1
|
Commodore JJ, Cassady CJ. Effects of acidic peptide size and sequence on trivalent praseodymium adduction and electron transfer dissociation mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:218-229. [PMID: 28170125 PMCID: PMC5407459 DOI: 10.1002/jms.3919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 05/05/2023]
Abstract
Using the lanthanide ion praseodymium, Pr(III), metallated ion formation and electron transfer dissociation (ETD) were studied for 25 biological and model acidic peptides. For chain lengths of seven or more residues, even highly acidic peptides that can be difficult to protonate by electrospray ionization will metallate and undergo abundant ETD fragmentation. Peptides composed of predominantly acidic residues form only the deprotonated ion, [M + Pr - H]2+ ; this ion yields near complete ETD sequence coverage for larger peptides. Peptides with a mixture of acidic and neutral residues generate [M + Pr]3+ , which cleaves between every residue for many peptides. Acidic peptides that contain at least one residue with a basic side chain also produce the protonated ion, [M + Pr + H]4+ ; this ion undergoes the most extensive sequence coverage by ETD. Primarily metallated and non-metallated c- and z-ions form for all peptides investigated. Metal adducted product ions are only present when at least half of the peptide sequence can be incorporated into the ion; this suggests that the metal ion simultaneously attaches to more than one acidic site. The only site consistently lacking dissociation is at the N-terminal side of a proline residue. Increasing peptide chain length generates more backbone cleavage for metal-peptide complexes with the same charge state. For acidic peptides with the same length, increasing the precursor ion charge state from 2+ to 3+ also leads to more cleavage. The results of this study indicate that highly acidic peptides can be sequenced by ETD of complexes formed with Pr(III). Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Carolyn J. Cassady
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487
| |
Collapse
|
2
|
Wong PSJ, Chen X, Deng L, Wang Z, Li W, Wong YLE, Chan TWD. Suppression of peptide ion dissociation under electron capture: role of backbone amide hydrogen. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:1757-1764. [PMID: 26331925 DOI: 10.1002/rcm.7275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/07/2015] [Accepted: 07/11/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE The electron capture dissociation (ECD) of proteins/peptides is affected by the nature and sequence of amino acid residues. Electron capture/transfer with no dissociation is an intriguing phenomenon that has occasionally been observed. We have previously identified that diarginated peptides enriched with glutamic acid residues were found to show suppression of backbone fragmentation. In this paper, we report the effect of geometrical parameters of a peptide, including chain length, conformation and amide hydrogen, on the suppression of ECD fragmentation using synthetic model peptides. METHODS Glycine containing model polypeptides were used to probe the mechanism. Molecular-mechanics was used to obtain the conformation of the precursor ions. The ECD experiments were performed on a Bruker APEX III 4.7 T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. RESULTS Significant decreases in the intensities of the fragment ions were observed for the 23-mer polypeptide with only one E residue. This implied that the E:R ratio was no longer the sole determining factor for the occurrence of suppression effects. Results of conformational searches showed that there was a hydrogen-bonding 'ladder' formed in the 23-mer polypeptide, which was not found in the 15-mer peptide. Substituting the normal amino acid residues by the corresponding N-methylated amino acid residues in the model peptide, the suppression effect disappeared. CONCLUSIONS Our results indicate that survival of the intact reduced peptide ion after electron capture depends also on the length of the peptide. The amide hydrogen was critical in forming the resonance structure that suppressed the ECD fragmentation.
Collapse
Affiliation(s)
- P-S Joyce Wong
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR
| | - Xiangfeng Chen
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR
- Shandong Academy of Sciences, Jinan, Shandong, P.R. China
| | - Liulin Deng
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Washington, USA
| | - Ze Wang
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR
| | - Wan Li
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR
| | - Y L Elaine Wong
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR
| | - T-W Dominic Chan
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR
| |
Collapse
|
3
|
Chen X, Wang Z, Li W, Wong YLE, Chan TWD. Effect of structural parameters on the electron capture dissociation and collision-induced dissociation pathways of copper(II)-peptide complexes. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:649-657. [PMID: 26353987 DOI: 10.1255/ejms.1382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The gas-phase dissociation pathways of proteins/peptides are usually affected by the nature of the charge carrier and the sequence of amino acid residues. The effects of peptide structural parameters, including peptide composition, chain length and amide hydrogen, on the gas-phase dissociation of Cu(II)-model peptide complexes were explored in this study. Polyglycine peptides with flexible frames were used as probes to reduce the complexity of the system and illustrate the mechanism. Results revealed that the types of fragment ions generated in the electron capture dissociation (ECD) of Cu(II)-adducted peptides changed according to the basic amino acid residue composition. Charged or neutral tryptophan side-chain losses were observed in the collision-induced dissociation (CID) of Cu(II)-peptide complexes. Internal electron transfer between tryptophan and metal ion within the complex occurred during the CID reaction, leaving the charge-reduced Cu(+) as a closed d-shell stable electron configuration. The choice of the reaction channel was then determined by the gas-phase basicity of the peptide. Amide hydrogen was critical in the formation of metalated b-/y-ions in the ECD process as determined through mutation of the backbone amide group. Increasing the chain length suppressed the ECD of Cu-metalated peptide species. Our results indicate that the structural parameters of peptides play important roles in the gas-phase dissociation processes of Cu-peptide complexes.
