1
|
Peters K, McDonald T, Muhammad F, Brady A, Dostal J, Lee DJ. TIGIT stimulation suppresses autoimmune uveitis by inhibiting Th17 cell infiltration. J Leukoc Biol 2024; 116:1054-1060. [PMID: 38785333 PMCID: PMC11531803 DOI: 10.1093/jleuko/qiae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 05/25/2024] Open
Abstract
T cell immunoglobulin and ITIM domain (TIGIT) is an immune checkpoint molecule that suppresses T cell activation and promotes an immunosuppressive environment to suppress autoimmune diseases. However, the impact of a TIGIT agonist as a treatment for ocular autoimmune disease has not been investigated. We examined TIGIT expression on T helper 17 (Th17) and regulatory T cells (Tregs), the role of TIGIT on experimental autoimmune uveitis and Th17 cells, and the impact of Treg generation following TIGIT stimulation. TIGIT stimulation at the onset of clinical symptoms reduced the severity of uveitis and suppressed infiltration of Th17 cells into the eye. Further, Tregs from mice treated with the TIGIT agonist were capable of suppressing experimental autoimmune uveitis in recipient mice. This report demonstrates that stimulation of TIGIT at onset of disease suppresses symptoms and allows for induction of regulatory immunity that provides resistance to uveitis.
Collapse
Affiliation(s)
- Kayleigh Peters
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L Young Blvd, Oklahoma City, OK 73104, United States
| | - Trisha McDonald
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L Young Blvd, Oklahoma City, OK 73104, United States
| | - Fauziyya Muhammad
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 1053, Oklahoma City, OK 73104, United States
| | - Adrien Brady
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, 55 Lake Avenue North, Worcester, MA 01655, United States
| | - John Dostal
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, 55 Lake Avenue North, Worcester, MA 01655, United States
| | - Darren J Lee
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L Young Blvd, Oklahoma City, OK 73104, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 1053, Oklahoma City, OK 73104, United States
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, 55 Lake Avenue North, Worcester, MA 01655, United States
| |
Collapse
|
2
|
Zhao P, Peng C, Chang X, Cheng W, Yang Y, Shen Y, Sun C, Feng X, Liu C, Wu J. Decreased expression of TIGIT on CD14 + monocytes correlates with clinical features and laboratory parameters of patients with primary Sjögren's syndrome. Clin Rheumatol 2024; 43:297-306. [PMID: 37749409 DOI: 10.1007/s10067-023-06759-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/16/2023] [Accepted: 08/26/2023] [Indexed: 09/27/2023]
Abstract
OBJECTIVES The purpose of this study was to investigate the expression of T-cell immunoglobulin and ITIM domain (TIGIT) in peripheral circulation of primary Sjögren's syndrome (pSS) and its role in the development of pSS. METHODS The expression of TIGIT on T cells, B cells, natural killer (NK) cells, and CD14 + monocytes was detected by flow cytometry in pSS and healthy control (HC). The correlations between expression of TIGIT and clinical features and laboratory parameters of pSS were analyzed. Meanwhile, we analyzed the change in expression of TIGIT before and after treatment, and its role in the prognosis of pSS treatment was evaluated. RESULTS The expression of TIGIT on CD3 + , CD4 + , and CD8 + T cells increased and decreased on CD14 + monocytes in pSS compared to HC; however, there was no significance of B lymphocytes and NK cells. The correlation analysis between the expression of TIGIT on T lymphocytes and CD14 + monocytes and clinical features of pSS showed that the decrease in TIGIT expression on CD14 + monocytes was more closely related to pSS. The expression of TIGIT + CD14 + monocytes negatively correlated with the disease activity of pSS. The expression of TIGIT + CD14 + monocytes of pSS with arthralgia, fatigue, decayed tooth, xerostomia, interstitial lung disease, anti-Ro52 positive, and high IgG decreased compared to that in negative patients. Furthermore, it was significantly lower in active patients than in nonactive patients. After treatment, the expression of TIGIT + CD14 + monocytes tended to increase. CONCLUSION Our study suggested that decreased TIGIT expression on CD14 + monocytes was associated with the clinical manifestations, disease activity, and prognosis of pSS patients. TIGIT + CD14 + monocytes may present as a potential target and a biomarker of the prognosis for immunomodulatory therapy in pSS. Key Points • The expression of TIGIT+CD14+ monocytes significantly decreased in pSS patients compared to HC. • There was a negative correlation between TIGIT+CD14+ monocytes and the disease activity of pSS. • TIGIT+CD14+ monocyte expression was associated with the clinical manifestations, autoantibodies, IgG, and prognosis of pSS patients.
