Collapse
Affiliation(s)
- Miroslava Stastna
- Johns Hopkins Bayview Proteomics Center, Department of Medicine, Division of Cardiology, School of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| | | |
Collapse
|
11
|
Du Y, Zhang N, Cui M, Liu Z, Liu S. Studies of interaction between insulin and glutathione using electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:1519-1526. [PMID: 22638968 DOI: 10.1002/rcm.6248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RATIONALE The interaction of glutathione (GSH) with insulin plays an important role in the degradation or regulation of insulin. The characterization of the reaction products of GSH and insulin is very important for a proper understanding of the mechanism of insulin regulation of GSH. METHODS Solutions of insulin and glutathione were incubated under different experimental conditions in vitro. The reaction products were determined by electrospray ionization (ESI) ion trap mass spectrometry combined with Fourier transform ion cyclotron resonance (FTICR) mass spectrometry. RESULTS The multi-reaction products were identified, including insulin A chain with two intrachain disulfides, insulin B chain with one intrachain disulfides, GSH-modified insulin, GSH-modified A chain, GSH-modified B chain, aggregates of A chain and B chain, and reduced A chain and B chain. The binding site of the B chain with insulin was determined directly by tandem mass spectrometry (MS/MS) without enzyme digestion. It was found that the reaction between GSH and insulin was pH-, O(2)- and temperature-dependent. CONCLUSIONS The results provide insight into the interaction between GSH and insulin. It has also been demonstrated that ESI-MS combined with high-resolution FTICRMS and MS/MS provides a powerful tool for screening the reactions of proteins and small molecules.
Collapse
Affiliation(s)
- Yonggang Du
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | | | | | | | | |
Collapse
|
12
|
Wang S, Zhao R, Liu J, Zhao J. A Label-Free Strategy for both Qualification and Quantitation of Protein Based on Tandem Mass Spectrometry. BIOTECHNOL BIOTEC EQ 2012. [DOI: 10.5504/bbeq.2012.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
13
|
Lin TY, Green RJ, O'Connor PB. A gain and bandwidth enhanced transimpedance preamplifier for Fourier-transform ion cyclotron resonance mass spectrometry. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2011; 82:124101. [PMID: 22225232 PMCID: PMC3253747 DOI: 10.1063/1.3660778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 10/20/2011] [Indexed: 05/31/2023]
Abstract
The nature of the ion signal from a 12-T Fourier-transform ion cyclotron resonance mass spectrometer and the electronic noise were studied to further understand the electronic detection limit. At minimal cost, a new transimpedance preamplifier was designed, computer simulated, built, and tested. The preamplifier design pushes the electronic signal-to-noise performance at room temperature to the limit, because of its enhanced tolerance of the capacitance of the detection device, lower intrinsic noise, and larger flat mid-band gain (input current noise spectral density of around 1 pA/√Hz when the transimpedance is about 85 dBΩ). The designed preamplifier has a bandwidth of ~3 kHz to 10 MHz, which corresponds to the mass-to-charge ratio, m/z, of approximately 18 to 61 k at 12 T. The transimpedance and the bandwidth can be easily adjusted by changing the value of passive components. The feedback limitation of the circuit is discussed. With the maximum possible transimpedance of 5.3 MΩ when using an 0402 surface mount resistor, the preamplifier was estimated to be able to detect ~110 charges in a single scan.
Collapse
Affiliation(s)
- Tzu-Yung Lin
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | | | | |
Collapse
|
14
|
Zhou H, Ning Z, E. Starr A, Abu-Farha M, Figeys D. Advancements in Top-Down Proteomics. Anal Chem 2011; 84:720-34. [DOI: 10.1021/ac202882y] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hu Zhou
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H8M5
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China 201203
| | - Zhibing Ning
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H8M5
| | - Amanda E. Starr
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H8M5
| | - Mohamed Abu-Farha
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H8M5
| |
Collapse
|
15
|
Tipton JD, Tran JC, Catherman AD, Ahlf DR, Durbin KR, Kelleher NL. Analysis of intact protein isoforms by mass spectrometry. J Biol Chem 2011; 286:25451-8. [PMID: 21632550 DOI: 10.1074/jbc.r111.239442] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The diverse proteome of an organism arises from such events as single nucleotide substitutions at the DNA level, different RNA processing, and dynamic enzymatic post-translational modifications. This minireview focuses on the measurement of intact proteins to describe the diversity found in proteomes. The field of biological mass spectrometry has steadily advanced, enabling improvements in the characterization of single proteins to proteins derived from cells or tissues. In this minireview, we discuss the basic technology for "top-down" intact protein analysis. Furthermore, examples of studies involved with the qualitative and quantitative analysis of full-length polypeptides are provided.
Collapse
Affiliation(s)
- Jeremiah D Tipton
- Departmen of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | | | |
Collapse
|
16
|
Intact protein analysis in the biopharmaceutical field. J Pharm Biomed Anal 2011; 55:810-22. [DOI: 10.1016/j.jpba.2011.01.031] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 01/18/2011] [Accepted: 01/21/2011] [Indexed: 01/09/2023]
|
17
|
Zhu M, Zhang H, Humphreys WG. Drug metabolite profiling and identification by high-resolution mass spectrometry. J Biol Chem 2011; 286:25419-25. [PMID: 21632546 DOI: 10.1074/jbc.r110.200055] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mass spectrometry plays a key role in drug metabolite identification, an integral part of drug discovery and development. The development of high-resolution (HR) MS instrumentation with improved accuracy and stability, along with new data processing techniques, has improved the quality and productivity of metabolite identification processes. In this minireview, HR-MS-based targeted and non-targeted acquisition methods and data mining techniques (e.g. mass defect, product ion, and isotope pattern filters and background subtraction) that facilitate metabolite identification are examined. Methods are presented that enable multiple metabolite identification tasks with a single LC/HR-MS platform and/or analysis. Also, application of HR-MS-based strategies to key metabolite identification activities and future developments in the field are discussed.
Collapse
Affiliation(s)
- Mingshe Zhu
- Bristol-Myers Squibb Pharmaceutical Company, Princeton, New Jersey 08543, USA
| | | | | |
Collapse
|