1
|
Audiger C, Lesage S. FLT3 Ligand Is Dispensable for the Final Stage of Type 1 Conventional Dendritic Cell Differentiation. THE JOURNAL OF IMMUNOLOGY 2020; 205:2117-2127. [PMID: 32887750 DOI: 10.4049/jimmunol.2000742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/10/2020] [Indexed: 12/29/2022]
Abstract
Conventional dendritic cells (cDCs) are comprised of two major subsets, type 1 cDC (cDC1) and type 2 cDC (cDC2). As each cDC subset differentially influences the nature of immune responses, we sought factors that would allow the manipulation of their relative abundance. Notably, cDC1 are less abundant than cDC2 in both lymphoid and nonlymphoid organs. We demonstrate that this bias is already apparent in bone marrow precommitted precursors. However, comparison of five common inbred strains revealed a disparity in precursor-product relationship, in which mice with fewer precursors to cDC1 had more cDC1. This disparity associated with contrasting variations in CD135 (FLT3) expression on cDC subsets. Hence, we characterized the response to FLT3 ligand during cDC1 and cDC2 lineage differentiation and find that although FLT3 ligand is required throughout cDC2 differentiation, it is surprisingly dispensable during late-stage cDC1 differentiation. Overall, we find that tight regulation of FLT3 ligand levels throughout cDC differentiation dictates the cDC1 to cDC2 ratio in lymphoid organs.
Collapse
Affiliation(s)
- Cindy Audiger
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada; and Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Sylvie Lesage
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada; and Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
2
|
Audiger C, Fois A, Thomas AL, Janssen E, Pelletier M, Lesage S. Merocytic Dendritic Cells Compose a Conventional Dendritic Cell Subset with Low Metabolic Activity. THE JOURNAL OF IMMUNOLOGY 2020; 205:121-132. [PMID: 32461238 DOI: 10.4049/jimmunol.1900970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 04/29/2020] [Indexed: 12/14/2022]
Abstract
Conventional dendritic cells (cDCs) are arguably the most potent APCs that induce the activation of naive T cells in response to pathogens. In addition, at steady-state, cDCs help maintain immune tolerance. Two subsets of cDCs have been extensively characterized, namely cDC1 and cDC2, each contributing differently to immune responses. Recently, another dendritic cell (DC) subset, termed merocytic DCs (mcDCs), was defined. In contrast to both cDC1 and cDC2, mcDCs reverse T cell anergy, properties that could be exploited to potentiate cancer treatments. Yet, whether mcDCs represent an unconventional DC or a cDC subset remains to be defined. In this article, we further characterize mcDCs and find that they bear true characteristics of cDC subsets. Indeed, as for cDCs, mcDCs express the cDC-restricted transcription factor Zbtb46 and display very potent APC activity. In addition, mcDC population dynamics parallels that of cDC1 and cDC2 in both reconstitution kinetic studies and parabiotic mice. We next investigated their relatedness to cDC1 and cDC2 and demonstrate that mcDCs are not dependent on cDC1-related Irf8 and Batf3 transcription factors, are dependent on Irf4, a cDC2-specific transcription factor, and express a unique transcriptomic signature. Finally, we find that cDC1, cDC2, and mcDCs all present with different metabolic phenotypes, in which mcDCs exhibit the lowest glucose uptake activity and mcDC survival is the least affected by glycolysis inhibition. Defining the properties of mcDCs in mice may help identify a functionally equivalent subset in humans leading to the development of innovative cancer immunotherapies.
