1
|
Xing Y, Wang H, Chao C, Ding X, Li G. Gestational diabetes mellitus in the era of COVID-19: Challenges and opportunities. Diabetes Metab Syndr 2024; 18:102991. [PMID: 38569447 DOI: 10.1016/j.dsx.2024.102991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND AND AIMS The impact of the coronavirus disease 2019 (COVID-19) pandemic on pregnant women, especially those with gestational diabetes mellitus (GDM), has yet to be fully understood. This review aims to examine the interaction between GDM and COVID-19 and to elucidate the pathophysiological mechanisms underlying the comorbidity of these two conditions. METHODS We performed a systematic literature search using the databases of PubMed, Embase, and Web of Science with appropriate keywords and MeSH terms. Our analysis included studies published up to January 26, 2023. RESULTS Despite distinct clinical manifestations, GDM and COVID-19 share common pathophysiological characteristics, which involve complex interactions across multiple organs and systems. On the one hand, infection with severe acute respiratory syndrome coronavirus 2 may target the pancreas and placenta, resulting in β-cell dysfunction and insulin resistance in pregnant women. On the other hand, the hormonal and inflammatory changes that occur during pregnancy could also increase the risk of severe COVID-19 in mothers with GDM. Personalized management and close monitoring are crucial for treating pregnant women with both GDM and COVID-19. CONCLUSIONS A comprehensive understanding of the interactive mechanisms of GDM and COVID-19 would facilitate the initiation of more targeted preventive and therapeutic strategies. There is an urgent need to develop novel biomarkers and functional indicators for early identification and intervention of these conditions.
Collapse
Affiliation(s)
- Yuhan Xing
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China; Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Qingdao Women and Children's Hospital, Qingdao University, Qingdao, Shandong Province, China
| | - Hong Wang
- Public Health School, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Cong Chao
- Qingdao Women and Children's Hospital, Qingdao University, Qingdao, Shandong Province, China
| | - Xueteng Ding
- Public Health School, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Guoju Li
- Qingdao Women and Children's Hospital, Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
2
|
Mir FA, Amanullah A, Jain BP, Hyderi Z, Gautam A. Neuroepigenetics of ageing and neurodegeneration-associated dementia: An updated review. Ageing Res Rev 2023; 91:102067. [PMID: 37689143 DOI: 10.1016/j.arr.2023.102067] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Gene expression is tremendously altered in the brain during memory acquisition, recall, and forgetfulness. However, non-genetic factors, including environmental elements, epigenetic changes, and lifestyle, have grabbed significant attention in recent years regarding the etiology of neurodegenerative diseases (NDD) and age-associated dementia. Epigenetic modifications are essential in regulating gene expression in all living organisms in a DNA sequence-independent manner. The genes implicated in ageing and NDD-related memory disorders are epigenetically regulated by processes such as DNA methylation, histone acetylation as well as messenger RNA editing machinery. The physiological and optimal state of the epigenome, especially within the CNS of humans, plays an intricate role in helping us adjust to the changing environment, and alterations in it cause many brain disorders, but the mechanisms behind it still need to be well understood. When fully understood, these epigenetic landscapes could act as vital targets for pharmacogenetic rescue strategies for treating several diseases, including neurodegeneration- and age-induced dementia. Keeping this objective in mind, this updated review summarises the epigenetic changes associated with age and neurodegeneration-associated dementia.
Collapse
Affiliation(s)
- Fayaz Ahmad Mir
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Zeeshan Hyderi
- Department of Biotechnology, Alagappa University, Karaikudi, India
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
3
|
Fàbrega C, Aviñó A, Navarro N, Jorge AF, Grijalvo S, Eritja R. Lipid and Peptide-Oligonucleotide Conjugates for Therapeutic Purposes: From Simple Hybrids to Complex Multifunctional Assemblies. Pharmaceutics 2023; 15:320. [PMID: 36839642 PMCID: PMC9959333 DOI: 10.3390/pharmaceutics15020320] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Antisense and small interfering RNA (siRNA) oligonucleotides have been recognized as powerful therapeutic compounds for targeting mRNAs and inducing their degradation. However, a major obstacle is that unmodified oligonucleotides are not readily taken up into tissues and are susceptible to degradation by nucleases. For these reasons, the design and preparation of modified DNA/RNA derivatives with better stability and an ability to be produced at large scale with enhanced uptake properties is of vital importance to improve current limitations. In the present study, we review the conjugation of oligonucleotides with lipids and peptides in order to produce oligonucleotide conjugates for therapeutics aiming to develop novel compounds with favorable pharmacokinetics.
