1
|
Wang X, He X, Liu J, Zhang H, Wan H, Luo J, Yang J. Immune pathogenesis of idiopathic granulomatous mastitis: from etiology toward therapeutic approaches. Front Immunol 2024; 15:1295759. [PMID: 38529282 PMCID: PMC10961981 DOI: 10.3389/fimmu.2024.1295759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
Idiopathic granulomatous mastitis (IGM) is a noncancerous, chronic inflammatory disorder of breast with unknown causes, posing significant challenges to the quality of life due to its high refractoriness and local aggressiveness. The typical symptoms of this disease involve skin redness, a firm and tender breast mass and mastalgia; others may include swelling, fistula, abscess (often without fever), nipple retraction, and peau d'orange appearance. IGM often mimics breast abscesses or malignancies, particularly inflammatory breast cancer, and is characterized by absent standardized treatment options, inconsistent patient response and unknown mechanism. Definite diagnosis of this disease relies on core needle biopsy and histopathological examination. The prevailing etiological theory suggests that IGM is an autoimmune disease, as some patients respond well to steroid treatment. Additionally, the presence of concurrent erythema nodosum or other autoimmune conditions supports the autoimmune nature of the disease. Based on current knowledge, this review aims to elucidate the autoimmune-favored features of IGM and explore its potential etiologies. Furthermore, we discuss the immune-mediated pathogenesis of IGM using existing research and propose immunotherapeutic strategies for managing this condition.
Collapse
Affiliation(s)
- Xiaoli Wang
- Breast Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiujing He
- Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Tumor Targeted and Immune Therapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Junzhi Liu
- West China School of Medicine/West China Hospital, Sichuan University, Chengdu, China
| | - Haiyan Zhang
- Department of Breast Surgery, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, China
| | - Hangyu Wan
- Department of Breast Surgery, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, China
| | - Jing Luo
- Department of Breast Surgery, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, China
| | - Jiqiao Yang
- Breast Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Zhang Y, Maskan Bermudez N, Sa B, Maderal AD, Jimenez JJ. Epigenetic mechanisms driving the pathogenesis of systemic lupus erythematosus, systemic sclerosis and dermatomyositis. Exp Dermatol 2024; 33:e14986. [PMID: 38059632 DOI: 10.1111/exd.14986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/27/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Autoimmune connective tissue disorders, including systemic lupus erythematosus, systemic sclerosis (SSc) and dermatomyositis (DM), often manifest with debilitating cutaneous lesions and can result in systemic organ damage that may be life-threatening. Despite recent therapeutic advancements, many patients still experience low rates of sustained remission and significant treatment toxicity. While genetic predisposition plays a role in these connective tissue disorders, the relatively low concordance rates among monozygotic twins (ranging from approximately 4% for SSc to about 11%-50% for SLE) have prompted increased scrutiny of the epigenetic factors contributing to these diseases. In this review, we explore some seminal studies and key findings to provide a comprehensive understanding of how dysregulated epigenetic mechanisms can contribute to the development of SLE, SSc and DM.
Collapse
Affiliation(s)
- Yusheng Zhang
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Narges Maskan Bermudez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Brianna Sa
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Andrea D Maderal
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Joaquin J Jimenez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
3
|
Zhou HY, Luo Q, Sui H, Du XN, Zhao YJ, Liu L, Guan Q, Zhou Y, Wen QS, Shi Y, Sun Y, Lin HL, Wang DP. Recent advances in the involvement of epigenetics in the pathogenesis of systemic lupus erythematosus. Clin Immunol 2024; 258:109857. [PMID: 38043757 DOI: 10.1016/j.clim.2023.109857] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/27/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Systemic lupus erythematosus (SLE) is a typical systemic autoimmune disease that manifests as skin rash, arthritis, lymphadenopathy, and multiple organ lesions. Epigenetics, including DNA methylation, histone modification, and non-coding RNA regulation, mainly affect the function and characteristics of cells through the regulation of gene transcription or translation. Increasing evidence indicates that there are a variety of complex epigenetic effects in patients with SLE, which interfere with the differentiation and function of T, and B lymphocytes, monocytes, and neutrophils, and enhance the expression of SLE-associated pathogenic genes. This paper summarizes our currently knowledge regarding pathogenesis of SLE, and introduces current advances in the epigenetic regulation of SLE from three aspects: immune function, inflammatory response, and lupus complications. We propose that epigenetic changes could be used as potential biomarkers and therapeutic targets of SLE.
Collapse
Affiliation(s)
- Hong-Yan Zhou
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qi Luo
- Nephrology Department of First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hua Sui
- Integrated TCM and Western Medicine Collage of Dalian Medical University, Dalian, China
| | - Xiang-Ning Du
- Nephrology Department of First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yang-Jianing Zhao
- Integrated TCM and Western Medicine Collage of Dalian Medical University, Dalian, China
| | - Lu Liu
- Nephrology Department of First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qing Guan
- Integrated TCM and Western Medicine Collage of Dalian Medical University, Dalian, China
| | - Yue Zhou
- Nephrology Department of First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qing-Si Wen
- Nephrology Department of First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yan Shi
- Nephrology Department of First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yu Sun
- Nephrology Department of First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hong-Li Lin
- Nephrology Department of First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Da-Peng Wang
- Nephrology Department of First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
4
|
Perng WT, Ma KSK, Hung HY, Tsai YC, Huang JY, Liao PL, Hung YM, Wei JCC. Dental caries and risk of newly-onset systemic lupus erythematosus: a nationwide population-based cohort study. Curr Med Res Opin 2023; 39:307-317. [PMID: 36533392 DOI: 10.1080/03007995.2022.2159146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE This study investigated whether patients with history of dental caries are associated with an increased risk of newly-onset systemic lupus erythematosus (SLE). METHODS A total of 501,461 carious patients and 258,918 controls without carious teeth were enrolled between 1997 and 2013 from the National Health Insurance Research Database. Subgroup analyses were conducted based on restorative materials including amalgam, composite resins, or both. The cumulative incidence and hazard ratios (HRs) of SLE development were derived after adjusting for age, sex, socioeconomic status, income, insured classification, comorbidities, and frequency of dental visit in a multivariable model. RESULTS The risk of SLE was significantly higher in carious patients (HR = 1.98, 95% confidence interval [CI] = 1.65-2.38) compared to controls. Dose-dependent relationship between caries and risk of SLE was identified. The risk of SLE was higher among those who had dental visits ≧11 (HR = 2.53, 95% CI = 1.86-3.43), followed by those with 3-10 dental visits (HR = 1.86, 95% CI = 1.36-2.54), when compared to those with 1-2 visits, and was higher among those who had carious teeth extractions ≧5 (HR = 1.88, 95% CI = 1.19-2.97), followed by those with 1-4 carious teeth extractions (HR = 1.36, 95% CI = 1.17-1.59) than those without extraction. The risk of SLE for dental caries management among different restorative materials, including amalgam, composite resins, or both, was not statistically different. CONCLUSIONS Patients with dental caries were associated with higher SLE risks. The relationship between dental caries and risk of SLE was dose-dependent, regardless of the material used for the restoration.
Collapse
Affiliation(s)
- Wuu-Tsun Perng
- Department of Recreational Sport & Health Promotion, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Graduate Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Kevin Sheng-Kai Ma
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA
| | - Hsin-Yu Hung
- Department of Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Chieh Tsai
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jing-Yang Huang
- Department of Medical Research, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Lun Liao
- Department of Medical Research, Chung Shan Medical University, Taichung, Taiwan
| | - Yao-Min Hung
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital Taitung Branch, Taitung, Taiwan
- College of Health and Nursing, Meijo University, Pingtung, Taiwan
- College of Science and Engineering, National Taitung University, Taitung, Taiwan
| | - James Cheng-Chung Wei
- Division of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
5
|
Rivas-Arancibia S, Hernández-Orozco E, Rodríguez-Martínez E, Valdés-Fuentes M, Cornejo-Trejo V, Pérez-Pacheco N, Dorado-Martínez C, Zequeida-Carmona D, Espinosa-Caleti I. Ozone Pollution, Oxidative Stress, Regulatory T Cells and Antioxidants. Antioxidants (Basel) 2022; 11:antiox11081553. [PMID: 36009272 PMCID: PMC9405302 DOI: 10.3390/antiox11081553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 12/06/2022] Open
Abstract
Ozone pollution, is a serious health problem worldwide. Repeated exposure to low ozone doses causes a loss of regulation of the oxidation–reduction systems, and also induces a chronic state of oxidative stress. This fact is of special importance for the regulation of different systems including the immune system and the inflammatory response. In addition, the oxidation–reduction balance modulates the homeostasis of these and other complex systems such as metabolism, survival capacity, cell renewal, and brain repair, etc. Likewise, it has been widely demonstrated that in chronic degenerative diseases, an alteration in the oxide-reduction balance is present, and this alteration causes a chronic loss in the regulation of the immune response and the inflammatory process. This is because reactive oxygen species disrupt different signaling pathways. Such pathways are related to the role of regulatory T cells (Treg) in inflammation. This causes an increase in chronic deterioration in the degenerative disease over time. The objective of this review was to study the relationship between environmental ozone pollution, the chronic state of oxidative stress and its effect on Treg cells, which causes the loss of regulation in the inflammatory response as well as the role played by antioxidant systems in various pathologies.