Collapse
Affiliation(s)
- Ping Zhao
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, No. 188 Shizi St, Suzhou, 215006, Jiangsu, China
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Cheng Peng
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, No. 188 Shizi St, Suzhou, 215006, Jiangsu, China
| | - Xin Chang
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, No. 188 Shizi St, Suzhou, 215006, Jiangsu, China
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Cheng
- Department of Dermatology, The Affiliated Changshu Hospital of Xuzhou Medical University, Suzhou, China
| | - Yanhong Yang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Shen
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chao Sun
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiuyuan Feng
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, No. 188 Shizi St, Suzhou, 215006, Jiangsu, China
| | - Cuiping Liu
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Jian Wu
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, No. 188 Shizi St, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
3
|
Peters K, McDonald T, Muhammad F, Walsh M, Drenen K, Montieth A, Stephen Foster C, Lee DJ. A2Ar-dependent PD-1+ and TIGIT+ Treg cells have distinct homing requirements to suppress autoimmune uveitis in mice. Mucosal Immunol 2023; 16:422-431. [PMID: 37164238 PMCID: PMC10512849 DOI: 10.1016/j.mucimm.2023.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 05/12/2023]
Abstract
The proper function of regulatory T cells (Tregs) to suppress inflammation requires homing to the correct tissue site. Resolution of autoimmune uveitis generates distinct programmed death receptor 1 (PD-1+) and T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains (TIGIT+) Tregs in an adenosine 2A receptor (A2Ar)-dependent manner found in the spleen. Where and how these Tregs migrate from the spleen to prevent uveitis is not known. In this work, we show that A2Ar-dependent Tregs migrated to the eye and secondary lymphoid tissue and expressed chemokine receptor (CCR)6 and CCR7. Suppression of autoimmune uveitis required CCR6 and CCR7 expression for TIGIT+ Tregs but not PD-1+ Tregs. Moreover, stimulation of A2Ar on T cells from patients showed a decreased capacity to induce TIGIT+ Tregs that expressed CCR6 or CCR7, and PD-1+ Treg that expressed CCR6. This work provides a mechanistic understanding of the homing requirements of each of these Treg populations. Importantly, this work is clinically relevant because patients with chronic autoimmune uveitis are unable to induce the Treg populations identified in mice that home to the target tissue.
Collapse
Affiliation(s)
- Kayleigh Peters
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Trisha McDonald
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Fauziyya Muhammad
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Marisa Walsh
- Massachusetts Eye Research and Surgery Institute, Waltham, USA; Ocular Immunology and Uveitis Foundation, Waltham, USA
| | - Kayla Drenen
- Massachusetts Eye Research and Surgery Institute, Waltham, USA; Ocular Immunology and Uveitis Foundation, Waltham, USA
| | - Alyssa Montieth
- Massachusetts Eye Research and Surgery Institute, Waltham, USA; Ocular Immunology and Uveitis Foundation, Waltham, USA
| | - C Stephen Foster
- Massachusetts Eye Research and Surgery Institute, Waltham, USA; Ocular Immunology and Uveitis Foundation, Waltham, USA; Harvard Medical School, Boston, USA
| | - Darren J Lee
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, USA; Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, USA.
| |
Collapse
|
4
|
Teabagy S, Wood E, Bilsbury E, Doherty S, Janardhana P, Lee DJ. Ocular immunosuppressive microenvironment and novel drug delivery for control of uveitis. Adv Drug Deliv Rev 2023; 198:114869. [PMID: 37172782 PMCID: PMC10330522 DOI: 10.1016/j.addr.2023.114869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/17/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Ocular immune privilege is a phenomenon described by Peter Medawar in relation to the indefinite survival of the placement of foreign tissue grafts into the eye. Several mechanisms have been described that contribute to ocular immune privilege, such as a blood-ocular barrier and lack of lymphatics in the eye, the production of immune-suppressing molecules inside the ocular microenvironment, and the induction of systemic regulatory immunity against antigens found in the eye. Because ocular immune privilege is not absolute, failure of it can result in uveitis. Uveitis is a group of inflammatory disorders that can lead to vision loss if not treated properly. The current uveitis treatments involve the use of immunosuppressive and anti-inflammatory medications. Researching mechanisms of ocular immune privilege and the development of novel treatments for uveitis is ongoing. This review discusses mechanisms of ocular immune privilege, followed by an overview of uveitis treatments and ongoing clinical trials.