Collapse
Affiliation(s)
- Carme Fàbrega
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Anna Aviñó
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Natalia Navarro
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Andreia F. Jorge
- Department of Chemistry, Coimbra Chemistry Centre (CQC), University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Santiago Grijalvo
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Colloidal and Interfacial Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), E-08034 Barcelona, Spain
| | - Ramon Eritja
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| |
Collapse
|
4
|
Dhuppar S, Murugaiyan G. miRNA effects on gut homeostasis: therapeutic implications for inflammatory bowel disease. Trends Immunol 2022; 43:917-931. [PMID: 36220689 PMCID: PMC9617792 DOI: 10.1016/j.it.2022.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 01/12/2023]
Abstract
Inflammatory bowel disease (IBD) spans a range of chronic conditions affecting the gastrointestinal (GI) tract, which are marked by intermittent flare-ups and remissions. IBD results from microbial dysbiosis or a defective mucosal barrier in the gut that triggers an inappropriate immune response in a genetically susceptible person, altering the immune-microbiome axis. In this review, we discuss the regulatory roles of miRNAs, small noncoding RNAs with gene regulatory functions, in the stability and maintenance of the gut immune-microbiome axis, and detail the challenges and recent advances in the use of miRNAs as putative therapeutic agents for treating IBD.
Collapse
Affiliation(s)
- Shivnarayan Dhuppar
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Current address: Centre for Business Innovation, The Indian School of Business, Hyderabad 500111, India
| | - Gopal Murugaiyan
- Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Clausse V, Zheng H, Amarasekara H, Kruhlak M, Appella DH. Thyclotides, tetrahydrofuran-modified peptide nucleic acids that efficiently penetrate cells and inhibit microRNA-21. Nucleic Acids Res 2022; 50:10839-10856. [PMID: 36215040 DOI: 10.1093/nar/gkac864] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/12/2022] Open
Abstract
Peptide nucleic acids (PNAs) are promising therapeutic molecules for gene modulation; however, they suffer from poor cell uptake. Delivery of PNAs into cells requires conjugation of the PNA to another large molecule, typically a cell-penetrating peptide or nanoparticle. In this study, we describe a new PNA-based molecule with cyclic tetrahydrofuran (THF) backbone modifications that in some cases considerably improve cell uptake. We refer to these THF-PNA oligomers as thyclotides. With THF groups at every position of the oligomer, the cell uptake of thyclotides targeted to miR-21 is enhanced compared with the corresponding unmodified PNA based on an aminoethylglycine backbone. An optimized thyclotide can efficiently enter cells without the use of cell-penetrating peptides, bind miR-21, its designated microRNA target, decrease expression of miR-21 and increase expression of three downstream targets (PTEN, Cdc25a and KRIT1). Using a plasmid with the PTEN-3'UTR coupled with luciferase, we further confirmed that a miR-21-targeted thyclotide prevents miR-21 from binding to its target RNA. Additionally, the thyclotide shows no cytotoxicity when administered at 200 times its active concentration. We propose that thyclotides be further explored as therapeutic candidates to modulate miRNA levels.
Collapse
Affiliation(s)
- Victor Clausse
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hongchao Zheng
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Harsha Amarasekara
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Kruhlak
- Microscopy Core Facility, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel H Appella
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Ramírez AE, Gil-Jaramillo N, Tapias MA, González-Giraldo Y, Pinzón A, Puentes-Rozo PJ, Aristizábal-Pachón AF, González J. MicroRNA: A Linking between Astrocyte Dysfunction, Mild Cognitive Impairment, and Neurodegenerative Diseases. Life (Basel) 2022; 12:life12091439. [PMID: 36143475 PMCID: PMC9505027 DOI: 10.3390/life12091439] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 12/06/2022] Open
Abstract
Simple Summary Neurodegenerative diseases are complex neurological disorders with a high incidence worldwide in older people, increasing hospital visits and requiring expensive treatments. As a precursor phase of neurodegenerative diseases, cognitive impairment needs to be studied to understand the factors that influence its development and improve patients’ quality of life. The present review compiles possible factors and biomarkers for diagnosing mild cognitive impairment based on the most recent studies involving miRNAs. These molecules can direct the gene expression in multiple cells, affecting their behavior under certain conditions, such as stressing factors. This review encourages further research into biomarkers that identify cognitive impairment in cellular models such as astrocytes, which are brain cells capable of maintaining the optimal conditions for the central nervous system functioning. Abstract The importance of miRNAs in cellular processes and their dysregulation has taken significant importance in understanding different pathologies. Due to the constant increase in the prevalence of neurodegenerative diseases (ND) worldwide and their economic impact, mild cognitive impairment (MCI), considered a prodromal phase, is a logical starting point to study this public health problem. Multiple studies have established the importance of miRNAs in MCI, including astrocyte regulation during stressful conditions. Additionally, the protection mechanisms exerted by astrocytes against some damage in the central nervous system (CNS) lead to astrocytic reactivation, in which a differential expression of miRNAs has been shown. Nevertheless, excessive reactivation can cause neurodegeneration, and a clear pattern defining the equilibrium point between a neuroprotective or detrimental astrocytic phenotype is unknown. Therefore, the miRNA expression has gained significant attention to understand the maintenance of brain balance and improve the diagnosis and treatment at earlier stages in the ND. Here, we provide a comprehensive review of the emerging role of miRNAs in cellular processes that contribute to the loss of cognitive function, including lipotoxicity, which can induce chronic inflammation, also considering the fundamental role of astrocytes in brain homeostasis.