Collapse
|
6
|
Abstract
Significance: Epigenetic dysregulation plays an important role in the pathogenesis and development of autoimmune diseases. Oxidative stress is associated with autoimmunity and is also known to alter epigenetic mechanisms. Understanding the interplay between oxidative stress and epigenetics will provide insights into the role of environmental triggers in the development of autoimmunity in genetically susceptible individuals. Recent Advances: Abnormal DNA and histone methylation patterns in genes and pathways involved in interferon and tumor necrosis factor signaling, cellular survival, proliferation, metabolism, organ development, and autoantibody production have been described in autoimmunity. Inhibitors of DNA and histone methyltransferases showed potential therapeutic effects in animal models of autoimmune diseases. Oxidative stress can regulate epigenetic mechanisms via effects on DNA damage repair mechanisms, cellular metabolism and the local redox environment, and redox-sensitive transcription factors and pathways. Critical Issues: Studies looking into oxidative stress and epigenetics in autoimmunity are relatively limited. The number of available longitudinal studies to explore the role of DNA methylation in the development of autoimmune diseases is small. Future Directions: Exploring the relationship between oxidative stress and epigenetics in autoimmunity will provide clues for potential preventative measures and treatment strategies. Inception cohorts with longitudinal follow-up would help to evaluate epigenetic marks as potential biomarkers for disease development, progression, and treatment response in autoimmunity. Antioxid. Redox Signal. 36, 423-440.
Collapse
Affiliation(s)
- Xiaoqing Zheng
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Adams DE, Shao WH. Epigenetic Alterations in Immune Cells of Systemic Lupus Erythematosus and Therapeutic Implications. Cells 2022; 11:cells11030506. [PMID: 35159315 PMCID: PMC8834103 DOI: 10.3390/cells11030506] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder that is characterized by autoantibody production and dysregulated immune cell activation. Although the exact etiology of SLE remains unknown, genetic, hormonal, and complex environmental factors are known to be critical for pathologic immune activation. In addition to the inherited genetic predisposition, epigenetic processes that do not change the genomic code, such as DNA methylation, histone modification, and noncoding RNAs are increasingly appreciated to play important roles in lupus pathogenesis. We herein focus on the up-to-date findings of lupus-associated epigenetic alterations and their pathophysiology in lupus development. We also summarize the therapeutic potential of the new findings. It is likely that advances in the epigenetic study will help to predict individual disease outcomes, promise diagnostic accuracy, and design new target-directed immunotherapies.
Collapse
|
8
|
Elkoshi Z. Cancer and Autoimmune Diseases: A Tale of Two Immunological Opposites? Front Immunol 2022; 13:821598. [PMID: 35145524 PMCID: PMC8822211 DOI: 10.3389/fimmu.2022.821598] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/06/2022] [Indexed: 01/21/2023] Open
Abstract
The present article compares, side-by-side, cancer and autoimmune diseases in terms of innate and adaptive immune cells involvement, MHC Class I and Class II expression, TGFβ effect, immune modulating drugs effect and the effect of reactive oxygen species. The change in the inflammatory immune reaction during the progress of cancer and the effect of this change on the comorbidity of autoimmune diseases and cancer are discussed. The similar inflammatory properties of autoimmune diseases and early cancer, and the contrasting inflammatory properties of autoimmune diseases and advanced cancer elucidate the increased incidence of many types of cancer in patients with pre-existing autoimmune diseases and the decreased cancer-specific mortality of these patients. Stage-dependent effects of reactive oxygen-species on tumor proliferation are an additional probable cause for these epidemiological observations. The relationship: {standardized incidence ratio (SIR)} > {cancer-specific hazard ratio (HR)} for cancer patients with a history of autoimmune diseases is substantiated and rationalized.
Collapse
|
9
|
Yang B, Hou S, Zhao J, Li Y. 3-hydroxy butyrate dehydrogenase 2 deficiency aggravates systemic lupus erythematosus progression in a mouse model by promoting CD40 ligand demethylation. Bioengineered 2022; 13:2685-2695. [PMID: 35001849 PMCID: PMC8973909 DOI: 10.1080/21655979.2022.2025694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The implications of the CD40-CD40 ligand (CD40L) signaling pathway in systemic lupus erythematosus (SLE) were well documented, due to its important role among immune cells. Previous research found that 3-hydroxy butyrate dehydrogenase 2 (BDH2), a modulator of intracellular iron homeostasis and iron transportation promoted the pathogenic process of SLE by regulating the demethylation of cd70, cd11a, and cd40l genes among CD4 + T cells. The purpose of this study was to explore the role of BDH2 in oxidative damage-induced SLE. First, CD4 + T cells treated with H2O2 were injected into the tail vein of mice to establish a lupus model. CD40L knockdown significantly decreased CD40L expression on CD4 + T cells in the spleen of SLE mice. Compared with SLE model mice, the levels of serum anti-dsDNA antibody and urinary protein in the CD40L interference group were significantly decreased. CD40L knockdown alleviated the immune complex glomerulonephritis in syngeneic SLE mice. Moreover, the levels of IFN-γ and IL-2 were decreased. However, IL-4 and IL-10 levels were significantly upregulated in the serum of CD40L knockdown SLE mice, compared with SLE model mice. Accordingly, CD40L knockdown reduced Th1/Th2 percentage in SLE mice. Inhibiting the expression of BDH2 of CD4 + T cells promoted the demethylation of CD40L, while it inhibited cell proliferation, elevated oxidative stress through increased expression of CD40L, and thus, promoted the progress of SLE. Our results demonstrate that BDH2 aggravates the pathologic progression of SLE in mice, by increasing the demethylation level of CD40L among CD4 + T cells.
Collapse
Affiliation(s)
- Bo Yang
- Department of Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, P.R. China
| | - Shihao Hou
- School of Clinical Medicine, Graduate School of Youjiang Medical University for Nationalities, Baise, P.R. China
| | - Jingjing Zhao
- School of Clinical Medicine, Graduate School of Youjiang Medical University for Nationalities, Baise, P.R. China
| | - Yepeng Li
- Department of Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, P.R. China
| |
Collapse
|
10
|
Chen J, Qu W, Sun L, Chen J, Kong W, Wang F, Pan W, Liu L, Wu M, Ding F, Hu H, Ding X, Wei H, Zou Y, Qian X, Wang M, Wu J, Tao J, Tan J, Da Z, Zhang M, Li J, Liang J, Feng X, Geng L, Sun L. The relationship of polluted air and drinking water sources with the prevalence of systemic lupus erythematosus: a provincial population-based study. Sci Rep 2021; 11:18591. [PMID: 34545152 PMCID: PMC8452734 DOI: 10.1038/s41598-021-98111-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/01/2021] [Indexed: 11/09/2022] Open
Abstract
Environmental exposures interact with genetic factors has been thought to influence susceptibility of systemic lupus erythematosus (SLE) development. To evaluate the effects of environmental exposures on SLE, we conducted a population-based cohort study across Jiangsu Province, China, to examine the associations between the living environment including air and water pollution, population density, economic income level, etc. and the prevalence and mortality of hospitalized SLE (h-SLE) patients. A total of 2231 h-SLE patients were retrieved from a longitudinal SLE database collected by the Jiangsu Lupus Collaborative Group from 1999 to 2009. The results showed that: It existed regional differences on the prevalence of h-SLE patients in 96 administrative districts; The distribution of NO2 air concentration monitored by atmospheric remote sensors showed that three of the ultra-high-prevalence districts were located in the concentrated chemical industry emission area; h-SLE patient prevalence was positively correlated with the excessive levels of nitrogen in drinking water; The positive ratio of pericarditis and proteinuria was positively correlated with the prevalence of h-SLE patients and pollution not only induced a high h-SLE patient prevalence but also a higher mortality rate, which might be attributed to NOx pollution in the air and drinking water. In summary, our data suggested that NOx in air and drinking water may be one of the important predispositions of SLE, especially for patients with renal involvement.
Collapse
Affiliation(s)
- Jiaqi Chen
- School of Computer and Information, Hohai University, Nanjing, China
| | - Wenqiang Qu
- School of Computer and Information, Hohai University, Nanjing, China
| | - Li Sun
- School of the Environment, Nanjing University, Nanjing, China
| | - Jiansheng Chen
- School of Earth Science and Engineering, Hohai University, Nanjing, China
| | - Wei Kong
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Fan Wang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Wenyou Pan
- Department of Rheumatology, Huai'an First People's Hospital, Huai'an, China
| | - Lin Liu
- Department of Rheumatology, Xuzhou Central Hospital, Xuzhou, China
| | - Min Wu
- Department of Rheumatology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Fuwan Ding
- Department of Endocrinology, Yancheng Third People's Hospital, Yancheng, China
| | - Huaixia Hu
- Department of Rheumatology, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - Xiang Ding
- Department of Rheumatology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Hua Wei
- Department of Rheumatology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Yaohong Zou
- Department of Rheumatology, Wuxi People's Hospital, Wuxi, China
| | - Xian Qian
- Department of Rheumatology, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Meimei Wang
- Department of Rheumatology, Southeast University Zhongda Hospital, Nanjing, China
| | - Jian Wu
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Juan Tao
- Department of Rheumatology, Wuxi TCM Hospital, Wuxi, China
| | - Jun Tan
- Department of Rheumatology, Zhenjiang First People's Hospital, Zhenjiang, China
| | - Zhanyun Da
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Miaojia Zhang
- Department of Rheumatology, Jiangsu Province Hospital, Nanjing, China
| | - Jing Li
- Department of Rheumatology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jun Liang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Xuebing Feng
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Linyu Geng
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.
| |
Collapse
|
11
|
Abstract
The term "epigenetics" refers to a series of meiotically/mitotically inheritable alterations in gene expression, related to environmental factors, without disruption on DNA sequences of bases. Recently, the pathophysiology of autoimmune diseases (ADs) has been closely linked to epigenetic modifications. Actually, epigenetic mechanisms can modulate gene expression or repression of targeted cells and tissues involved in autoimmune/inflammatory conditions acting as keys effectors in regulation of adaptive and innate responses. ADs, as systemic lupus erythematosus (SLE), a rare disease that still lacks effective treatment, is characterized by epigenetic marks in affected cells.Taking into account that epigenetic mechanisms have been proposed as a winning strategy in the search of new more specific and personalized therapeutics agents. Thus, pharmacology and pharmacoepigenetic studies about epigenetic regulations of ADs may provide novel individualized therapies. Focussing in possible implicated factors on development and predisposition of SLE, diet is feasibly one of the most important factors since it is linked directly to epigenetic alterations and these epigenetic changes may augment or diminish the risk of SLE. Nevertheless, several studies have guaranteed that dietary therapy could be a promise to SLE patients via prophylactic actions deprived of side effects of pharmacology, decreasing co-morbidities and improving lifestyle of SLE sufferers.Herein, we review and discuss the cross-link between epigenetic mechanisms on SLE predisposition and development, as well as the influence of dietary factors on regulation epigenetic modifications that would eventually make a positive impact on SLE patients.