Collapse
Affiliation(s)
- Xiangfeng Chen
- Department of Chemistry, Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China. Shandong Academy of Sciences, Jinan, Shandong, PR China.
| | - Ze Wang
- Department of Chemistry, Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| | - Wan Li
- Department of Chemistry, Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| | - Y L Elaine Wong
- Department of Chemistry, Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| | - T-W Dominic Chan
- Department of Chemistry, Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| |
Collapse
|
4
|
Kalli A, Hess S. Electron capture dissociation of hydrogen-deficient peptide radical cations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1729-1740. [PMID: 22855421 DOI: 10.1007/s13361-012-0433-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/05/2012] [Accepted: 06/12/2012] [Indexed: 06/01/2023]
Abstract
Hydrogen-deficient peptide radical cations exhibit fascinating gas phase chemistry, which is governed by radical driven dissociation and, in many cases, by a combination of radical and charge driven fragmentation. Here we examine electron capture dissociation (ECD) of doubly, [M + H](2+•), and triply, [M + 2H](3+•), charged hydrogen-deficient species, aiming to investigate the effect of a hydrogen-deficient radical site on the ECD outcome and characterize the dissociation pathways of hydrogen-deficient species in ECD. ECD of [M + H](2+•) and [M + 2H](3+•) precursor ions resulted in efficient electron capture by the hydrogen-deficient species. However, the intensities of c- and z-type product ions were reduced, compared with those observed for the even electron species, indicating suppression of N-C(α) backbone bond cleavages. We postulate that radical recombination occurs after the initial electron capture event leading to a stable even electron intermediate, which does not trigger N-C(α) bond dissociations. Although the intensities of c- and z-type product ions were reduced, the number of backbone bond cleavages remained largely unaffected between the ECD spectra of the even electron and hydrogen-deficient species. We hypothesize that a small ion population exist as a biradical, which can trigger N-C(α) bond cleavages. Alternatively, radical recombination and N-C(α) bond cleavages can be in competition, with radical recombination being the dominant pathway and N-C(α) cleavages occurring to a lesser degree. Formation of b- and y-type ions observed for two of the hydrogen-deficient peptides examined is also discussed.
Collapse
Affiliation(s)
- Anastasia Kalli
- Proteome Exploration Laboratory, Division of Biology, Beckman Institute, California Institute of Technology, Pasadena, 91125, USA
| | | |
Collapse
|
5
|
Zimnicka M, Chung TW, Moss CL, Tureček F. Perturbing Peptide Cation-Radical Electronic States by Thioxoamide Groups: Formation, Dissociations, and Energetics of Thioxopeptide Cation-Radicals. J Phys Chem A 2012; 117:1265-75. [DOI: 10.1021/jp305865q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Magdalena Zimnicka
- Department of Chemistry, Bagley Hall, Box
351700, University of Washington, Seattle,
Washington 98195-1700,
United States
| | - Thomas W. Chung
- Department of Chemistry, Bagley Hall, Box
351700, University of Washington, Seattle,
Washington 98195-1700,
United States
| | - Christopher L. Moss
- Department of Chemistry, Bagley Hall, Box
351700, University of Washington, Seattle,
Washington 98195-1700,
United States
| | - František Tureček
- Department of Chemistry, Bagley Hall, Box
351700, University of Washington, Seattle,
Washington 98195-1700,
United States
| |
Collapse
|
6
|
Moss CL, Liang W, Li X, Tureček F. The early life of a peptide cation-radical. Ground and excited-state trajectories of electron-based peptide dissociations during the first 330 femtoseconds. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:446-459. [PMID: 22187160 DOI: 10.1007/s13361-011-0283-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/11/2011] [Accepted: 10/18/2011] [Indexed: 05/31/2023]
Abstract
We report a new approach to investigating the mechanisms of fast peptide cation-radical dissociations based on an analysis of time-resolved reaction progress by Ehrenfest dynamics, as applied to an Ala-Arg cation-radical model system. Calculations of stationary points on the ground electronic state that were carried out with effective CCSD(T)/6-311++G(3df,2p) could not explain the experimental branching ratios for loss of a hydrogen atom, ammonia, and N-C(α) bond dissociation in (AR + 2H)(+•). The Ehrenfest dynamics results indicate that the ground and low-lying excited electronic states of (AR + 2H)(+•) follow different reaction courses in the first 330 femtoseconds after electron attachment. The ground (X) state undergoes competing loss of N-terminal ammonia and isomerization to an aminoketyl radical intermediate that depend on the vibrational energy of the charge-reduced ion. The A and B excited states involve electron capture in the Arg guanidine and carboxyl groups and are non-reactive on the short time scale. The C state is dissociative and progresses to a fast loss of an H atom from the Arg guanidine group. Analogous results were obtained by using the B3LYP and CAM-B3LYP density functionals for the excited state dynamics and including the universal M06-2X functional for ground electronic state calculations. The results of this Ehrenfest dynamics study indicate that reaction pathway branching into the various dissociation channels occurs in the early stages of electron attachment and is primarily determined by the electronic states being accessed. This represents a new paradigm for the discussion of peptide dissociations in electron based methods of mass spectrometry.