Collapse
Affiliation(s)
- Angelica E. Ramírez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Natalia Gil-Jaramillo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - María Alejandra Tapias
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Pedro J. Puentes-Rozo
- Grupo de Neurociencias del Caribe, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Grupo de Neurociencias del Caribe, Universidad del Atlántico, Barranquilla 080007, Colombia
| | | | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Correspondence:
| |
Collapse
|
7
|
Wei ZD, Shetty AK. Can mild cognitive impairment and Alzheimer's disease be diagnosed by monitoring a miRNA triad in the blood? Aging Cell 2022; 21:e13627. [PMID: 35537095 PMCID: PMC9197398 DOI: 10.1111/acel.13627] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Objectively diagnosing age‐related cognitive impairment (ACI), mild cognitive impairment (MCI), and early‐stage Alzheimer's disease (AD) is a difficult task, as most cognitive impairment is clinically established via questionnaires, history, and physical examinations. A recent study has suggested that monitoring a miRNA triad, miR‐181a‐5p, miR‐146a‐5p, and miR‐148a‐3p can identify ACI and its progression to MCI and AD (Islam et al., EMBO Mol Med. 13: e14997, 2021). This commentary deliberates findings from this article, such as elevated levels of the miRNA triad in the brain impairing neural plasticity and cognitive function, the efficiency of measuring the miRNA triad in the circulating blood diagnosing MCI and AD, and the promise for improving cognitive function in MCI and AD by inhibiting this miRNA triad. Additional studies required prior to employing this miRNA triad in clinical practice are also discussed.
Collapse
Affiliation(s)
- Zhuang‐Yao D. Wei
- Institute for Regenerative Medicine Department of Molecular and Cellular Medicine Texas A&M University Health Science Center College of Medicine College Station Texas USA
| | - Ashok K. Shetty
- Institute for Regenerative Medicine Department of Molecular and Cellular Medicine Texas A&M University Health Science Center College of Medicine College Station Texas USA
| |
Collapse
|
8
|
Chang HD, Radbruch A, Kallinich T, Mashreghi MF, Hegazy AN, Kruglov A, Nedospasov S, Baumgrass R. [How T lymphocytes coordinate rheumatic inflammation]. Z Rheumatol 2022; 81:635-641. [PMID: 35380250 DOI: 10.1007/s00393-022-01186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2021] [Indexed: 11/30/2022]
Abstract
Helper T (Th) cells play a decisive role in triggering and maintaining chronic rheumatic inflammation. Via secretion of proinflammatory cytokines and expression of costimulatory cell surface molecules, Th lymphocytes coordinate the recruitment and activation of effector cells, which are ultimately responsible for the immunopathology and tissue destruction. However, therapeutic approaches aimed at eliminating Th cells were unsuccessful due to their lack of selectivity. At the German Rheumatism Research Center (Deutsches Rheuma-Forschungszentrum, DRFZ), we are working to improve the understanding of the Th cells involved in chronic inflammatory reactions. Based on this understanding, our aim is to develop novel treatment strategies that selectively target the pathogenic Th lymphocytes causing rheumatic inflammation. The current article summarizes the DRFZ's research activities on this subject.
Collapse
Affiliation(s)
- Hyun-Dong Chang
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Charitéplatz 1, 10117, Berlin, Deutschland.
- Institut für Biotechnologie, Technische Universität Berlin, Berlin, Deutschland.
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Charitéplatz 1, 10117, Berlin, Deutschland
| | - Tilmann Kallinich
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Charitéplatz 1, 10117, Berlin, Deutschland
- Klinik für Pädiatrie mit Schwerpunkt Pneumologie, Immunologie und Intensivmedizin, Charité - Universitätsmedizin Berlin, Berlin, Deutschland
| | - Mir-Farzin Mashreghi
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Charitéplatz 1, 10117, Berlin, Deutschland
- Single Cell Laboratory for Advanced Cellular Therapies, Berlin Center for Regenerative Therapies (BCRT), Berlin Institute of Health, Berlin, Deutschland
| | - Ahmed N Hegazy
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Charitéplatz 1, 10117, Berlin, Deutschland
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, Berlin, Deutschland
| | - Andrey Kruglov
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Charitéplatz 1, 10117, Berlin, Deutschland
| | - Sergei Nedospasov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russland
- Sirius University of Science and Technology, Sochi, Russland
| | - Ria Baumgrass
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Charitéplatz 1, 10117, Berlin, Deutschland
| |
Collapse
|
9
|
Torii Y, Kawada JI, Horiba K, Okumura T, Suzuki T, Ito Y. MicroRNA expression profiling of cerebrospinal fluid/serum exosomes in children with human herpesvirus 6-associated encephalitis/encephalopathy by high-throughput sequencing. J Neurovirol 2022; 28:151-157. [PMID: 35212942 DOI: 10.1007/s13365-022-01058-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/13/2021] [Accepted: 02/01/2022] [Indexed: 11/25/2022]
Abstract
Primary human herpesvirus 6 (HHV-6) infection is sometimes accompanied by acute encephalopathy with reduced subcortical diffusion (AED) in immunocompetent children. We investigated exosomal microRNA (miRNA) expression profiles in cerebrospinal fluid (CSF) and sera of patients with HHV-6-associated AED (n = 5) and febrile seizure (FS) (n = 5) using high-throughput sequencing. A total of 176 and 663 miRNAs were identified in CSF and serum exosomes, respectively. Comparative analysis determined that some miRNAs (miR-381-3p, miR-155) were exclusively expressed in the CSF exosomes of AED but not of FS patients, suggesting their potential application as novel diagnostic biomarkers for AED.