Collapse
|
12
|
Das AB, Seddon AR, O'Connor KM, Hampton MB. Regulation of the epigenetic landscape by immune cell oxidants. Free Radic Biol Med 2021; 170:131-149. [PMID: 33444713 DOI: 10.1016/j.freeradbiomed.2020.12.453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022]
Abstract
Excessive production of microbicidal oxidants by neutrophils can damage host tissue. The short-term response of cells to oxidative stress is well understood, but the mechanisms behind long-term consequences require further clarification. Epigenetic pathways mediate cellular adaptation, and are therefore a potential target of oxidative stress. Indeed, there is evidence that many proteins and metabolites involved in epigenetic pathways are redox sensitive. In this review we provide an overview of the epigenetic landscape and discuss the potential for redox regulation. Using this information, we highlight specific examples where neutrophil oxidants react with epigenetic pathway components. We also use published data from redox proteomics to map out known intersections between oxidative stress and epigenetics that may signpost helpful directions for future investigation. Finally, we discuss the role neutrophils play in adaptive pathologies with a focus on tumour initiation and progression. We hope this information will stimulate further discourse on the emerging field of redox epigenomics.
Collapse
Affiliation(s)
- Andrew B Das
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| | - Annika R Seddon
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| | - Karina M O'Connor
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
13
|
Chen XJ, Zhang H, Yang F, Liu Y, Chen G. DNA Methylation Sustains "Inflamed" Memory of Peripheral Immune Cells Aggravating Kidney Inflammatory Response in Chronic Kidney Disease. Front Physiol 2021; 12:637480. [PMID: 33737884 PMCID: PMC7962671 DOI: 10.3389/fphys.2021.637480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/04/2021] [Indexed: 01/19/2023] Open
Abstract
The incidence of chronic kidney disease (CKD) has rapidly increased in the past decades. A progressive loss of kidney function characterizes a part of CKD even with intensive supportive treatment. Irrespective of its etiology, CKD progression is generally accompanied with the development of chronic kidney inflammation that is pathologically featured by the low-grade but chronic activation of recruited immune cells. Cumulative evidence support that aberrant DNA methylation pattern of diverse peripheral immune cells, including T cells and monocytes, is closely associated with CKD development in many chronic disease settings. The change of DNA methylation profile can sustain for a long time and affect the future genes expression in the circulating immune cells even after they migrate from the circulation into the involved kidney. It is of clinical interest to reveal the underlying mechanism of how altered DNA methylation regulates the intensity and the time length of the inflammatory response in the recruited effector cells. We and others recently demonstrated that altered DNA methylation occurs in peripheral immune cells and profoundly contributes to CKD development in systemic chronic diseases, such as diabetes and hypertension. This review will summarize the current findings about the influence of aberrant DNA methylation on circulating immune cells and how it potentially determines the outcome of CKD.
Collapse
Affiliation(s)
- Xiao-Jun Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Hong Zhang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fei Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Yu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Guochun Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| |
Collapse
|
14
|
Tang PCT, Chan ASW, Zhang CB, García Córdoba CA, Zhang YY, To KF, Leung KT, Lan HY, Tang PMK. TGF-β1 Signaling: Immune Dynamics of Chronic Kidney Diseases. Front Med (Lausanne) 2021; 8:628519. [PMID: 33718407 PMCID: PMC7948440 DOI: 10.3389/fmed.2021.628519] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) is a major cause of morbidity and mortality worldwide, imposing a great burden on the healthcare system. Regrettably, effective CKD therapeutic strategies are yet available due to their elusive pathogenic mechanisms. CKD is featured by progressive inflammation and fibrosis associated with immune cell dysfunction, leading to the formation of an inflammatory microenvironment, which ultimately exacerbating renal fibrosis. Transforming growth factor β1 (TGF-β1) is an indispensable immunoregulator promoting CKD progression by controlling the activation, proliferation, and apoptosis of immunocytes via both canonical and non-canonical pathways. More importantly, recent studies have uncovered a new mechanism of TGF-β1 for de novo generation of myofibroblast via macrophage-myofibroblast transition (MMT). This review will update the versatile roles of TGF-β signaling in the dynamics of renal immunity, a better understanding may facilitate the discovery of novel therapeutic strategies against CKD.
Collapse
Affiliation(s)
- Philip Chiu-Tsun Tang
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Alex Siu-Wing Chan
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Cai-Bin Zhang
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Cristina Alexandra García Córdoba
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ying-Ying Zhang
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ka-Fai To
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Patrick Ming-Kuen Tang
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
15
|
Scharer CD, Fortner KA, Dragon JA, Tighe S, Boss JM, Budd RC. Selective DNA Demethylation Accompanies T Cell Homeostatic Proliferation and Gene Regulation in Lupus-Prone lpr Mice. Immunohorizons 2020; 4:679-687. [PMID: 33097564 PMCID: PMC8141279 DOI: 10.4049/immunohorizons.2000078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/06/2020] [Indexed: 11/19/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is characterized by increased DNA demethylation in T cells, although it is unclear whether this occurs primarily in a subset of SLE T cells. The process driving the DNA demethylation and the consequences on overall gene expression are also poorly understood and whether this represents a secondary consequence of SLE or a primary contributing factor. Lupus-prone lpr mice accumulate large numbers of T cells with age because of a mutation in Fas (CD95). The accumulating T cells include an unusual population of CD4-CD8-TCR-αβ+ (DN) T cells that arise from CD8+ precursors and are also found in human SLE. We have previously observed that T cell accumulation in lpr mice is due to dysregulation of T cell homeostatic proliferation, which parallels an increased expression of numerous genes in the DN subset, including several proinflammatory molecules and checkpoint blockers. We thus determined the DNA methylome in lpr DN T cells compared with their CD8+ precursors. Our findings show that DN T cells manifest discrete sites of extensive demethylation throughout the genome, and these sites correspond to the location of a large proportion of the upregulated genes. Thus, dysregulated homeostatic proliferation in lpr mice and consequent epigenetic alterations may be a contributing factor to lupus pathogenesis.
Collapse
Affiliation(s)
- Christopher D Scharer
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA 30322;
| | - Karen A Fortner
- Vermont Center for Immunology and Infectious Diseases, Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT 05405; and
| | - Julie A Dragon
- Vermont Integrative Genomics Resource, University of Vermont Larner College of Medicine, Burlington, VT 05405
| | - Scott Tighe
- Vermont Integrative Genomics Resource, University of Vermont Larner College of Medicine, Burlington, VT 05405
| | - Jeremy M Boss
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA 30322
| | - Ralph C Budd
- Vermont Center for Immunology and Infectious Diseases, Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT 05405; and
| |
Collapse
|
16
|
Vordenbäumen S, Rosenbaum A, Gebhard C, Raithel J, Sokolowski A, Düsing C, Chehab G, Richter JG, Brinks R, Rehli M, Schneider M. Associations of site-specific CD4 +-T-cell hypomethylation within CD40-ligand promotor and enhancer regions with disease activity of women with systemic lupus erythematosus. Lupus 2020; 30:45-51. [PMID: 33081589 DOI: 10.1177/0961203320965690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To comprehensively assess associations of site-specific CD4+-T-cell hypomethylation of the CD40-Ligand gene (CD40L) with disease activity of women with systemic lupus erythematosus (SLE). METHODS CpG-sites within the DNA of the promotor and two enhancer regions (n = 22) of CD40L were identified and numbered consecutively. The rate of methylated DNA in isolated CD4+-T-cells of women with SLE were quantified for each methylation site by MALDI-TOF. Disease activity was assessed by SLE Disease Activity Index (SLEDAI). Associations of site-specific methylation rates with the SLEDAI scores were assessed by linear regression modelling. P values were adjusted according to Bonferroni-Holm as indicated. RESULTS 60 female SLE patients participated in the study (age 45.7 ± 11.1 years, disease duration 17.0 ± 8.3 years). Significant associations to the SLEDAI were noted for CpG22 hypomethylation of the promotor (β = -40.1, p = 0.017, adjusted p = 0.027), trends were noted for CpG17 hypomethylation of the promotor (β = -30.5, p = 0.032, adjusted p = 0.6), and for CpG11 hypermethylation of the second enhancer (β = 15.0, p = 0.046, adjusted p = 0.8). CONCLUSION Site-specific hypomethylation of the CD40L promotor in CD4+-T-cells show associations with disease activity in female SLE patients.