Collapse
Affiliation(s)
- Cindy Audiger
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Adrien Fois
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Alyssa L Thomas
- Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Edith Janssen
- Janssen Research and Development, Spring House, PA 19477
| | - Martin Pelletier
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada; and.,Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Quebec City, Quebec G1V 0A6, Canada
| | - Sylvie Lesage
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada; .,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
3
|
Collin R, Balmer L, Morahan G, Lesage S. Common Heritable Immunological Variations Revealed in Genetically Diverse Inbred Mouse Strains of the Collaborative Cross. THE JOURNAL OF IMMUNOLOGY 2018; 202:777-786. [DOI: 10.4049/jimmunol.1801247] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/16/2018] [Indexed: 12/28/2022]
|
4
|
Audiger C, Lesage S. BIM determines the number of merocytic dendritic cells, a cell type that breaks immune tolerance. Immunol Cell Biol 2018; 96:1008-1017. [DOI: 10.1111/imcb.12165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/16/2017] [Accepted: 05/06/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Cindy Audiger
- Department of Immunology-Oncology; Maisonneuve-Rosemont Hospital; Montreal QC H1T 2M4 Canada
- Département de microbiologie, infectiologie et immunologie; Université de Montréal; Montreal QC H3C 3J7 Canada
| | - Sylvie Lesage
- Department of Immunology-Oncology; Maisonneuve-Rosemont Hospital; Montreal QC H1T 2M4 Canada
- Département de microbiologie, infectiologie et immunologie; Université de Montréal; Montreal QC H3C 3J7 Canada
| |
Collapse
|
5
|
Collin R, Doyon K, Mullins-Dansereau V, Karam M, Chabot-Roy G, Hillhouse EE, Orthwein A, Lesage S. Genetic interaction between two insulin-dependent diabetes susceptibility loci, Idd2 and Idd13, in determining immunoregulatory DN T cell proportion. Immunogenetics 2018; 70:495-509. [PMID: 29696366 DOI: 10.1007/s00251-018-1060-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022]
Abstract
Several immune regulatory cell types participate in the protection against autoimmune diseases such as autoimmune diabetes. Of these immunoregulatory cells, we and others have shown that peripheral CD4-CD8- double negative (DN) T cells can induce antigen-specific immune tolerance. Particularly, we have described that diabetes-prone mice exhibit a lower number of peripheral DN T cells compared to diabetes-resistant mice. Identifying the molecular pathways that influence the size of the DN T cell pool in peripheral lymphoid organs may thus be of interest for maintaining antigen-specific immune tolerance. Hence, through immunogenetic approaches, we found that two genetic loci linked to autoimmune diabetes susceptibility, namely Idd2 and Idd13, independently contribute to the partial restoration of DN T cell proportion in secondary lymphoid organs. We now extend these findings to show an interaction between the Idd2 and Idd13 loci in determining the number of DN T cells in secondary lymphoid organs. Using bioinformatics tools, we link potential biological pathways arising from interactions of genes encoded within the two loci. By focusing on cell cycle, we validate that both the Idd2 and Idd13 loci influence RAD51 expression as well as DN T cell progression through the cell cycle. Altogether, we find that genetic interactions between Idd2 and Idd13 loci modulate cell cycle progression, which contributes, at least in part, to defining the proportion of DN T cells in secondary lymphoid organs.
Collapse
Affiliation(s)
- Roxanne Collin
- Division of Immunology-oncology, Maisonneuve-Rosemont Hospital, Research Center, Montréal, 5415 l'Assomption Blvd, Québec, H1T 2M4, Canada.,Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - Kathy Doyon
- Division of Immunology-oncology, Maisonneuve-Rosemont Hospital, Research Center, Montréal, 5415 l'Assomption Blvd, Québec, H1T 2M4, Canada
| | - Victor Mullins-Dansereau
- Division of Immunology-oncology, Maisonneuve-Rosemont Hospital, Research Center, Montréal, 5415 l'Assomption Blvd, Québec, H1T 2M4, Canada.,Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - Martin Karam
- Division of Experimental Medicine, McGill University, Montréal, Québec, H4A 3J1, Canada.,Lady Davis Institute, Jewish General Hospital, 3755 Côte Ste-Catherine, Montréal, Québec, H3T 1E2, Canada
| | - Geneviève Chabot-Roy
- Division of Immunology-oncology, Maisonneuve-Rosemont Hospital, Research Center, Montréal, 5415 l'Assomption Blvd, Québec, H1T 2M4, Canada
| | - Erin E Hillhouse
- Division of Immunology-oncology, Maisonneuve-Rosemont Hospital, Research Center, Montréal, 5415 l'Assomption Blvd, Québec, H1T 2M4, Canada
| | - Alexandre Orthwein
- Division of Experimental Medicine, McGill University, Montréal, Québec, H4A 3J1, Canada. .,Lady Davis Institute, Jewish General Hospital, 3755 Côte Ste-Catherine, Montréal, Québec, H3T 1E2, Canada. .,Department of Oncology, McGill University, Montréal, Québec, H4A 3J1, Canada.
| | - Sylvie Lesage
- Division of Immunology-oncology, Maisonneuve-Rosemont Hospital, Research Center, Montréal, 5415 l'Assomption Blvd, Québec, H1T 2M4, Canada. .,Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, H3C 3J7, Canada.