Collapse
Affiliation(s)
- Yuka Torii
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Jun-Ichi Kawada
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Kazuhiro Horiba
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Toshihiko Okumura
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takako Suzuki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yoshinori Ito
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
10
|
IRF4 transcriptionally activate HOTAIRM1, which in turn regulates IRF4 expression, thereby affecting Th9 cell differentiation and involved in allergic rhinitis. Gene 2021; 813:146118. [PMID: 34929342 DOI: 10.1016/j.gene.2021.146118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/20/2021] [Accepted: 12/06/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Allergic rhinitis (AR) is an inflammatory reaction caused by irritation of nasal mucosa by external allergens, which seriously affects the life of patients. Here, we aimed to investigate the effect and mechanism of long non-coding RNA HOX antisense intergenic RNA myeloid 1 (lncRNA HOTAIRM1) on AR development. METHODS The nasal mucosa samples were collected from AR patients and AR model mice (induced by ovalbumin). T helper type 9 (Th9) cells were examined by flow cytometry. Fluorescence in situ hybridization was conducted to examine the localization of HOTAIRM1 in CD4+ T cells. Dual-luciferase reporter assay or RNA immunoprecipitation was conducted to examine the bond between HOTAIRM1 and miR-148a-3p, miR-148a-3p, and interferon regulatory factor 4 (IRF4). Chromatin Immunoprecipitation assay was conducted to detect the interaction between IRF4 and HOTAIRM1 promoter. RESULTS HOTAIRM1, interleukin-9 (IL-9), and IRF4 were highly expressed in the AR model. The ratio of Th9 cells was increased in AR mice and overexpressing HOTAIRM1 further promoted Th9 cell differentiation, while the effect was reversed after overexpression of miR-148a-3p. Besides, in vivo experiments showed that interfering with HOTAIRM1 reduced the number of sneezing and rubbing movements, reduced immunoglobulin E (IgE) and IL-9 levels, as well as Th9 cells. HOTAIRM1 was expressed in the cytoplasm and the interactions between HOTAIRM1 and miR-148a-3p, miR-148a-3p and IRF4, were confirmed. Furthermore, IRF4 bound to the HOTAIRM1 promoter and promoted its transcriptional activation. CONCLUSION HOTAIRM1 was highly expressed in the AR model. Besides, IRF4 activated HOTAIRM1 transcription, and HOTAIRM1, in turn, up-regulated IRF4 expression through competitively binding to miR-148a-3p with IRF4, thereby affecting Th9 cell differentiation and participating in the occurrence and development of AR. Our results suggested that interference with HOTAIRM1 might become a treatment for AR.
Collapse
|
11
|
Islam MR, Kaurani L, Berulava T, Heilbronner U, Budde M, Centeno TP, Elerdashvili V, Zafieriou M, Benito E, Sertel SM, Goldberg M, Senner F, Kalman JL, Burkhardt S, Oepen AS, Sakib MS, Kerimoglu C, Wirths O, Bickeböller H, Bartels C, Brosseron F, Buerger K, Cosma N, Fliessbach K, Heneka MT, Janowitz D, Kilimann I, Kleinedam L, Laske C, Metzger CD, Munk MH, Perneczky R, Peters O, Priller J, Rauchmann BS, Roy N, Schneider A, Spottke A, Spruth EJ, Teipel S, Tscheuschler M, Wagner M, Wiltfang J, Düzel E, Jessen F, Rizzoli SO, Zimmermann W, Schulze TG, Falkai P, Sananbenesi F, Fischer A. A microRNA signature that correlates with cognition and is a target against cognitive decline. EMBO Mol Med 2021; 13:e13659. [PMID: 34633146 PMCID: PMC8573587 DOI: 10.15252/emmm.202013659] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022] Open
Abstract
While some individuals age without pathological memory impairments, others develop age-associated cognitive diseases. Since changes in cognitive function develop slowly over time in these patients, they are often diagnosed at an advanced stage of molecular pathology, a time point when causative treatments fail. Thus, there is great need for the identification of inexpensive and minimal invasive approaches that could be used for screening with the aim to identify individuals at risk for cognitive decline that can then undergo further diagnostics and eventually stratified therapies. In this study, we use an integrative approach combining the analysis of human data and mechanistic studies in model systems to identify a circulating 3-microRNA signature that reflects key processes linked to neural homeostasis and inform about cognitive status. We furthermore provide evidence that expression changes in this signature represent multiple mechanisms deregulated in the aging and diseased brain and are a suitable target for RNA therapeutics.