Collapse
Affiliation(s)
- Stefan Vordenbäumen
- Medical Faculty, Department & Hiller Research Unit for Rheumatology, Heinrich-Heine-University, Düsseldorf, Germany.,Rheinisches Rheuma-Zentrum St. Elisabeth-Hospital, Meerbusch-Lank, Germany
| | - Anna Rosenbaum
- Medical Faculty, Department & Hiller Research Unit for Rheumatology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Claudia Gebhard
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| | - Johanna Raithel
- Rheinisches Rheuma-Zentrum St. Elisabeth-Hospital, Meerbusch-Lank, Germany.,Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Alexander Sokolowski
- Medical Faculty, Department & Hiller Research Unit for Rheumatology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christina Düsing
- Medical Faculty, Department & Hiller Research Unit for Rheumatology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Gamal Chehab
- Medical Faculty, Department & Hiller Research Unit for Rheumatology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jutta G Richter
- Medical Faculty, Department & Hiller Research Unit for Rheumatology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ralph Brinks
- Medical Faculty, Department & Hiller Research Unit for Rheumatology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Michael Rehli
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| | - Matthias Schneider
- Medical Faculty, Department & Hiller Research Unit for Rheumatology, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
17
|
Abstract
Abnormal T cell responses are central to the development of autoimmunity and organ damage in systemic lupus erythematosus. Following stimulation, naïve T cells undergo rapid proliferation, differentiation and cytokine production. Since the initial report, approximately two decades ago, that engagement of CD28 enhances glycolysis but PD-1 and CTLA-4 decrease it, significant information has been generated which has linked metabolic reprogramming with the fate of differentiating T cell in health and autoimmunity. Herein we summarize how defects in mitochondrial dysfunction, oxidative stress, glycolysis, glutaminolysis and lipid metabolism contribute to pro-inflammatory T cell responses in systemic lupus erythematosus and discuss how metabolic defects can be exploited therapeutically.
Collapse
|
18
|
Hurtado C, Acevedo Sáenz LY, Vásquez Trespalacios EM, Urrego R, Jenks S, Sanz I, Vásquez G. DNA methylation changes on immune cells in Systemic Lupus Erythematosus. Autoimmunity 2020; 53:114-121. [PMID: 32019373 DOI: 10.1080/08916934.2020.1722108] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA methylation as a process that regulates gene expression is crucial in immune cells biology. Global and gene specific methylation changes have been described in autoimmunity, especially in Systemic Lupus Erythematosus. These changes not only contribute to the understanding of the disease, but also some have been proposed as diagnostic or disease activity biomarkers. The present review compiles the most recent discoveries on this field on each type of immune cells, including specific changes in signalling pathways, genes of interest and its possible applications on diagnosis or treatment.
Collapse
Affiliation(s)
- Carolina Hurtado
- School of Graduate Studies and School of Medicine, CES University, Medellin, Colombia
| | | | | | - Rodrigo Urrego
- Group INCA-CES, School of Veterinary Medicine and Zootechnic, CES University, Medellin, Colombia
| | - Scott Jenks
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Iñaki Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Gloria Vásquez
- Grupo de Inmunología Celular e Inmunogenética, University of Antioquia, Medellin, Colombia
| |
Collapse
|
19
|
Byrum SD, Washam CL, Patterson JD, Vyas KK, Gilbert KM, Blossom SJ. Continuous Developmental and Early Life Trichloroethylene Exposure Promoted DNA Methylation Alterations in Polycomb Protein Binding Sites in Effector/Memory CD4 + T Cells. Front Immunol 2019; 10:2016. [PMID: 31555266 PMCID: PMC6724578 DOI: 10.3389/fimmu.2019.02016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/08/2019] [Indexed: 12/17/2022] Open
Abstract
Trichloroethylene (TCE) is an industrial solvent and drinking water pollutant associated with CD4+ T cell-mediated autoimmunity. In our mouse model, discontinuation of TCE exposure during adulthood after developmental exposure did not prevent immunotoxicity. To determine whether persistent effects were linked to epigenetic changes we conducted whole genome reduced representation bisulfite sequencing (RRBS) to evaluate methylation of CpG sites in autosomal chromosomes in activated effector/memory CD4+ T cells. Female MRL+/+ mice were exposed to vehicle control or TCE in the drinking water from gestation until ~37 weeks of age [postnatal day (PND) 259]. In a subset of mice, TCE exposure was discontinued at ~22 weeks of age (PND 154). At PND 259, RRBS assessment revealed more global methylation changes in the continuous exposure group vs. the discontinuous exposure group. A majority of the differentially methylated CpG regions (DMRs) across promoters, islands, and regulatory elements were hypermethylated (~90%). However, continuous developmental TCE exposure altered the methylation of 274 CpG sites in promoters and CpG islands. In contrast, only 4 CpG island regions were differentially methylated (hypermethylated) in the discontinuous group. Interestingly, 2 of these 4 sites were also hypermethylated in the continuous exposure group, and both of these island regions are associated with lysine 27 on histone H3 (H3K27) involved in polycomb complex-dependent transcriptional repression via H3K27 tri-methylation. CpG sites were overlapped with the Open Regulatory Annotation database. Unlike the discontinuous group, continuous TCE treatment resulted in 129 DMRs including 12 unique transcription factors and regulatory elements; 80% of which were enriched for one or more polycomb group (PcG) protein binding regions (i.e., SUZ12, EZH2, JARID2, and MTF2). Pathway analysis of the DMRs indicated that TCE primarily altered the methylation of genes associated with regulation of cellular metabolism and cell signaling. The results demonstrated that continuous developmental exposure to TCE differentially methylated binding sites of PcG proteins in effector/memory CD4+ cells. There were minimal yet potentially biologically significant effects that occurred when exposure was discontinued. These results point toward a novel mechanism by which chronic developmental TCE exposure may alter terminally differentiated CD4+ T cell function in adulthood.
Collapse
Affiliation(s)
- Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Charity L Washam
- Department of Biochemistry and Molecular Biology, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - John D Patterson
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Kanan K Vyas
- Department of Pediatrics, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Kathleen M Gilbert
- Department of Microbiology and Immunology, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Sarah J Blossom
- Department of Pediatrics, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
20
|
Richardson B. Epigenetically Altered T Cells Contribute to Lupus Flares. Cells 2019; 8:cells8020127. [PMID: 30764520 PMCID: PMC6406295 DOI: 10.3390/cells8020127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/26/2019] [Accepted: 02/02/2019] [Indexed: 12/17/2022] Open
Abstract
Lupus flares when genetically predisposed people encounter exogenous agents such as infections and sun exposure and drugs such as procainamide and hydralazine, but the mechanisms by which these agents trigger the flares has been unclear. Current evidence indicates that procainamide and hydralazine, as well as inflammation caused by the environmental agents, can cause overexpression of genes normally silenced by DNA methylation in CD4⁺ T cells, converting them into autoreactive, proinflammatory cytotoxic cells that are sufficient to cause lupus in mice, and similar cells are found in patients with active lupus. More recent studies demonstrate that these cells comprise a distinct CD4⁺ T cell subset, making it a therapeutic target for the treatment of lupus flares. Transcriptional analyses of this subset reveal proteins uniquely expressed by this subset, which may serve as therapeutic to deplete these cells, treating lupus flares.
Collapse
Affiliation(s)
- Bruce Richardson
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48103-2200, USA.
| |
Collapse
|
21
|
Association between activity and genotypes of paraoxonase1 L55M (rs854560) increases the disease activity of rheumatoid arthritis through oxidative stress. Mol Biol Rep 2018; 46:741-749. [DOI: 10.1007/s11033-018-4530-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022]
|
22
|
Hedrich CM. Mechanistic aspects of epigenetic dysregulation in SLE. Clin Immunol 2018; 196:3-11. [DOI: 10.1016/j.clim.2018.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 12/12/2022]
|
23
|
Abstract
Purpose of Review Systemic lupus erythematosus is a severe autoimmune/inflammatory condition of unknown pathophysiology. Though genetic predisposition is essential for disease expression, risk alleles in single genes are usually insufficient to confer disease. Epigenetic dysregulation has been suggested as the missing link between genetic risk and the development of clinically evident disease. Recent Findings Over the past decade, epigenetic events moved into the focus of research targeting the molecular pathophysiology of SLE. Epigenetic alteration can be the net result of preceding infections, medication, diet, and/or other environmental influences. While altered DNA methylation and histone modifications had already been established as pathomechanisms, DNA hydroxymethylation was more recently identified as an activating epigenetic mark. Summary Defective epigenetic control contributes to uncontrolled cytokine and co-receptor expression, resulting in immune activation and tissue damage in SLE. Epigenetic alterations promise potential as disease biomarkers and/or future therapeutic targets in SLE and other autoimmune/inflammatory conditions.
Collapse
Affiliation(s)
- Christian Michael Hedrich
- Division of Paediatric Rheumatology and Immunology, Children's Hospital Dresden, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany. .,Department of Women᾿s & Children᾿s Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK. .,Department of Paediatric Rheumatology, Alder Hey Children᾿s NHS Foundation Trust Hospital, East Prescott Road, Liverpool, L14 5AB, UK.
| |
Collapse
|
24
|
Ray D, Strickland FM, Richardson BC. Oxidative stress and dietary micronutrient deficiencies contribute to overexpression of epigenetically regulated genes by lupus T cells. Clin Immunol 2018; 196:97-102. [PMID: 29654844 DOI: 10.1016/j.clim.2018.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 11/30/2022]
Abstract
Patients with active lupus have altered T cells characterized by low DNA methyltransferase levels. We hypothesized that low DNA methyltransferase levels synergize with low methionine levels to cause greater overexpression of genes normally suppressed by DNA methylation. CD4+ T cells from lupus patients and controls were stimulated with PHA then cultured in custom media with normal or low methionine levels. Oxidative stress was induced by treating the normal CD4+ T cells with peroxynitrite prior to culture. Methylation sensitive gene expression was measured by flow cytometry. Results showed low methionine levels caused greater overexpression of methylation sensitive genes in peroxynitrite treated T cells relative to untreated T cells, and in T cells from lupus patients relative to T cells from healthy controls. In conclusion, low dietary transmethylation micronutrient levels and low DNA methyltransferase levels caused either by oxidative stress or lupus, have additive effects on methylation sensitive T cell gene expression.