| |
Collapse
|
6
|
Audiger C, Rahman MJ, Yun TJ, Tarbell KV, Lesage S. The Importance of Dendritic Cells in Maintaining Immune Tolerance. THE JOURNAL OF IMMUNOLOGY 2017; 198:2223-2231. [PMID: 28264998 DOI: 10.4049/jimmunol.1601629] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/11/2016] [Indexed: 12/30/2022]
Abstract
Immune tolerance is necessary to prevent the immune system from reacting against self, and thus to avoid the development of autoimmune diseases. In this review, we discuss key findings that position dendritic cells (DCs) as critical modulators of both thymic and peripheral immune tolerance. Although DCs are important for inducing both immunity and tolerance, increased autoimmunity associated with decreased DCs suggests their nonredundant role in tolerance induction. DC-mediated T cell immune tolerance is an active process that is influenced by genetic variants, environmental signals, as well as the nature of the specific DC subset presenting Ag to T cells. Answering the many open questions with regard to the role of DCs in immune tolerance could lead to the development of novel therapies for the prevention of autoimmune diseases.
Collapse
Affiliation(s)
- Cindy Audiger
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - M Jubayer Rahman
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Tae Jin Yun
- Laboratory of Cellular Physiology and Immunology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada; and.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Kristin V Tarbell
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sylvie Lesage
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada; .,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
7
|
Collin R, St-Pierre C, Guilbault L, Mullins-Dansereau V, Policheni A, Guimont-Desrochers F, Pelletier AN, Gray DH, Drobetsky E, Perreault C, Hillhouse EE, Lesage S. An Unbiased Linkage Approach Reveals That the p53 Pathway Is Coupled to NK Cell Maturation. THE JOURNAL OF IMMUNOLOGY 2017; 199:1490-1504. [PMID: 28710252 DOI: 10.4049/jimmunol.1600789] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/18/2017] [Indexed: 12/23/2022]
Abstract
Natural killer cells constitute potent innate lymphoid cells that play a major role in both tumor immunosurveillance and viral clearance via their effector functions. A four-stage model of NK cell functional maturation has been established according to the expression of CD11b and CD27, separating mature NK (mNK) cells into distinct populations that exhibit specific phenotypic and functional properties. To identify genetic factors involved in the regulation of NK cell functional maturation, we performed a linkage analysis on F2 (B6.Rag1-/- × NOD.Rag1-/- intercross) mice. We identified six loci on chromosomes 2, 4, 7, 10, 11, and 18 that were linked to one or more mNK cell subsets. Subsequently, we performed an in silico analysis exploiting mNK cell subset microarray data, highlighting various genes and microRNAs as potential regulators of the functional maturation of NK cells. Together, the combination of our unbiased genetic linkage study and the in silico analysis positions genes known to affect NK cell biology along the specific stages of NK cell functional maturation. Moreover, this approach allowed us to uncover a novel candidate gene in the regulation of NK cell maturation, namely Trp53 Using mice deficient for Trp53, we confirm that this tumor suppressor regulates NK cell functional maturation. Additional candidate genes revealed in this study may eventually serve as targets for the modulation of NK cell functional maturation to potentiate both tumor immunosurveillance and viral clearance.
Collapse
Affiliation(s)
- Roxanne Collin
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Charles St-Pierre
- Institut de Recherche en Immunologie et en Cancérologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada.,Département de Médecine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Lorie Guilbault
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Victor Mullins-Dansereau
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Antonia Policheni
- Molecular Genetics of Cancer Division, Immunology Division, Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia; and.,Department of Medical Biology, Melbourne University, Parkville, Victoria 3052, Australia
| | - Fanny Guimont-Desrochers
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Adam-Nicolas Pelletier
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Daniel H Gray
- Molecular Genetics of Cancer Division, Immunology Division, Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia; and.,Department of Medical Biology, Melbourne University, Parkville, Victoria 3052, Australia
| | - Elliot Drobetsky
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
| | - Claude Perreault
- Institut de Recherche en Immunologie et en Cancérologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada.,Département de Médecine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Erin E Hillhouse
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada;
| | - Sylvie Lesage
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada; .,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
8
|
Hotta-Iwamura C, Tarbell KV. Type 1 diabetes genetic susceptibility and dendritic cell function: potential targets for treatment. J Leukoc Biol 2016; 100:65-80. [PMID: 26792821 DOI: 10.1189/jlb.3mr1115-500r] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/21/2015] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes is an autoimmune disease that results from the defective induction or maintenance of T cell tolerance against islet β cell self-antigens. Under steady-state conditions, dendritic cells with tolerogenic properties are critical for peripheral immune tolerance. Tolerogenic dendritic cells can induce T cell anergy and deletion and, in some contexts, induce or expand regulatory T cells. Dendritic cells contribute to both immunomodulatory effects and triggering of pathogenesis in type 1 diabetes. This immune equilibrium is affected by both genetic and environmental factors that contribute to the development of type 1 diabetes. Genome-wide association studies and disease association studies have identified >50 polymorphic loci that lend susceptibility or resistance to insulin-dependent diabetes mellitus. In parallel, diabetes susceptibility regions known as insulin-dependent diabetes loci have been identified in the nonobese diabetic mouse, a model for human type 1 diabetes, providing a better understanding of potential immunomodulatory factors in type 1 diabetes risk. Most genetic candidates have annotated immune cell functions, but the focus has been on changes to T and B cells. However, it is likely that some of the genomic susceptibility in type 1 diabetes directly interrupts the tolerogenic potential of dendritic cells in the pathogenic context of ongoing autoimmunity. Here, we will review how gene polymorphisms associated with autoimmune diabetes may influence dendritic cell development and maturation processes that could lead to alterations in the tolerogenic function of dendritic cells. These insights into potential tolerogenic and pathogenic roles for dendritic cells have practical implications for the clinical manipulation of dendritic cells toward tolerance to prevent and treat type 1 diabetes.