Collapse
|
12
|
Immunological memory in rheumatic inflammation - a roadblock to tolerance induction. Nat Rev Rheumatol 2021; 17:291-305. [PMID: 33824526 DOI: 10.1038/s41584-021-00601-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 12/20/2022]
Abstract
Why do we still have no cure for chronic inflammatory diseases? One reason could be that current therapies are based on the assumption that chronic inflammation is driven by persistent 'acute' immune reactions. Here we discuss a paradigm shift by suggesting that beyond these reactions, chronic inflammation is driven by imprinted, pathogenic 'memory' cells of the immune system. This rationale is based on the observation that in patients with chronic inflammatory rheumatic diseases refractory to conventional immunosuppressive therapies, therapy-free remission can be achieved by resetting the immune system; that is, by ablating immune cells and regenerating the immune system from stem cells. The success of this approach identifies antigen-experienced and imprinted immune cells as essential and sufficient drivers of inflammation. The 'dark side' of immunological memory primarily involves memory plasma cells secreting pathogenic antibodies and memory T lymphocytes secreting pathogenic cytokines and chemokines, but can also involve cells of innate immunity. New therapeutic strategies should address the persistence of these memory cells. Selective targeting of pathogenic immune memory cells could be based on their specificity, which is challenging, or on their lifestyle, which differs from that of protective immune memory cells, in particular for pathogenic T lymphocytes. The adaptations of such pathogenic memory cells to chronic inflammation offers entirely new therapeutic options for their selective ablation and the regeneration of immunological tolerance.
Collapse
|
13
|
Maschmeyer P, Heinz GA, Skopnik CM, Lutter L, Mazzoni A, Heinrich F, von Stuckrad SL, Wirth LE, Tran CL, Riedel R, Lehmann K, Sakwa I, Cimaz R, Giudici F, Mall MA, Enghard P, Vastert B, Chang HD, Durek P, Annunziato F, van Wijk F, Radbruch A, Kallinich T, Mashreghi MF. Antigen-driven PD-1 + TOX + BHLHE40 + and PD-1 + TOX + EOMES + T lymphocytes regulate juvenile idiopathic arthritis in situ. Eur J Immunol 2021; 51:915-929. [PMID: 33296081 DOI: 10.1002/eji.202048797] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/27/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022]
Abstract
T lymphocytes accumulate in inflamed tissues of patients with chronic inflammatory diseases (CIDs) and express pro-inflammatory cytokines upon re-stimulation in vitro. Further, a significant genetic linkage to MHC genes suggests that T lymphocytes play an important role in the pathogenesis of CIDs including juvenile idiopathic arthritis (JIA). However, the functions of T lymphocytes in established disease remain elusive. Here we dissect the transcriptional and the clonal heterogeneity of synovial T lymphocytes in JIA patients by single-cell RNA sequencing combined with T cell receptor profiling on the same cells. We identify clonally expanded subpopulations of T lymphocytes expressing genes reflecting recent activation by antigen in situ. A PD-1+ TOX+ EOMES+ population of CD4+ T lymphocytes expressed immune regulatory genes and chemoattractant genes for myeloid cells. A PD-1+ TOX+ BHLHE40+ population of CD4+ , and a mirror population of CD8+ T lymphocytes expressed genes driving inflammation, and genes supporting B lymphocyte activation in situ. This analysis points out that multiple types of T lymphocytes have to be targeted for therapeutic regeneration of tolerance in arthritis.