Collapse
Affiliation(s)
- Donna Ray
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Faith M Strickland
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Bruce C Richardson
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
25
|
Richardson B. The interaction between environmental triggers and epigenetics in autoimmunity. Clin Immunol 2018; 192:1-5. [PMID: 29649575 DOI: 10.1016/j.clim.2018.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 04/07/2018] [Indexed: 11/27/2022]
Abstract
Systemic lupus erythematosus flares when genetically predisposed people encounter environmental agents that cause oxidative stress, such as infections and sunlight. How these modify the immune system to initiate flares is unclear. Drug induced lupus models demonstrate that CD4+ T cells epigenetically altered with DNA methylation inhibitors cause lupus in animal models, and similar T cells are found in patients with active lupus. How infections and sun exposure inhibit T cell DNA methylation is unclear. DNA methylation patterns are replicated each time a cell divides in a process that requires DNA methyltransferase one (Dnmt1), which is upregulated as cells enter mitosis, as well as the methyl donor S-adenosylmethionine, created from dietary sources. Reactive oxygen species that inhibit Dnmt1 upregulation, and a diet poor in methyl donors, combine to cause lupus in animal models. Similar changes are found in patients with active lupus, indicating a mechanism contributing to lupus flares.
Collapse
Affiliation(s)
- Bruce Richardson
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, SRB 3007, 109 Zina Pitcher Pl., Ann Arbor, MI 48109-2200, United States.
| |
Collapse
|
26
|
Gomes JP, Watad A, Shoenfeld Y. Nicotine and autoimmunity: The lotus' flower in tobacco. Pharmacol Res 2018; 128:101-109. [PMID: 29051105 DOI: 10.1016/j.phrs.2017.10.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 12/14/2022]
Abstract
Nicotine, the major component of cigarettes, has demonstrated conflicting impact on the immune system: some authors suggest that increases pro-inflammatory cytokines and provokes cellular apoptosis of neutrophils, releasing intracellular components that act as auto-antigens; others claimed that nicotine has a protective and anti-inflammatory effects, especially by binding to α7 subunit of nicotinic acetylcholine receptors. The cholinergic pathway contributes to an anti-inflammatory environment characterized by increasing T regulatory cells response, down-regulating of pro-inflammatory cytokines and a pro-inflammatory cells apoptosis. The effects of nicotine were studied in different autoimmune disease, as multiple sclerosis, type 1 diabetes, rheumatoid arthritis, sarcoidosis, Behçet's disease and inflammatory bowel diseases. The major problems about nicotine are the addiction and the adverse effects of related to each commercialized formulation. We sought in this review to summarize the knowledge accumulated to date concerning the relationship between nicotine and autoimmunity.
Collapse
Affiliation(s)
- João Pedro Gomes
- Department A of Internal Medicine, Hospital and University Centre of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Portugal
| | - Abdulla Watad
- Zabludowicz Center for Autoimmune Disease, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Disease, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel.
| |
Collapse
|
27
|
Guo Q, Wu D, Fan C, Peng S, Guan H, Shan Z, Teng W. Iodine excess did not affect the global DNA methylation status and DNA methyltransferase expression in T and B lymphocytes from NOD.H-2 h4 and Kunming mice. Int Immunopharmacol 2017; 55:151-157. [PMID: 29253821 DOI: 10.1016/j.intimp.2017.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/12/2022]
Abstract
Dysregulated DNA methylation in lymphocytes has been linked to various autoimmune disorders. Excessive iodine intake leads to lymphocyte dysfunction and contributes to autoimmune thyroiditis (AIT) flares in humans and animals. However, whether excessive iodine modifies the DNA methylation status in lymphocytes is unknown. Twenty NOD.H-2h4 mice and 20 Kunming mice were randomly divided into high iodine and control groups. We scored lymphatic infiltration in the thyroid by hematoxylin and eosin (H&E) staining and assayed serum thyroglobulin antibody (TgAb) levels by an indirect enzyme-linked immunosorbent assay. CD3+ T cells and CD19+ B cells were separated by flow cytometry. Global DNA methylation levels were examined by absorptiometry. Methylation of long interspersed nucleotide element-1 (LINE-1) repeats was detected with bisulfite sequencing PCR. Expression of DNA methyltransferase (DNMT) 1, DNMT3a and DNMT3b mRNA and protein were determined by real-time PCR and Western blot, respectively. We observed evident thyroiditis in the high‑iodine-treated NOD.H-2h4 mice, while mice in the other three groups did not develop thyroiditis. No differences were found in the global methylation levels and methylation status of LINE-1 repeats in T and B lymphocytes from high‑iodine-treated NOD.H-2h4 mice and Kunming mice compared with those from normal‑iodine-supplemented controls. We did not find obvious changes in DNMT mRNA and protein expression levels in T and B lymphocytes among the studied groups. In conclusion, we showed for the first time that excess iodine did not affect the global methylation status or DNMT expression in T and B lymphocytes in NOD.H-2h4 and Kunming mice.
Collapse
Affiliation(s)
- Qingling Guo
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Dan Wu
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China; Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Shenyang Medical College (Shenyang 242 Hospital), Shenyang, China
| | - Chenling Fan
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Shiqiao Peng
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Haixia Guan
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China.
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
28
|
CD4+CD28+KIR+CD11a hi T cells correlate with disease activity and are characterized by a pro-inflammatory epigenetic and transcriptional profile in lupus patients. J Autoimmun 2017; 86:19-28. [PMID: 29066026 DOI: 10.1016/j.jaut.2017.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/21/2017] [Accepted: 09/25/2017] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The goal of this study was to comprehensively characterize CD4+CD28+ T cells overexpressing CD11a and KIR genes, and examine the relationship between this T cell subset, genetic risk, and disease activity in lupus. METHODS The size of the CD4+CD28+KIR+CD11ahi T cell subset was determined by flow cytometry, and total genetic risk for lupus was calculated in 105 female patients using 43 confirmed genetic susceptibility loci. Primary CD4+CD28+KIR+CD11ahi T cells were isolated from lupus patients or were induced from healthy individuals using 5-azacytidine. Genome-wide DNA methylation was analyzed using an array-based approach, and the transcriptome was assessed by RNA sequencing. Transcripts in the CDR3 region were used to assess the TCR repertoire. Chromatin accessibility was determined using ATAC-seq. RESULTS A total of 31,019 differentially methylated sites were identified in induced KIR+CD11ahi T cells with >99% being hypomethylated. RNA sequencing revealed a clear pro-inflammatory transcriptional profile. TCR repertoire analysis suggests less clonotype diversity in KIR+CD11ahi compared to autologous KIR-CD11alow T cells. Similarly, primary KIR+CD11ahi T cells isolated from lupus patients were hypomethylated and characterized by a pro-inflammatory chromatin structure. We show that the genetic risk for lupus was significantly higher in African-American compared to European-American lupus patients. The demethylated CD4+CD28+KIR+CD11ahi T cell subset size was a better predictor of disease activity in young (age ≤ 40) European-American patients independent of genetic risk. CONCLUSION CD4+CD28+KIR+CD11ahi T cells are demethylated and characterized by pro-inflammatory epigenetic and transcriptional profiles in lupus. Eliminating these cells or blocking their pro-inflammatory characteristics might present a novel therapeutic approach for lupus.
Collapse
|
29
|
Environmental triggers in systemic lupus erythematosus. Semin Arthritis Rheum 2017; 47:710-717. [PMID: 29169635 DOI: 10.1016/j.semarthrit.2017.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/20/2017] [Accepted: 10/02/2017] [Indexed: 12/25/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that can affect almost any organ in the human body. Despite significant advancements in our understanding of SLE over the recent years, its exact mode of onset and disease progression remains elusive. Low concordance rates among monozygotic twins with SLE (as low as 24%), clustering of disease prevalence around polluted regions and an urban-rural difference in prevalence all highlight the importance of environmental influences in SLE. Experimental data strongly suggests a complex interaction between the exposome (or environmental influences) and genome (genetic material) to produce epigenetic changes (epigenome) that can alter the expression of genetic material and lead to development of disease in the susceptible individual. In this review, we focus on the available literature to explore the role of environmental factors in SLE disease onset and progression and to better understand the role of exposome-epigenome-genome interactions in this dreaded disease.
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW This review examines evidence relating environmental factors to the development of systemic lupus erythematosus (SLE). RECENT FINDINGS The strongest epidemiologic evidence exists for the associations of silica, cigarette smoking, oral contraceptives, postmenopausal hormone therapy and endometriosis, with SLE incidence. Recent studies have also provided robust evidence of the association between alcohol consumption and decreased SLE risk. There are preliminary, conflicting or unsubstantiated data that other factors, including air pollution, ultraviolet light, infections, vaccinations, solvents, pesticides and heavy metals such as mercury, are related to SLE risk. Biologic mechanisms linking environmental exposures and SLE risk include increased oxidative stress, systemic inflammation and inflammatory cytokine upregulation, and hormonal triggers, as well as epigenetic modifications resulting from exposure that could lead to SLE. SUMMARY Identifying the environmental risk factors related to risk of SLE is essential as it will lead to increased understanding of pathogenesis of this complex disease and will also make risk factor modification possible for those at increased risk.
