1
|
King DT, Zhu S, Hardie DB, Serrano-Negrón JE, Madden Z, Kolappan S, Vocadlo DJ. Chemoproteomic identification of CO 2-dependent lysine carboxylation in proteins. Nat Chem Biol 2022; 18:782-791. [PMID: 35710617 DOI: 10.1038/s41589-022-01043-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 04/15/2022] [Indexed: 01/09/2023]
Abstract
Carbon dioxide is an omnipresent gas that drives adaptive responses within organisms from all domains of life. The molecular mechanisms by which proteins serve as sensors of CO2 are, accordingly, of great interest. Because CO2 is electrophilic, one way it can modulate protein biochemistry is by carboxylation of the amine group of lysine residues. However, the resulting CO2-carboxylated lysines spontaneously decompose, giving off CO2, which makes studying this modification difficult. Here we describe a method to stably mimic CO2-carboxylated lysine residues in proteins. We leverage this method to develop a quantitative approach to identify CO2-carboxylated lysines of proteins and explore the lysine 'carboxylome' of the CO2-responsive cyanobacterium Synechocystis sp. We uncover one CO2-carboxylated lysine within the effector binding pocket of the metabolic signaling protein PII. CO2-carboxylatation of this lysine markedly lowers the affinity of PII for its regulatory effector ligand ATP, illuminating a negative molecular control mechanism mediated by CO2.
Collapse
Affiliation(s)
- Dustin T King
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sha Zhu
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Darryl B Hardie
- University of Victoria-Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia, Canada
| | - Jesús E Serrano-Negrón
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Zarina Madden
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Subramania Kolappan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - David J Vocadlo
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada. .,Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
2
|
Blake LI, Cann MJ. Carbon Dioxide and the Carbamate Post-Translational Modification. Front Mol Biosci 2022; 9:825706. [PMID: 35300111 PMCID: PMC8920986 DOI: 10.3389/fmolb.2022.825706] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/03/2022] [Indexed: 01/10/2023] Open
Abstract
Carbon dioxide is essential for life. It is at the beginning of every life process as a substrate of photosynthesis. It is at the end of every life process as the product of post-mortem decay. Therefore, it is not surprising that this gas regulates such diverse processes as cellular chemical reactions, transport, maintenance of the cellular environment, and behaviour. Carbon dioxide is a strategically important research target relevant to crop responses to environmental change, insect vector-borne disease and public health. However, we know little of carbon dioxide’s direct interactions with the cell. The carbamate post-translational modification, mediated by the nucleophilic attack by carbon dioxide on N-terminal α-amino groups or the lysine ɛ-amino groups, is one mechanism by which carbon dioxide might alter protein function to form part of a sensing and signalling mechanism. We detail known protein carbamates, including the history of their discovery. Further, we describe recent studies on new techniques to isolate this problematic post-translational modification.
Collapse
|
3
|
Linthwaite VL, Cann MJ. A methodology for carbamate post-translational modification discovery and its application in Escherichia coli. Interface Focus 2021; 11:20200028. [PMID: 33633830 DOI: 10.1098/rsfs.2020.0028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 11/12/2022] Open
Abstract
Carbon dioxide can influence cell phenotypes through the modulation of signalling pathways. CO2 regulates cellular processes as diverse as metabolism, cellular homeostasis, chemosensing and pathogenesis. This diversity of regulated processes suggests a broadly conserved mechanism for CO2 interactions with diverse cellular targets. CO2 is generally unreactive but can interact with neutral amines on protein under normal intracellular conditions to form a carbamate post-translational modification (PTM). We have previously demonstrated the presence of this PTM in a subset of protein produced by the model plant species Arabidopsis thaliana. Here, we describe a detailed methodology for identifying new carbamate PTMs in an extracted soluble proteome under biologically relevant conditions. We apply this methodology to the soluble proteome of the model prokaryote Escherichia coli and identify new carbamate PTMs. The application of this methodology, therefore, supports the hypothesis that the carbamate PTM is both more widespread in biology than previously suspected and may represent a broadly relevant mechanism for CO2-protein interactions.