Collapse
Affiliation(s)
- Patrick Maschmeyer
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Gitta Anne Heinz
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Christopher Mark Skopnik
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nephrology and Intensive Care Medicine, Berlin, Germany
| | - Lisanne Lutter
- Center for Translational Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Florence, Italy
| | - Frederik Heinrich
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Sae Lim von Stuckrad
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin SPZ (Center for Chronically Sick Children), Berlin, Germany
| | - Lorenz Elias Wirth
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Cam Loan Tran
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - René Riedel
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Katrin Lehmann
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Imme Sakwa
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Rolando Cimaz
- Anna Meyer Children's Hospital and University of Florence, Florence, Italy.,Department of Clinical Sciences and Community Health, University of Milano, Milano, Italy
| | - Francesco Giudici
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Marcus Alexander Mall
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Philipp Enghard
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nephrology and Intensive Care Medicine, Berlin, Germany
| | - Bas Vastert
- Center for Translational Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Hyun-Dong Chang
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Pawel Durek
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany.,BCRT/DRFZ Single-Cell Laboratory for Advanced Cellular Therapies - Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Florence, Italy
| | - Femke van Wijk
- Center for Translational Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Tilmann Kallinich
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Mir-Farzin Mashreghi
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany.,BCRT/DRFZ Single-Cell Laboratory for Advanced Cellular Therapies - Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
| |
Collapse
|
14
|
Maschmeyer P, Zimmermann J, Kühl AA. Murine T-Cell Transfer Colitis as a Model for Inflammatory Bowel Disease. Methods Mol Biol 2021; 2285:349-373. [PMID: 33928564 DOI: 10.1007/978-1-0716-1311-5_26] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Inflammatory bowel disease (IBD) is a group of severe chronic inflammatory conditions of the human gastrointestinal tract. Murine models of colitis have been invaluable tools to improve the understanding of IBD development and pathogenesis. While the disease etiology of IBD is complex and multifactorial, CD4+ T helper cells have been shown to strongly contribute to the disease pathogenesis of IBD. Here, we present a detailed protocol of the preclinical model of T-cell transfer colitis, which can easily be utilized in the laboratory to study T helper cell functions in intestinal inflammation.
Collapse
Affiliation(s)
- Patrick Maschmeyer
- Deutsches Rheuma-Forschungszentrum (DRFZ) Berlin, an Institute of the Leibniz Association, Berlin, Germany.
| | - Jakob Zimmermann
- Maurice Müller Laboratories (Department of Biomedical Research), Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | - Anja Andrea Kühl
- iPATH.Berlin - Core Unit of the Charité, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
15
|
Li L. The Role of MicroRNAs in Vitiligo: Regulators and Therapeutic Targets. Ann Dermatol 2020; 32:441-451. [PMID: 33911786 PMCID: PMC7875238 DOI: 10.5021/ad.2020.32.6.441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 01/06/2023] Open
Abstract
Vitiligo is an acquired skin disorder clinically characterized by the progressive appearance of white maculae due to a loss of functioning epidermal melanocytes. Studies have shown that microRNAs (miRNAs) modulate cellular differentiation, proliferation and apoptosis, including immune cell and melanocyte development and functions. The role of miRNAs in the pathogenesis of several immune-related diseases has been explored. Novel approaches to target miRNAs have recently emerged allowing modulation of miRNAs levels in diverse pathological processes, thus making them promising targets for molecular-based diagnostics and therapy. Here, we report the present status of research on miRNAs expression and functional alterations in vitiligo, in order to more fully understand the role of these molecules in vitiligo pathology.
Collapse
Affiliation(s)
- Lili Li
- Department of Dermatology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
16
|
MicroRNA Biomarkers in IBD-Differential Diagnosis and Prediction of Colitis-Associated Cancer. Int J Mol Sci 2020; 21:ijms21217893. [PMID: 33114313 PMCID: PMC7660644 DOI: 10.3390/ijms21217893] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) includes Crohn's disease (CD) and ulcerative colitis (UC). These are chronic autoimmune diseases of unknown etiology affecting the gastrointestinal tract. The IBD population includes a heterogeneous group of patients with varying disease courses requiring personalized treatment protocols. The complexity of the disease often delays the diagnosis and the initiation of appropriate treatments. In a subset of patients, IBD leads to colitis-associated cancer (CAC). MicroRNAs are single-stranded regulatory noncoding RNAs of 18 to 22 nucleotides with putative roles in the pathogenesis of IBD and colorectal cancer. They have been explored as biomarkers and therapeutic targets. Both tissue-derived and circulating microRNAs have emerged as promising biomarkers in the differential diagnosis and in the prognosis of disease severity of IBD as well as predictive biomarkers in drug resistance. In addition, knowledge of the cellular localization of differentially expressed microRNAs is a prerequisite for deciphering the biological role of these important epigenetic regulators and the cellular localization may even contribute to an alternative repertoire of biomarkers. In this review, we discuss findings based on RT-qPCR, microarray profiling, next generation sequencing and in situ hybridization of microRNA biomarkers identified in the circulation and in tissue biopsies.
Collapse
|
17
|
Gao X, Liu L, Min X, Jia S, Zhao M. Non-Coding RNAs in CD4 + T Cells: New Insights Into the Pathogenesis of Systemic Lupus Erythematosus. Front Immunol 2020; 11:568. [PMID: 32308657 PMCID: PMC7145980 DOI: 10.3389/fimmu.2020.00568] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are indispensable for CD4+ T cell differentiation and functions. By directly or indirectly regulating immune gene expression, ncRNAs give flexible instructions to guide the biological processes of CD4+ T cells and play a vital role in maintaining immune homeostasis. However, the dysfunction of ncRNAs alters the gene expression profiles, disturbs the normal biological processes of CD4+ T cells, and leads to the functional changes of CD4+ T cells, which is an underlying cause of systemic lupus erythematosus (SLE). In this review, we focus on the recent advances in the roles of ncRNAs in CD4+ T cell functions and differentiation, as well as their potential applications in the diagnosis and treatment of SLE.