Collapse
Affiliation(s)
- Sean Teabagy
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Emma Wood
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Evan Bilsbury
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sean Doherty
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Priya Janardhana
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Darren J Lee
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
5
|
Qi C, Feng Y, Jiang Y, Chen W, Vakal S, Chen JF, Zheng W. A 2AR antagonist treatment for multiple sclerosis: Current progress and future prospects. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:185-223. [PMID: 37741692 DOI: 10.1016/bs.irn.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Emerging evidence suggests that both selective and non-selective Adenosine A2A receptor (A2AR) antagonists could effectively protect mice from experimental autoimmune encephalomyelitis (EAE), which is the most commonly used animal model for multiple sclerosis (MS) research. Meanwhile, the recent FDA approval of Nourianz® (istradefylline) in 2019 as an add-on treatment to levodopa in Parkinson's disease (PD) with "OFF" episodes, along with its proven clinical safety, has prompted us to explore the potential of A2AR antagonists in treating multiple sclerosis (MS) through clinical trials. However, despite promising findings in experimental autoimmune encephalomyelitis (EAE), the complex and contradictory role of A2AR signaling in EAE pathology has raised concerns about the feasibility of using A2AR antagonists as a therapeutic approach for MS. This review addresses the potential effect of A2AR antagonists on EAE/MS in both the peripheral immune system (PIS) and the central nervous system (CNS). In brief, A2AR antagonists had a moderate effect on the proliferation and inflammatory response, while exhibiting a potent anti-inflammatory effect in the CNS through their impact on microglia, astrocytes, and the endothelial cells/epithelium of the blood-brain barrier. Consequently, A2AR signaling remains an essential immunomodulator in EAE/MS, suggesting that A2AR antagonists hold promise as a drug class for treating MS.
Collapse
Affiliation(s)
- Chenxing Qi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China; Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China
| | - Yijia Feng
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Yiwei Jiang
- Alberta Institute, Wenzhou Medical University, Wenzhou, P.R. China
| | - Wangchao Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China
| | - Serhii Vakal
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Jiang-Fan Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China; Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China
| | - Wu Zheng
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China; Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.
| |
Collapse
|
6
|
Fan NW, Zhu Q, Wang S, Ortiz G, Huckfeldt RM, Chen Y. Long-lived autoreactive memory CD4 + T cells mediate the sustained retinopathy in chronic autoimmune uveitis. FASEB J 2023; 37:e22855. [PMID: 36906286 PMCID: PMC10478160 DOI: 10.1096/fj.202202164r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/07/2023] [Accepted: 02/21/2023] [Indexed: 03/13/2023]
Abstract
Chronic uveitis comprises heterogeneous clinical entities characterized by sustained and recurrent intraocular inflammation that is believed to be driven by autoimmune responses. The management of chronic uveitis is challenging with the limited availability of efficacious treatments, and the underlying mechanisms mediating disease chronicity remain poorly understood as the majority of experimental data are derived from the acute phase of the disease (the first 2-3 weeks post-induction). Herein, we investigated the key cellular mechanisms underlying chronic intraocular inflammation using our recently established murine model of chronic autoimmune uveitis. We demonstrate unique long-lived CD44hi IL-7R+ IL-15R+ CD4+ memory T cells in both retina and secondary lymphoid organs after 3 months postinduction of autoimmune uveitis. These memory T cells functionally exhibit antigen-specific proliferation and activation in response to retinal peptide stimulation in vitro. Critically, these effector-memory T cells are capable of effectively trafficking to the retina and accumulating in the local tissues secreting both IL-17 and IFN-γ upon adoptively transferred, leading to retinal structural and functional damage. Thus, our data reveal the critical uveitogenic functions of memory CD4+ T cells in sustaining chronic intraocular inflammation, suggesting that memory T cells can be a novel and promising therapeutic target for treating chronic uveitis in future translational studies.