Collapse
Affiliation(s)
- Chie Hotta-Iwamura
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kristin V Tarbell
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Price JD, Tarbell KV. The Role of Dendritic Cell Subsets and Innate Immunity in the Pathogenesis of Type 1 Diabetes and Other Autoimmune Diseases. Front Immunol 2015; 6:288. [PMID: 26124756 PMCID: PMC4466467 DOI: 10.3389/fimmu.2015.00288] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/18/2015] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are key antigen-presenting cells that have an important role in autoimmune pathogenesis. DCs control both steady-state T cell tolerance and activation of pathogenic responses. The balance between these two outcomes depends on several factors, including genetic susceptibility, environmental signals that stimulate varied innate responses, and which DC subset is presenting antigen. Although the specific DC phenotype can diverge depending on the tissue location and context, there are four main subsets identified in both mouse and human: conventional cDC1 and cDC2, plasmacytoid DCs, and monocyte-derived DCs. In this review, we will discuss the role of these subsets in autoimmune pathogenesis and regulation, as well as the genetic and environmental signals that influence their function. Specific topics to be addressed include impact of susceptibility loci on DC subsets, alterations in DC subset development, the role of infection- and host-derived innate inflammatory signals, and the role of the intestinal microbiota on DC phenotype. The effects of these various signals on disease progression and the relative effects of DC subset composition and maturation level of DCs will be examined. These areas will be explored using examples from several autoimmune diseases but will focus mainly on type 1 diabetes.
Collapse
Affiliation(s)
- Jeffrey D Price
- Diabetes, Endocrinology, and Obesity Branch, Immune Tolerance Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, MD , USA
| | - Kristin V Tarbell
- Diabetes, Endocrinology, and Obesity Branch, Immune Tolerance Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, MD , USA
| |
Collapse
|
10
|
Berrih-Aknin S. Myasthenia Gravis: paradox versus paradigm in autoimmunity. J Autoimmun 2014; 52:1-28. [PMID: 24934596 DOI: 10.1016/j.jaut.2014.05.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 05/07/2014] [Indexed: 12/12/2022]
Abstract
Myasthenia Gravis (MG) is a paradigm of organ-specific autoimmune disease (AID). It is mediated by antibodies that target the neuromuscular junction. The purpose of this review is to place MG in the general context of autoimmunity, to summarize the common mechanisms between MG and other AIDs, and to describe the specific mechanisms of MG. We have chosen the most common organ-specific AIDs to compare with MG: type 1 diabetes mellitus (T1DM), autoimmune thyroid diseases (AITD), multiple sclerosis (MS), some systemic AIDs (systemic lupus erythematous (SLE), rheumatoid arthritis (RA), Sjogren's syndrome (SS)), as well as inflammatory diseases of the gut and liver (celiac disease (CeD), Crohn's disease (CD), and primary biliary cirrhosis (PBC)). Several features are similar between all AIDs, suggesting that common pathogenic mechanisms lead to their development. In this review, we address the predisposing factors (genetic, epigenetic, hormones, vitamin D, microbiota), the triggering components (infections, drugs) and their interactions with the immune system [1,2]. The dysregulation of the immune system is detailed and includes the role of B cells, Treg cells, Th17 and cytokines. We particularly focused on the role of TNF-α and interferon type I whose role in MG is very analogous to that in several other AIDS. The implication of AIRE, a key factor in central tolerance is also discussed. Finally, if MG is a prototype of AIDS, it has a clear specificity compared to the other AIDS, by the fact that the target organ, the muscle, is not the site of immune infiltration and B cell expansion, but exclusively that of antibody-mediated pathogenic mechanisms. By contrast, the thymus in the early onset subtype frequently undergoes tissue remodeling, resulting in the development of ectopic germinal centers surrounded by high endothelial venules (HEV), as observed in the target organs of many other AIDs.