Collapse
|
31
|
|
32
|
Parks CG, de Souza Espindola Santos A, Barbhaiya M, Costenbader KH. Understanding the role of environmental factors in the development of systemic lupus erythematosus. Best Pract Res Clin Rheumatol 2017; 31:306-320. [PMID: 29224673 PMCID: PMC5729939 DOI: 10.1016/j.berh.2017.09.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/16/2017] [Accepted: 09/03/2017] [Indexed: 12/20/2022]
Abstract
Systemic lupus erythematosus (SLE) is a multisystem disease with a complex etiology. Its risk is higher among women, racial and ethnic minorities, and individuals with a family history of SLE or related autoimmune diseases. It is believed that genetic factors interact with environmental exposures throughout the lifespan to influence susceptibility to developing SLE. The strongest epidemiologic evidence exists for increased risk of SLE associated with exposure to crystalline silica, current cigarette smoking, use of oral contraceptives, and postmenopausal hormone replacement therapy, while there is an inverse association with alcohol use. Emerging research results suggest possible associations of SLE risk with exposure to solvents, residential and agricultural pesticides, heavy metals, and air pollution. Ultraviolet light, certain infections, and vaccinations have also been hypothesized to be related to SLE risk. Mechanisms linking environmental exposures and SLE include epigenetic modifications resulting from exposures, increased oxidative stress, systemic inflammation and inflammatory cytokine upregulation, and hormonal effects. Research needs to include new studies of environmental risk factors for SLE in general, with a focus on lifetime exposure assessment. In addition, studies in susceptible subgroups, such as family members, studies based on genetic risk profiles, and studies in individuals with evidence of pre-clinical autoimmunity based on the detection of specific auto-antibodies are also required. Understanding the role of environmental exposures in the development of SLE may help identify modifiable risk factors and potential etiological mechanisms.
Collapse
Affiliation(s)
- Christine G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, NC, USA
| | - Aline de Souza Espindola Santos
- Occupational and Environmental Health Branch, Public Health Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Medha Barbhaiya
- Department of Medicine, Division of Rheumatology, Hospital for Special Surgery, Weill-Cornell Medical School, New York, NY, USA
| | - Karen H Costenbader
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
33
|
Xiang Z, Yang Y, Chang C, Lu Q. The epigenetic mechanism for discordance of autoimmunity in monozygotic twins. J Autoimmun 2017; 83:43-50. [PMID: 28412046 DOI: 10.1016/j.jaut.2017.04.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 04/05/2017] [Indexed: 12/12/2022]
Abstract
Monozygotic twins share an identical DNA sequence but are not truly "identical". In fact, when it comes to health and disease, they may often display some level of phenotypic discordance. The cause of this discordance is often unknown. Epigenetic modifications such as DNA methylation, histone modification, and microRNAs-mediated regulation regulate gene expression and are sensitive to external stimuli. These modifications may be seen to bridge the gap between genetics and the environment. Over the years, the importance of epigenetics as a primary mechanism for the role that the environment plays in defining phenotype has been increasingly appreciated. Mechanisms of epigenetics include DNA methylation, histone modifications and microRNAs. Discordance rates in monozygotic twins vary depending on the specific condition, from 11% in SLE to 64% in psoriasis and 77% in PBC. Other autoimmune diseases in which discordance is found among monozygotic twins has also been studied include type 1 diabetes, multiple sclerosis, rheumatoid arthritis, dermatomyositis and systemic sclerosis. In some cases, the differences in various epigenetic modifications is slight, even though the concordance rate is low, suggesting that epigenetics is not the only factor that needs to be considered. Nonetheless, the study of phenotypic discordance in monozygotic twins may shed light on the pathogenesis of autoimmune diseases and contribute to the development of new methodologies for the diagnosis and treatment of these diseases.
Collapse
Affiliation(s)
- Zhongyuan Xiang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yuanqing Yang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, 451 Health Sciences Drive, Suite 6510, Davis, CA 95616, United States
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.
| |
Collapse
|
34
|
Oxidative T Cell Modifications in Lupus and Sjogren's Syndrome. LUPUS (LOS ANGELES) 2017; 2:121. [PMID: 28620656 PMCID: PMC5469415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Lupus flares are triggered by environmental agents that cause oxidative stress, but the mechanisms involved are unclear. The flares are characterized by oxidative modifications of proteins by 4-hydroxynonenals, malondialdehydes, carbonyls and nitration. These modifications have been proposed to induce and perpetuate lupus flares by "altered self" mechanisms. An epigenetically altered CD4+CD28+ T cell subset, caused at least in part by nitration of T cell signaling molecules, is found in patients with active lupus, and nitrated T cells are sufficient to cause lupus-like autoimmunity in animal models. The relation of protein 4-hydroxynonenals, malondialdehydes, carbonyls and nitration to lupus flares though, is unknown. We tested if the size of the epigenetically altered subset is related to disease activity and one or more of these oxidative modifications in lupus patients. We also tested the relationship between subset size, disease activity and the same oxidative modifications in Sjogren's syndrome, another autoimmune disease also associated with oxidative stress and characterized by anti-nuclear antibodies and the presence of the subset. METHODS Lupus flare severity was quantitated using the Systemic Lupus Erythematosus Disease Activity Index, and Sjogren's flare severity using the European Sjogren's Syndrome Disease Activity Index. Subset size was determined by flow cytometry. Protein modifications were determined by ELISA. RESULTS Only protein nitration correlated with the size of the subset in lupus and Sjogren's syndrome. CONCLUSIONS These results support a role for protein nitration in subset size and lupus flare severity. Protein nitration may also contribute to autoantibody formation in Sjogren's syndrome.
Collapse
|
35
|
Hedrich CM, Mäbert K, Rauen T, Tsokos GC. DNA methylation in systemic lupus erythematosus. Epigenomics 2017; 9:505-525. [PMID: 27885845 PMCID: PMC6040049 DOI: 10.2217/epi-2016-0096] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/12/2016] [Indexed: 12/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease facilitated by aberrant immune responses directed against cells and tissues, resulting in inflammation and organ damage. In the majority of patients, genetic predisposition is accompanied by additional factors conferring disease expression. While the exact molecular mechanisms remain elusive, epigenetic alterations in immune cells have been demonstrated to play a key role in disease pathogenesis through the dysregulation of gene expression. Since epigenetic marks are dynamic, allowing cells and tissues to differentiate and adjust, they can be influenced by environmental factors and also be targeted in therapeutic interventions. Here, we summarize reports on DNA methylation patterns in SLE, underlying molecular defects and their effect on immune cell function. We discuss the potential of DNA methylation as biomarker or therapeutic target in SLE.
Collapse
Affiliation(s)
- Christian M Hedrich
- Pediatric Rheumatology & Immunology, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Katrin Mäbert
- Pediatric Rheumatology & Immunology, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Thomas Rauen
- Department of Nephrology & Clinical Immunology, RWTH University Hospital, Aachen, Germany
| | - George C Tsokos
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Wang Z, Lu Q, Wang Z. Epigenetic Alterations in Cellular Immunity: New Insights into Autoimmune Diseases. Cell Physiol Biochem 2017; 41:645-660. [PMID: 28214857 DOI: 10.1159/000457944] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/21/2016] [Indexed: 12/11/2022] Open
Abstract
Epigenetic modification is an additional regulator in immune responses as the genome-wide profiling somehow fails to explain the sophisticated mechanisms in autoimmune diseases. The effect of epigenetic modifications on adaptive immunity derives from their regulations to induce a permissive or negative gene expression. Epigenetic events, such as DNA methylation, histone modifications and microRNAs (miRNAs) are often found in T cell activation, differentiation and commitment which are the major parts in cellular immunity. Recognizing the complexity of interactions between epigenetic mechanisms and immune disturbance in autoimmune diseases is essential for the exploration of efficient therapeutic targets. In this review, we summarize a list of studies that indicate the significance of dysregulated epigenetic modifications in autoimmune diseases while focusing on T cell immunity.
Collapse
Affiliation(s)
- Zijun Wang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhihui Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Patel D, Gorelik G, Richardson B. Protein Phosphatase 5 Contributes to the Overexpression of Epigenetically Regulated T-Lymphocyte Genes in Patients with Lupus. LUPUS (LOS ANGELES) 2016; 1:120. [PMID: 28239687 PMCID: PMC5323243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
OBJECTIVE Lupus develops when genetically predisposed people encounter certain drugs or environmental agents causing oxidative stress such as infections and sun exposure, and then typically follows a chronic relapsing course with flares triggered by the exogenous stressors. Current evidence indicates that these environmental agents can trigger lupus flares by inhibiting the replication of DNA methylation patterns during mitosis in CD4+ T cells, altering the expression of genes suppressed by this mechanism that convert normal "helper" cells into auto reactive cells which promote lupus flares. How environmental stressors inhibit T cell DNA methylation though is incompletely understood. Protein phosphatase 5 (PP5) is a stress induced inhibitor of T cell ERK and JNK signaling in "senescent" CD4+CD28- T cells, also characterized by DNA demethylation and altered expression of genes that promote atherosclerosis. We tested if PP5 is increased in CD4+CD28+ T cells by oxidative stress, if PP5 transfection causes overexpression of methylation sensitive genes in T cells, and if PP5 is overexpressed in lupus T cells. RESULTS PP5 was found to be overexpressed in CD4+CD28+ T cells treated with H2O2 and ONOO- and in T cells from lupus patients. CONCLUSION The results indicate that PP5 increases expression of methylation sensitive T cell genes, and may contribute to the aberrant gene expression in CD4+CD28+ T cells that characterize lupus flares as well as the aberrant gene expression in CD4+CD28- T cells that promote atherosclerosis.