Collapse
Affiliation(s)
- Xiaofei Gao
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Limin Liu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoli Min
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Sujie Jia
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zhao
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
18
|
Alrafas HR, Busbee PB, Nagarkatti M, Nagarkatti PS. Resveratrol Downregulates miR-31 to Promote T Regulatory Cells during Prevention of TNBS-Induced Colitis. Mol Nutr Food Res 2019; 64:e1900633. [PMID: 31730734 DOI: 10.1002/mnfr.201900633] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/21/2019] [Indexed: 12/11/2022]
Abstract
SCOPE Colitis, an inflammatory bowel disease, is associated with aberrant regulation of the colonic mucosal immune system. Resveratrol, a natural plant product, has been found to exert anti-inflammatory properties and attenuate the development of murine colitis. In the current study, the role of microRNA (miR) in the ability of resveratrol to suppress colonic inflammation is examined. METHODS AND RESULTS BALB/C mice with 2,4,6-Trinitrobenzenesulfonic acid solution (TNBS)-induced colitis, when treated with resveratrol, show improved clinical outcomes and reduce induction of inflammatory T cells (Th17 and Th1) while increasing CD4+Foxp3+ regulatory T cells (Tregs) and IL-10-producing CD4+ T cells. miR microarray analysis and polymerase chain reaction (PCR) validation from CD4+ T cells show treatment with resveratrol decreases the expression of several miRs (miR-31, Let7a, miR-132) that targets cytokines and transcription factors involved in anti-inflammatory T cell responses (Foxp3 and TGF-β). Transfection studies with miR-31 confirm that this miR directly regulates the expression of Foxp3. Lastly, analysis of public data from human patients with ulcerative colitis reveals that miR-31 expression is significantly increased when compared to controls. CONCLUSION Together, the current study demonstrates that resveratrol-mediated attenuation of colitis may be regulated by miR-31 through induction of Tregs and miR-31 may serve as a therapeutic target for human colitis.
Collapse
Affiliation(s)
- Haider Rasheed Alrafas
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
| | - Philip B Busbee
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
| |
Collapse
|
19
|
Abstract
Topical preparations are by far the most frequently used therapeutic or prophylactic pharmaceuticals by dermatologists. Although only a few new active ingredients in topical pharmaceuticals have reached the market in recent years, some innovative galenic concepts and strategies considering the intrinsic effect of topical preparations have been developed, and it is quite certain that we can count on more genuine innovations in the near future. In particular small molecules, but also biological drugs, can be expected to be delivered by topical preparations, especially for inflammatory diseases. Also, we await innovative strategies for the substitution or regulation of the physicochemical and microbiological barrier function of the skin, including completely new options relating to the application of ribonucleic acid derivatives or their inhibitors aiming at influencing gene expression. Overall, it can be stated that the potential of epicutaneous application will take shape in modern vehicle strategies and procedures that deploy the intrinsic effect of topical preparations and that progress in biotechnology and physical chemistry will become increasingly relevant in practice.
Collapse
|
20
|
[Depletion of pro-inflammatory T helper type 1 cells by antagomir-mediated inhibition of the microRNA-148a]. Z Rheumatol 2019; 77:508-510. [PMID: 29808334 DOI: 10.1007/s00393-018-0477-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
21
|
Hradilkova K, Maschmeyer P, Westendorf K, Schliemann H, Husak O, von Stuckrad ASL, Kallinich T, Minden K, Durek P, Grün JR, Chang HD, Radbruch A. Regulation of Fatty Acid Oxidation by Twist 1 in the Metabolic Adaptation of T Helper Lymphocytes to Chronic Inflammation. Arthritis Rheumatol 2019; 71:1756-1765. [PMID: 31131995 PMCID: PMC6790942 DOI: 10.1002/art.40939] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/21/2019] [Indexed: 12/26/2022]
Abstract
Objective Inflamed tissue is characterized by low availability of oxygen and nutrients. Yet CD4+ T helper lymphocytes persist over time in such tissue and probably contribute to the chronicity of inflammation. This study was undertaken to analyze the metabolic adaptation of these cells to the inflamed environment. Methods Synovial and blood CD4+ T cells isolated ex vivo from patients with juvenile idiopathic arthritis (JIA) and murine CD4+ T cells were either stimulated once or stimulated repeatedly. Their dependency on particular metabolic pathways for survival was then analyzed using pharmacologic inhibitors. The role of the transcription factor Twist 1 was investigated by determining lactate production and oxygen consumption in Twist1‐sufficient and Twist1‐deficient murine T cells. The dependency of these murine cells on particular metabolic pathways was analyzed using pharmacologic inhibitors. Results Programmed death 1 (PD‐1)+ T helper cells in synovial fluid samples from patients with JIA survived via fatty acid oxidation (mean ± SEM survival of 3.4 ± 2.85% in the presence of etomoxir versus 60 ± 7.08% in the absence of etomoxir on day 4 of culture) (P < 0.0002; n = 6) and expressed the E‐box–binding transcription factor TWIST1 (2–14‐fold increased expression) (P = 0.0156 versus PD‐1− T helper cells; n = 6). Repeatedly restimulated murine T helper cells, which expressed Twist1 as well, needed Twist1 to survive via fatty acid oxidation. In addition, Twist1 protected the cells against reactive oxygen species. Conclusion Our findings indicate that TWIST1 is a master regulator of metabolic adaptation of T helper cells to chronic inflammation and a target for their selective therapeutic elimination.