Collapse
Affiliation(s)
- Sonia Berrih-Aknin
- Sorbonne Universités, UPMC Univ Paris 06, Myology Research Center UM76, F-75013 Paris, France; INSERM U974, F-75013 Paris, France; CNRS FRE 3617, F-75013 Paris, France; Institute of Myology, F-75013 Paris, France.
| |
Collapse
|
11
|
Hopp AK, Rupp A, Lukacs-Kornek V. Self-antigen presentation by dendritic cells in autoimmunity. Front Immunol 2014; 5:55. [PMID: 24592266 PMCID: PMC3923158 DOI: 10.3389/fimmu.2014.00055] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 01/30/2014] [Indexed: 11/13/2022] Open
Abstract
The operation of both central and peripheral tolerance ensures the prevention of autoimmune diseases. The maintenance of peripheral tolerance requires self-antigen presentation by professional antigen presenting cells (APCs). Dendritic cells (DCs) are considered as major APCs involved in this process. The current review discusses the role of DCs in autoimmune diseases, the various factors involved in the induction and maintenance of tolerogenic DC phenotype, and pinpoints their therapeutic capacity as well as potential novel targets for future clinical studies.
Collapse
Affiliation(s)
- Ann-Katrin Hopp
- Department of Medicine II, Saarland University Medical Center , Homburg , Germany
| | - Anne Rupp
- Department of Medicine II, Saarland University Medical Center , Homburg , Germany
| | | |
Collapse
|
12
|
Idd13 is involved in determining immunoregulatory DN T-cell number in NOD mice. Genes Immun 2014; 15:82-7. [PMID: 24335706 DOI: 10.1038/gene.2013.65] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 11/08/2013] [Accepted: 11/12/2013] [Indexed: 12/20/2022]
Abstract
Immunoregulatory T cells have been identified as key modulators of peripheral tolerance and participate in preventing autoimmune diseases. CD4(-)CD8(-) (double negative, DN) T cells compose one of these immunoregulatory T-cell subsets, where the injection of DN T cells confers protection from autoimmune diabetes progression. Interestingly, genetic loci defining the function and number of CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) coincide with at least some autoimmune disease susceptibility loci. Herein, we investigate the impact of major insulin-dependent diabetes (Idd) loci in defining the number of DN T cells. We demonstrate that although Idd3, Idd5 and Idd9 loci do not regulate DN T-cell number, NOD mice congenic for diabetes resistance alleles at the Idd13 locus show a partial restoration in DN T-cell number. Moreover, competitive and non-competitive bone marrow chimera experiments reveal that DN T-cell number is defined by a bone marrow-intrinsic, but DN T-cell-extrinsic, factor. This suggests that non-autonomous candidate genes define DN T-cell number in secondary lymphoid organs. Together, our results show that the regulation of DN T-cell number in NOD mice is at least partially conferred by alleles at the Idd13 locus.
Collapse
|
13
|
Morel PA. Dendritic cell subsets in type 1 diabetes: friend or foe? Front Immunol 2013; 4:415. [PMID: 24367363 PMCID: PMC3853773 DOI: 10.3389/fimmu.2013.00415] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes (T1D) is a T cell mediated autoimmune disease characterized by immune mediated destruction of the insulin-producing β cells in the islets of Langerhans. Dendritic cells (DC) have been implicated in the pathogenesis of T1D and are also used as immunotherapeutic agents. Plasmacytoid (p)DC have been shown to have both protective and pathogenic effects and a newly described merocytic DC population has been shown to break tolerance in the mouse model of T1D, the non-obese diabetic (NOD) mouse. We have used DC populations to prevent the onset of T1D in NOD mice and clinical trials of DC therapy in T1D diabetes have been initiated. In this review we will critically examine the recent published literature on the role of DC subsets in the induction and regulation of the autoimmune response in T1D.
Collapse
Affiliation(s)
- Penelope A Morel
- Department of Immunology, University of Pittsburgh , Pittsburgh, PA , USA
| |
Collapse
|