Collapse
Affiliation(s)
- D Patel
- Eli Lilly and Company, San Diego, CA, USA
- Rheumatology Division, Department of Medicine, University of Michigan, Ann Arbor MI, USA
| | - G Gorelik
- Rheumatology Division, Department of Medicine, University of Michigan, Ann Arbor MI, USA
| | - B Richardson
- Rheumatology Division, Department of Medicine, University of Michigan, Ann Arbor MI, USA
- Department of Medicine, Ann Arbor VA Medical Center, Ann Arbor MI, USA
| |
Collapse
|
38
|
Doria A, Gershwin ME, Selmi C. From old concerns to new advances and personalized medicine in lupus: The end of the tunnel is approaching. J Autoimmun 2016; 74:1-5. [DOI: 10.1016/j.jaut.2016.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 08/23/2016] [Indexed: 12/11/2022]
|
39
|
Chen SH, Lv QL, Hu L, Peng MJ, Wang GH, Sun B. DNA methylation alterations in the pathogenesis of lupus. Clin Exp Immunol 2016; 187:185-192. [PMID: 27690369 DOI: 10.1111/cei.12877] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2016] [Indexed: 01/02/2023] Open
Abstract
Although lupus is, by definition, associated with genetic and immunological factors, its molecular mechanisms remain unclear. The up-to-date research findings point out that various genetic and epigenetic factors, especially gene-specific and site-specific methylation, are believed to contribute to the initiation and development of systemic lupus erythematosus (SLE). This review presents and summarizes the association between abnormal DNA methylation of immune-related cells and lupus-like diseases, as well as the possible mechanisms of immune disorder caused by DNA methylation, aiming at a better understanding of the roles of aberrant DNA methylation in the initiation and development of certain forms of lupus and providing a new insight into promising therapeutic regimens in lupus-like diseases.
Collapse
Affiliation(s)
- S H Chen
- Department of Oncology, Changsha Central Hospital, Changsha, China
| | - Q L Lv
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - L Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - M J Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - G H Wang
- Department of Oncology, Changsha Central Hospital, Changsha, China
| | - B Sun
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
40
|
Li L, Yang SH, Yao Y, Xie YQ, Yang YQ, Wang YH, Yin XY, Ma HD, Gershwin ME, Lian ZX. Block of both TGF-β and IL-2 signaling impedes Neurophilin-1 + regulatory T cell and follicular regulatory T cell development. Cell Death Dis 2016; 7:e2439. [PMID: 27787514 PMCID: PMC5134002 DOI: 10.1038/cddis.2016.348] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/11/2016] [Accepted: 09/26/2016] [Indexed: 12/26/2022]
Abstract
Understanding the mechanisms that lead to autoimmunity is critical for defining potential therapeutic pathways. In this regard there have been considerable efforts in investigating the interacting roles of TGF-β and IL-2 on the function regulatory T cells. We have taken advantage of dnTGF-βRII Il2ra-/- (abbreviated as Il2ra-/-Tg) mouse model, which allows a direct mechanistic approach to define the relative roles of TGF-β and IL-2 on Treg development. Il2ra-/-Tg mice spontaneously developed multi-organ autoimmune diseases with expansion of pathogenic T cells and enhanced germinal center response at 3-4 weeks of age. Importantly, peripheral Treg cells from Il2ra-/-Tg mice demonstrated an activated Th1-like stable phenotype and normal in vitro suppressive function, while thymus Treg increased but manifested decreased suppressive function. Interestingly, neither thymus nor peripheral Treg cells of Il2ra-/-Tg mice contained Neuropilin-1+ or PD-1hi phenotype, resulting in defective follicular regulatory T (Tfr) cell development. Such defective Tfr development led to elevated follicular T helper cells, enhanced germinal center responses and increased plasma cell infiltration. These data demonstrate an important synergetic role of TGF-β and IL-2 in the generation, activation and stability of Treg cells, as well as their subsequent development into Tfr cells.
Collapse
Affiliation(s)
- Liang Li
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Shu-Han Yang
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yuan Yao
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yu-Qing Xie
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yan-Qing Yang
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yin-Hu Wang
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xue-Ying Yin
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Hong-Di Ma
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - MEric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA 95616, USA
| | - Zhe-Xiong Lian
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- Innovation Center for Cell Signaling Network, Hefei National Laboratory for Physical Sciences at Microscale, Hefei 230027, China
| |
Collapse
|
41
|
Gilbert KM, Blossom SJ, Erickson SW, Broadfoot B, West K, Bai S, Li J, Cooney CA. Chronic exposure to trichloroethylene increases DNA methylation of the Ifng promoter in CD4 + T cells. Toxicol Lett 2016; 260:1-7. [PMID: 27553676 PMCID: PMC5065104 DOI: 10.1016/j.toxlet.2016.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/12/2016] [Accepted: 08/19/2016] [Indexed: 01/04/2023]
Abstract
CD4+ T cells in female MRL+/+ mice exposed to solvent and water pollutant trichloroethylene (TCE) skew toward effector/memory CD4+ T cells, and demonstrate seemingly non-monotonic alterations in IFN-γ production. In the current study we examined the mechanism for this immunotoxicity using effector/memory and naïve CD4+ T cells isolated every 6 weeks during a 40 week exposure to TCE (0.5mg/ml in drinking water). A time-dependent effect of TCE exposure on both Ifng gene expression and IFN-γ protein production was observed in effector/memory CD4+ T cells, with an increase after 22 weeks of exposure and a decrease after 40 weeks of exposure. No such effect of TCE was observed in naïve CD4+ T cells. A cumulative increase in DNA methylation in the CpG sites of the promoter of the Ifng gene was observed in effector/memory, but not naïve, CD4+ T cells over time. Also unique to the Ifng promoter was an increase in methylation variance in effector/memory compared to naïve CD4+ T cells. Taken together, the CpG sites of the Ifng promoter in effector/memory CD4+ T cells were especially sensitive to the effects of TCE exposure, which may help explain the regulatory effect of the chemical on this gene.
Collapse
Affiliation(s)
- Kathleen M Gilbert
- University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR 72202, United States.
| | - Sarah J Blossom
- University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR 72202, United States.
| | - Stephen W Erickson
- University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR 72202, United States.
| | - Brannon Broadfoot
- University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR 72202, United States.
| | - Kirk West
- University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR 72202, United States.
| | - Shasha Bai
- University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR 72202, United States.
| | - Jingyun Li
- University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR 72202, United States.
| | - Craig A Cooney
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, United States.
| |
Collapse
|
42
|
Epigenetics in fibrosis. Mol Aspects Med 2016; 54:89-102. [PMID: 27720780 DOI: 10.1016/j.mam.2016.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/29/2016] [Accepted: 10/04/2016] [Indexed: 12/16/2022]
Abstract
Fibrosis is a common and important disease. It is a pathological state due to excessive scar formation mediated by an increase in activated fibroblasts that express alpha smooth muscle actin and copious amounts of extracellular matrix molecules. Epigenetics is an area of research that encompasses three main mechanisms: methylation, histone modifications to the tails of histones and also non-coding RNAs including long and short non-coding RNAs. These three mechanisms all seek to regulate gene expression without a change in the underlying DNA sequence. In recent years an explosion of research, aided by deep sequencing technology becoming available, has demonstrated a role for epigenetics in fibrosis, either organ specific like lung fibrosis or more widespread as in systemic sclerosis. While the great majority of epigenetic work in fibrosis is centered on histone codes, more recently the non-coding RNAs have been examined in greater detail. It is known that one modification can affect the other and cross-talk among all three adds a new layer of complexity. This review aims to examine the role of epigenetics in fibrosis, evaluating all three mechanisms, and to suggest possible areas where epigenetics could be targeted therapeutically.
Collapse
|
43
|
Zhan Y, Guo Y, Lu Q. Aberrant Epigenetic Regulation in the Pathogenesis of Systemic Lupus Erythematosus and Its Implication in Precision Medicine. Cytogenet Genome Res 2016; 149:141-155. [PMID: 27607472 DOI: 10.1159/000448793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2016] [Indexed: 11/19/2022] Open
Abstract
Great progress has been made in the last decades in understanding the complex immune dysregulation in systemic lupus erythematosus (SLE), yet the efforts to pursue an effective treatment of SLE proved to be futile. The pathoetiology of SLE involves extremely complicated and multifactorial interaction among various genetic and epigenetic factors. Multiple gene loci predispose to disease susceptibility, and the interaction with epigenetic modifications mediated through sex, hormones, and the hypothalamo-pituitary-adrenal axis complicates susceptibility and manifestations of this disease. Finally, certain environmental and psychological factors probably trigger the disease via epigenetic mechanisms. In this review, we summarize and discuss recent epigenetic studies of SLE and suggest a personalized approach to the dissection of disease onset and therapy or precision medicine. We speculate that in the future, precision medicine based on epigenetic and genetic information could help guide more effective targeted therapeutic intervention.
Collapse
Affiliation(s)
- Yi Zhan
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, PR China
| | | | | |
Collapse
|
44
|
Oxidative Stress and Treg and Th17 Dysfunction in Systemic Lupus Erythematosus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2526174. [PMID: 27597882 PMCID: PMC4997077 DOI: 10.1155/2016/2526174] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/15/2016] [Accepted: 05/23/2016] [Indexed: 12/19/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that involves multiple organ systems. The pathogenic mechanisms that cause SLE remain unclear; however, it is well recognized that the immune balance is disturbed and that this imbalance contributes to the autoimmune symptoms of SLE. Oxidative stress represents an imbalance between the production and manifestation of reactive oxygen species and the ability of the biological system to readily detoxify the reactive intermediates or to repair the resulting damage. In humans, oxidative stress is involved in many diseases, including atherosclerosis, myocardial infarction, and autoimmune diseases. Numerous studies have confirmed that oxidative stress plays an important role in the pathogenesis of SLE. This review mainly focuses on the recent research advances with respect to oxidative stress and regulatory T (Treg)/helper T 17 (Th17) cell dysfunction in the pathogenesis of SLE.