Collapse
Affiliation(s)
| | - Martin J Cann
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| |
Collapse
|
4
|
The identification of carbon dioxide mediated protein post-translational modifications. Nat Commun 2018; 9:3092. [PMID: 30082797 PMCID: PMC6078960 DOI: 10.1038/s41467-018-05475-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/03/2018] [Indexed: 11/17/2022] Open
Abstract
Carbon dioxide is vital to the chemistry of life processes including metabolism, cellular homoeostasis, and pathogenesis. CO2 is generally unreactive but can combine with neutral amines to form carbamates on proteins under physiological conditions. The most widely known examples of this are CO2 regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase and haemoglobin. However, the systematic identification of CO2-binding sites on proteins formed through carbamylation has not been possible due to the ready reversibility of carbamate formation. Here we demonstrate a methodology to identify protein carbamates using triethyloxonium tetrafluoroborate to covalently trap CO2, allowing for downstream proteomic analysis. This report describes the systematic identification of carbamates in a physiologically relevant environment. We demonstrate the identification of carbamylated proteins and the general principle that CO2 can impact protein biochemistry through carbamate formation. The ability to identify protein carbamates will significantly advance our understanding of cellular CO2 interactions. Carbon dioxide can interact with proteins to form carbamate post-translational modifications. Here, the authors developed a strategy to identify carbamate post-translational modifications by trapping carbon dioxide and subsequently identifying the carbamylated proteins.
Collapse
|
5
|
Füssl F, Cook K, Scheffler K, Farrell A, Mittermayr S, Bones J. Charge Variant Analysis of Monoclonal Antibodies Using Direct Coupled pH Gradient Cation Exchange Chromatography to High-Resolution Native Mass Spectrometry. Anal Chem 2018; 90:4669-4676. [DOI: 10.1021/acs.analchem.7b05241] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Florian Füssl
- NIBRT−The National Institute for Bioprocessing Research and Training, Foster Avenue,
Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Ken Cook
- Thermo Fisher Scientific, Stafford House, 1 Boundary Park, Hemel Hempstead, HP2 7GE, United Kingdom
| | - Kai Scheffler
- Thermo Fisher Scientific, Dornierstrasse 4, 82110 Germering, Germany
| | - Amy Farrell
- NIBRT−The National Institute for Bioprocessing Research and Training, Foster Avenue,
Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Stefan Mittermayr
- NIBRT−The National Institute for Bioprocessing Research and Training, Foster Avenue,
Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Jonathan Bones
- NIBRT−The National Institute for Bioprocessing Research and Training, Foster Avenue,
Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| |
Collapse
|
6
|
Inactivation of mushroom polyphenoloxidase in model systems exposed to high-pressure carbon dioxide. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2015.07.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Yamamoto A, Hisatomi H, Ando T, Takemine S, Terao T, Tojo T, Yagi M, Ono D, Kawasaki H, Arakawa R. Use of high-resolution mass spectrometry to identify precursors and biodegradation products of perfluorinated and polyfluorinated compounds in end-user products. Anal Bioanal Chem 2014; 406:4745-55. [DOI: 10.1007/s00216-014-7862-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 04/16/2014] [Accepted: 04/28/2014] [Indexed: 10/25/2022]
|
8
|
Zhou X, Zhang Y, Zhao S, Hsu CS, Shi Q. Observation of CO2 and solvent adduct ions during negative mode electrospray ionization Fourier transform ion cyclotron resonance mass spectrometric analysis of monohydric alcohols. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:2581-2587. [PMID: 24591018 DOI: 10.1002/rcm.6721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/15/2013] [Accepted: 08/25/2013] [Indexed: 06/03/2023]
Abstract
RATIONALE Monohydric alcohols are common in natural products, bio-oils, and medicine. We have found that monohydric alcohols can form O3 (ions containing three oxygen atoms) and O4 adduct ions in negative electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), which would significantly affect the composition analysis of alcohols, especially in a complex mixture. It is necessary to study the reaction pathways and the method to eliminate or reduce the 'artifact' adducts. METHODS Octadecanol, cholesterol, squalanol and two complex monohydric alcohol mixtures were selected as model compounds. These samples were subjected to negative ion ESI FT-ICR MS analysis. The composition and formation mechanism of adducts were studied by the ultrahigh-resolution accurate mass measurement for elemental composition, along with the MS(2) isolation and collision-induced dissociation (CID) experiments for structural determination. RESULTS The reaction pathway of O3 adduct formation is the coupling of a monohydric alcohol ion with a CO2 to form a stable O3 ionic species by likely a covalent bond (source of CO2 is not clear). The O4 species are formed by O3 ionic species adducted with an alcohol molecule of the solvent, such as methanol or ethanol, by likely a hydrogen bond. These adduct ions could be eliminated or reduced by increasing collision energy. However, excessive collision energy would fragment monohydric alcohol ions. CONCLUSIONS The formation mechanisms of O3 and O4 adducts from monohydric alcohols in negative ion ESI FT-ICR MS were proposed. The solvent adduction effects can be eliminated or reduced by optimizing the collision energy of CID in FT-ICR MS.