Collapse
Affiliation(s)
- Christopher L Moss
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, WA, USA
| | | | | | | |
Collapse
|
7
|
Chen X, Fung YME, Chan WYK, Wong PS, Yeung HS, Chan TWD. Transition metal ions: charge carriers that mediate the electron capture dissociation pathways of peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:2232-2245. [PMID: 21952786 DOI: 10.1007/s13361-011-0246-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/31/2011] [Accepted: 09/04/2011] [Indexed: 05/31/2023]
Abstract
Electron capture dissociation (ECD) of model peptides adducted with first row divalent transition metal ions, including Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), and Zn(2+), were investigated. Model peptides with general sequence of ZGGGXGGGZ were used as probes to unveil the ECD mechanism of metalated peptides, where X is either V or W; and Z is either R or N. Peptides metalated with different divalent transition metal ions were found to generate different ECD tandem mass spectra. ECD spectra of peptides metalated by Mn(2+) and Zn(2+) were similar to those generated by ECD of peptides adducted with alkaline earth metal ions. Series of c-/z-type fragment ions with and without metal ions were observed. ECD of Fe(2+), Co(2+), and Ni(2+) adducted peptides yielded abundant metalated a-/y-type fragment ions; whereas ECD of Cu(2+) adducted peptides generated predominantly metalated b-/y-type fragment ions. From the present experimental results, it was postulated that electronic configuration of metal ions is an important factor in determining the ECD behavior of the metalated peptides. Due presumably to the stability of the electronic configuration, metal ions with fully-filled (i.e., Zn(2+)) and half filled (i.e., Mn(2+)) d-orbitals might not capture the incoming electron. Dissociation of the metal ions adducted peptides would proceed through the usual ECD channel(s) via "hot-hydrogen" or "superbase" intermediates, to form series of c-/z(•)- fragments. For other transition metal ions studied, reduction of the metal ions might occur preferentially. The energy liberated by the metal ion reduction would provide enough internal energy to generate the "slow-heating" type of fragment ions, i.e., metalated a-/y- fragments and metalated b-/y- fragments.
Collapse
Affiliation(s)
- Xiangfeng Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
8
|
Chung TW, Moss CL, Zimnicka M, Johnson RS, Moritz RL, Tureček F. Electron-capture and -transfer dissociation of peptides tagged with tunable fixed-charge groups: structures and dissociation energetics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:13-30. [PMID: 21472540 DOI: 10.1007/s13361-010-0012-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/26/2010] [Accepted: 10/11/2010] [Indexed: 05/30/2023]
Abstract
Pyridiniummethylcarbonyl moieties that were previously designed on the basis of electronic structure analysis are now utilized as fixed-charge tags with tunable electronic properties to be used for N-terminal peptide derivatization and sequencing by electron-transfer dissociation. Dipeptides AK and KA were derivatized at the peptide N-terminus with 4-dimethylaminopyridinium-N-acetyl (DMAP-ac) and pyridinium-N-acetyl (pyrid-ac) tags of increasing intrinsic recombination energies. Upon the capture of a free electron or electron transfer from fluoranthene anions, (DMAP-ac-AK+H)(2+), (DMAP-ac-KA+H)(2+), (pyrid-ac-AK+H)(2+) and (pyrid-ac-KA+H)(2+) ions, as well as underivatized (AK+2H)(2+), completely dissociated. The fixed-charge tags steered the dissociation upon electron transfer to form abundant backbone N-C(α) bond cleavages, whereas the underivatized peptide mainly underwent H-atom and side-chain losses. Precursor ion structures for the tagged peptides were analyzed by an exhaustive conformational search combined with B3LYP/6-31+G(d,p) geometry optimization and single-point energy calculations in order to select the global energy minima. Structures, relative energies, transition states, ion-molecule complexes, and dissociation products were identified for several charge-reduced species from the tagged peptides. The electronic properties of the charge tags and their interactions with the peptide moieties are discussed. Electrospray ionization and electron-transfer dissociation of larger peptides are illustrated with a DMAP-tagged pentapeptide.
Collapse
Affiliation(s)
- Thomas W Chung
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, WA 98195-1700, USA
| | | | | | | | | | | |
Collapse
|