Collapse
|
45
|
Epigenetic Modulation as a Therapeutic Prospect for Treatment of Autoimmune Rheumatic Diseases. Mediators Inflamm 2016; 2016:9607946. [PMID: 27594771 PMCID: PMC4995328 DOI: 10.1155/2016/9607946] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/12/2016] [Indexed: 12/21/2022] Open
Abstract
Systemic inflammatory rheumatic diseases are considered as autoimmune diseases, meaning that the balance between recognition of pathogens and avoidance of self-attack is impaired and the immune system attacks and destroys its own healthy tissue. Treatment with conventional Disease Modifying Antirheumatic Drugs (DMARDs) and/or Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) is often associated with various adverse reactions due to unspecific and toxic properties of those drugs. Although biologic drugs have largely improved the outcome in many patients, such drugs still pose significant problems and fail to provide a solution to all patients. Therefore, development of more effective treatments and improvements in early diagnosis of rheumatic diseases are badly needed in order to increase patient's functioning and quality of life. The reversible nature of epigenetic mechanisms offers a new class of drugs that modulate the immune system and inflammation. In fact, epigenetic drugs are already in use in some types of cancer or cardiovascular diseases. Therefore, epigenetic-based therapeutics that control autoimmunity and chronic inflammatory process have broad implications for the pathogenesis, diagnosis, and management of rheumatic diseases. This review summarises the latest information about potential therapeutic application of epigenetic modification in targeting immune abnormalities and inflammation of rheumatic diseases.
Collapse
|
46
|
|
47
|
Long H, Yin H, Wang L, Gershwin ME, Lu Q. The critical role of epigenetics in systemic lupus erythematosus and autoimmunity. J Autoimmun 2016; 74:118-138. [PMID: 27396525 DOI: 10.1016/j.jaut.2016.06.020] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 06/29/2016] [Indexed: 02/09/2023]
Abstract
One of the major disappointments in human autoimmunity has been the relative failure on genome-wide association studies to provide "smoking genetic guns" that would explain the critical role of genetic susceptibility to loss of tolerance. It is well known that autoimmunity refers to the abnormal state that the dysregulated immune system attacks the healthy cells and tissues due to the loss of immunological tolerance to self-antigens. Its clinical outcomes are generally characterized by the presence of autoreactive immune cells and (or) the development of autoantibodies, leading to various types of autoimmune disorders. The etiology and pathogenesis of autoimmune diseases are highly complex. Both genetic predisposition and environmental factors such as nutrition, infection, and chemicals are implicated in the pathogenic process of autoimmunity, however, how much and by what mechanisms each of these factors contribute to the development of autoimmunity remain unclear. Epigenetics, which refers to potentially heritable changes in gene expression and function that do not involve alterations of the DNA sequence, has provided us with a brand new key to answer these questions. In the recent decades, increasing evidence have demonstrated the roles of epigenetic dysregulation, including DNA methylation, histone modification, and noncoding RNA, in the pathogenesis of autoimmune diseases, especially systemic lupus erythematosus (SLE), which have shed light on a new era for autoimmunity research. Notably, DNA hypomethylation and reactivation of the inactive X chromosome are two epigenetic hallmarks of SLE. We will herein discuss briefly how genetic studies fail to completely elucidate the pathogenesis of autoimmune diseases and present a comprehensive review on landmark epigenetic findings in autoimmune diseases, taking SLE as an extensively studied example. The epigenetics of other autoimmune diseases such as rheumatic arthritis, systemic sclerosis and primary biliary cirrhosis will also be summarized. Importantly we emphasize that the stochastic processes that lead to DNA modification may be the lynch pins that drive the initial break in tolerance.
Collapse
Affiliation(s)
- Hai Long
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| | - Heng Yin
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| | - Ling Wang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - M Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China.
| |
Collapse
|
48
|
Gilbert KM, Blossom SJ, Erickson SW, Reisfeld B, Zurlinden TJ, Broadfoot B, West K, Bai S, Cooney CA. Chronic exposure to water pollutant trichloroethylene increased epigenetic drift in CD4(+) T cells. Epigenomics 2016; 8:633-49. [PMID: 27092578 DOI: 10.2217/epi-2015-0018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AIM Autoimmune disease and CD4(+) T-cell alterations are induced in mice exposed to the water pollutant trichloroethylene (TCE). We examined here whether TCE altered gene-specific DNA methylation in CD4(+) T cells as a possible mechanism of immunotoxicity. MATERIALS & METHODS Naive and effector/memory CD4(+) T cells from mice exposed to TCE (0.5 mg/ml in drinking water) for 40 weeks were examined by bisulfite next-generation DNA sequencing. RESULTS A probabilistic model calculated from multiple genes showed that TCE decreased methylation control in CD4(+) T cells. Data from individual genes fitted to a quadratic regression model showed that TCE increased gene-specific methylation variance in both CD4 subsets. CONCLUSION TCE increased epigenetic drift of specific CpG sites in CD4(+) T cells.
Collapse
Affiliation(s)
- Kathleen M Gilbert
- Departments of Microbiology & Immunology, & Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR 72202, USA
| | - Sarah J Blossom
- Departments of Microbiology & Immunology, & Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR 72202, USA
| | - Stephen W Erickson
- Departments of Microbiology & Immunology, & Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR 72202, USA
| | - Brad Reisfeld
- College of Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Todd J Zurlinden
- College of Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Brannon Broadfoot
- Departments of Microbiology & Immunology, & Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR 72202, USA
| | - Kirk West
- Departments of Microbiology & Immunology, & Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR 72202, USA
| | - Shasha Bai
- Departments of Microbiology & Immunology, & Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR 72202, USA
| | - Craig A Cooney
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| |
Collapse
|
49
|
Strickland FM, Patel D, Khanna D, Somers E, Robida AM, Pihalja M, Swartz R, Marder W, Richardson B. Characterisation of an epigenetically altered CD4(+) CD28(+) Kir(+) T cell subset in autoimmune rheumatic diseases by multiparameter flow cytometry. Lupus Sci Med 2016; 3:e000147. [PMID: 27099767 PMCID: PMC4823547 DOI: 10.1136/lupus-2016-000147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 12/24/2022]
Abstract
Objectives Antigen-specific CD4+ T cells epigenetically modified with DNA methylation inhibitors overexpress genes normally suppressed by this mechanism, including CD11a, CD70, CD40L and the KIR gene family. The altered cells become autoreactive, losing restriction for nominal antigen and responding to self-class II major histocompatibility complex (MHC) molecules without added antigen, and are sufficient to cause a lupus-like disease in syngeneic mice. T cells overexpressing the same genes are found in patients with active lupus. Whether these genes are co-overexpressed on the same or different cells is unknown. The goal of this study was to determine whether these genes are overexpressed on the same or different T cells and whether this subset of CD4+ T cells is also present in patients with lupus and other rheumatic diseases. Methods Multicolour flow cytometry was used to compare CD11a, CD70, CD40L and KIR expression on CD3+CD4+CD28+ T cells to their expression on experimentally demethylated CD3+CD4+CD28+ T cells and CD3+CD4+CD28+ T cells from patients with active lupus and other autoimmune diseases. Results Experimentally demethylated CD4+ T cells and T cells from patients with active lupus have a CD3+CD4+CD28+CD11ahiCD70+CD40LhiKIR+ subset, and the subset size is proportional to lupus flare severity. A similar subset is found in patients with other rheumatic diseases including rheumatoid arthritis, systemic sclerosis and Sjögren's syndrome but not retroperitoneal fibrosis. Conclusions Patients with active autoimmune rheumatic diseases have a previously undescribed CD3+CD4+CD28+CD11ahiCD70+CD40LhiKIR+ T cell subset. This subset may play an important role in flares of lupus and related autoimmune rheumatic diseases, provide a biomarker for disease activity and serve as a novel therapeutic target for the treatment of lupus flares.
Collapse
Affiliation(s)
- Faith M Strickland
- Rheumatology Division, Department of Internal Medicine , The University of Michigan Medical School , Ann Arbor, Michigan , USA
| | - Dipak Patel
- Rheumatology Division, Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, Michigan, USA; Eli Lilly and Company, San Diego, California, USA
| | - Dinesh Khanna
- Rheumatology Division, Department of Internal Medicine , The University of Michigan Medical School , Ann Arbor, Michigan , USA
| | - Emily Somers
- Rheumatology Division, Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Environmental Health Sciences, The University of Michigan, Ann Arbor, Michigan, USA; Department of Obstetrics & Gynecology, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Aaron M Robida
- Biomedical Research Core, Flow Cytometry, The University of Michigan , Ann Arbor, Michigan , USA
| | - Michael Pihalja
- Biomedical Research Core, Flow Cytometry, The University of Michigan , Ann Arbor, Michigan , USA
| | - Richard Swartz
- Rheumatology Division, Department of Internal Medicine , The University of Michigan Medical School , Ann Arbor, Michigan , USA
| | - Wendy Marder
- Rheumatology Division, Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Obstetrics & Gynecology, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Bruce Richardson
- Rheumatology Division, Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Medicine, Ann Arbor VA Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|
50
|
Perricone C, Versini M, Ben-Ami D, Gertel S, Watad A, Segel MJ, Ceccarelli F, Conti F, Cantarini L, Bogdanos DP, Antonelli A, Amital H, Valesini G, Shoenfeld Y. Smoke and autoimmunity: The fire behind the disease. Autoimmun Rev 2016; 15:354-74. [DOI: 10.1016/j.autrev.2016.01.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 12/31/2015] [Indexed: 12/14/2022]
|