Collapse
Affiliation(s)
- Xibin Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China; College of Pharmacy, Liaoning Medical University, Jinzhou, Liaoning, 121001, China
| | | | | | | | | |
Collapse
|
9
|
Jackson P, Fisher KJ, Attalla MI. Tandem mass spectrometry measurement of the collision products of carbamate anions derived from CO2 capture sorbents: paving the way for accurate quantitation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1420-1431. [PMID: 21953197 PMCID: PMC3141848 DOI: 10.1007/s13361-011-0161-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/28/2011] [Accepted: 05/01/2011] [Indexed: 05/29/2023]
Abstract
The reaction between CO(2) and aqueous amines to produce a charged carbamate product plays a crucial role in post-combustion capture chemistry when primary and secondary amines are used. In this paper, we report the low energy negative-ion CID results for several anionic carbamates derived from primary and secondary amines commonly used as post-combustion capture solvents. The study was performed using the modern equivalent of a triple quadrupole instrument equipped with a T-wave collision cell. Deuterium labeling of 2-aminoethanol (1,1,2,2,-d(4)-2-aminoethanol) and computations at the M06-2X/6-311++G(d,p) level were used to confirm the identity of the fragmentation products for 2-hydroxyethylcarbamate (derived from 2-aminoethanol), in particular the ions CN(-), NCO(-) and facile neutral losses of CO(2) and water; there is precedent for the latter in condensed phase isocyanate chemistry. The fragmentations of 2-hydroxyethylcarbamate were generalized for carbamate anions derived from other capture amines, including ethylenediamine, diethanolamine, and piperazine. We also report unequivocal evidence for the existence of carbamate anions derived from sterically hindered amines (Tris(2-hydroxymethyl)aminomethane and 2-methyl-2-aminopropanol). For the suite of carbamates investigated, diagnostic losses include the decarboxylation product (-CO(2), 44 mass units), loss of 46 mass units and the fragments NCO(-) (m/z 42) and CN(-) (m/z 26). We also report low energy CID results for the dicarbamate dianion ((-)O(2)CNHC(2)H(4)NHCO(2)(-)) commonly encountered in CO(2) capture solution utilizing ethylenediamine. Finally, we demonstrate a promising ion chromatography-MS based procedure for the separation and quantitation of aqueous anionic carbamates, which is based on the reported CID findings. The availability of accurate quantitation methods for ionic CO(2) capture products could lead to dynamic operational tuning of CO(2) capture-plants and, thus, cost-savings via real-time manipulation of solvent regeneration energies.
Collapse
Affiliation(s)
- Phil Jackson
- Coal Portfolio–CSIRO Energy, P.O. Box 330, Newcastle, NSW 2300 Australia
| | - Keith J. Fisher
- Mass Spectrometry and ESR Facilities, School of Chemistry, University of Sydney, Sydney, NSW Australia
| | | |
Collapse
|