Collapse
Affiliation(s)
| | | | | | | | - Olena Husak
- Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany
| | | | | | - Kirsten Minden
- Deutsches Rheuma-Forschungszentrum Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Pawel Durek
- Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany
| | - Joachim R Grün
- Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany
| | | | | |
Collapse
|
22
|
Bardua M, Haftmann C, Durek P, Westendorf K, Buttgereit A, Tran CL, McGrath M, Weber M, Lehmann K, Addo RK, Heinz GA, Stittrich AB, Maschmeyer P, Radbruch H, Lohoff M, Chang HD, Radbruch A, Mashreghi MF. MicroRNA-31 Reduces the Motility of Proinflammatory T Helper 1 Lymphocytes. Front Immunol 2018; 9:2813. [PMID: 30574141 PMCID: PMC6291424 DOI: 10.3389/fimmu.2018.02813] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/14/2018] [Indexed: 12/27/2022] Open
Abstract
Proinflammatory type 1 T helper (Th1) cells are enriched in inflamed tissues and contribute to the maintenance of chronic inflammation in rheumatic diseases. Here we show that the microRNA- (miR-) 31 is upregulated in murine Th1 cells with a history of repeated reactivation and in memory Th cells isolated from the synovial fluid of patients with rheumatic joint disease. Knock-down of miR-31 resulted in the upregulation of genes associated with cytoskeletal rearrangement and motility and induced the expression of target genes involved in T cell activation, chemokine receptor- and integrin-signaling. Accordingly, inhibition of miR-31 resulted in increased migratory activity of repeatedly activated Th1 cells. The transcription factors T-bet and FOXO1 act as positive and negative regulators of T cell receptor (TCR)-mediated miR-31 expression, respectively. Taken together, our data show that a gene regulatory network involving miR-31, T-bet, and FOXO1 controls the migratory behavior of proinflammatory Th1 cells.
Collapse
Affiliation(s)
- Markus Bardua
- Deutsches Rheuma-Forschungszentrum (DRFZ), Berlin, Germany
| | | | - Pawel Durek
- Deutsches Rheuma-Forschungszentrum (DRFZ), Berlin, Germany
| | | | | | - Cam Loan Tran
- Deutsches Rheuma-Forschungszentrum (DRFZ), Berlin, Germany
| | - Mairi McGrath
- Deutsches Rheuma-Forschungszentrum (DRFZ), Berlin, Germany
| | - Melanie Weber
- Deutsches Rheuma-Forschungszentrum (DRFZ), Berlin, Germany
| | - Katrin Lehmann
- Deutsches Rheuma-Forschungszentrum (DRFZ), Berlin, Germany
| | | | | | | | | | - Helena Radbruch
- Department of Neuropathology, Charité-Universitätsmedizin, Berlin, Germany
| | - Michael Lohoff
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg, Germany
| | | | | | | |
Collapse
|
23
|
Koenecke C, Krueger A. MicroRNA in T-Cell Development and T-Cell Mediated Acute Graft-Versus-Host Disease. Front Immunol 2018; 9:992. [PMID: 29867969 PMCID: PMC5949326 DOI: 10.3389/fimmu.2018.00992] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/20/2018] [Indexed: 12/21/2022] Open
Abstract
Acute graft-versus-host disease (GvHD) is still a major cause of treatment-related mortality after allogeneic stem cell transplantation. Allo-antigen recognition of donor T cells after transplantation account for the onset and persistence of this disease. MicroRNAs (miRNAs) are molecular regulators involved in numerous processes during T-cell development, homeostasis, and activation. Thus, miRNAs also contribute to pathological T-cell function during GvHD. Given their capacity of fine-tuning T-cell function, miRNAs have emerged as promising therapeutic targets to curtail acute GvHD, but simultaneously maintain T-cell-mediated graft-versus-tumor effects. Here, we review the role of key miRNAs contributing to the pathophysiology of GvHD. We focus on those miRNAs acting in T cells and for which a role in GvHD has been established in preclinical models. Finally, we provide an outlook for clinical application of this new therapeutic target for GvHD prevention and treatment.
Collapse
Affiliation(s)
- Christian Koenecke
- Clinic for Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.,Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|