Collapse
Affiliation(s)
- Nai-Wen Fan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Qiurong Zhu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| | - Shudan Wang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| | - Gustavo Ortiz
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| | - Rachel M. Huckfeldt
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| | - Yihe Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
7
|
Jantz-Naeem N, Böttcher-Loschinski R, Borucki K, Mitchell-Flack M, Böttcher M, Schraven B, Mougiakakos D, Kahlfuss S. TIGIT signaling and its influence on T cell metabolism and immune cell function in the tumor microenvironment. Front Oncol 2023; 13:1060112. [PMID: 36874131 PMCID: PMC9982004 DOI: 10.3389/fonc.2023.1060112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/11/2023] [Indexed: 02/19/2023] Open
Abstract
One of the key challenges for successful cancer therapy is the capacity of tumors to evade immune surveillance. Tumor immune evasion can be accomplished through the induction of T cell exhaustion via the activation of various immune checkpoint molecules. The most prominent examples of immune checkpoints are PD-1 and CTLA-4. Meanwhile, several other immune checkpoint molecules have since been identified. One of these is the T cell immunoglobulin and ITIM domain (TIGIT), which was first described in 2009. Interestingly, many studies have established a synergistic reciprocity between TIGIT and PD-1. TIGIT has also been described to interfere with the energy metabolism of T cells and thereby affect adaptive anti-tumor immunity. In this context, recent studies have reported a link between TIGIT and the hypoxia-inducible factor 1-α (HIF1-α), a master transcription factor sensing hypoxia in several tissues including tumors that among others regulates the expression of metabolically relevant genes. Furthermore, distinct cancer types were shown to inhibit glucose uptake and effector function by inducing TIGIT expression in CD8+ T cells, resulting in an impaired anti-tumor immunity. In addition, TIGIT was associated with adenosine receptor signaling in T cells and the kynurenine pathway in tumor cells, both altering the tumor microenvironment and T cell-mediated immunity against tumors. Here, we review the most recent literature on the reciprocal interaction of TIGIT and T cell metabolism and specifically how TIGIT affects anti-tumor immunity. We believe understanding this interaction may pave the way for improved immunotherapy to treat cancer.
Collapse
Affiliation(s)
- Nouria Jantz-Naeem
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Romy Böttcher-Loschinski
- Department of Hematology and Oncology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Katrin Borucki
- Institute of Clinical Chemistry, Department of Pathobiochemistry, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Marisa Mitchell-Flack
- Department of Oncology, The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Martin Böttcher
- Department of Hematology and Oncology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dimitrios Mougiakakos
- Department of Hematology and Oncology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sascha Kahlfuss
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
8
|
Wei Q, Zhang L, Zhao N, Cheng Z, Xin H, Ding J. Immunosuppressive adenosine-targeted biomaterials for emerging cancer immunotherapy. Front Immunol 2022; 13:1012927. [PMID: 36389700 PMCID: PMC9641176 DOI: 10.3389/fimmu.2022.1012927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/29/2022] [Indexed: 12/28/2024] Open
Abstract
Immunotherapy has paved the way for the future of cancer therapy, but there are still significant challenges to be overcome, such as the occurrence of immune escape or suppression. Adenosine is essential in modulating the immune responses of immune cells and maintaining immune tolerance. Emerging adenosine pathway inhibitors are considered a breakthrough in cancer immunotherapy, with emphasis first being placed on the top-down blockade of adenosine signaling axis, followed by combination therapy. However, these therapeutic strategies rely on adenosine inhibitors, mainly small molecules or antibody proteins, which are limited by a single route of administration and off-target toxicity. Therefore, synergistic nanomedicine with accurate delivery targeting deeper tumors is focused on in preclinical studies. This review discusses how adenosine reshapes immunosuppressive microenvironments through its effects on immune cells, including lymphocytes and myeloid cells. Additionally, it will be the first discussion of a comprehensive strategy of biomaterials in modulating the adenosine signaling pathway, including inhibition of adenosine production, inhibition of adenosine binding to immune cells, and depletion of adenosine in the microenvironments. Furthermore, biomaterials integrating multiple therapeutic modalities with adenosine blocking are also discussed as a promising strategy for promoting cancer immunotherapy.
Collapse
Affiliation(s)
- Qi Wei
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Lening Zhang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Nan Zhao
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhihua Cheng
- Department of Vascular Surgery, General Surgery Center, the First Hospital of Jilin University, Changchun, China
| | - Hua Xin
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
9
|
Yue C, Gao S, Li S, Xing Z, Qian H, Hu Y, Wang W, Hua C. TIGIT as a Promising Therapeutic Target in Autoimmune Diseases. Front Immunol 2022; 13:911919. [PMID: 35720417 PMCID: PMC9203892 DOI: 10.3389/fimmu.2022.911919] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/13/2022] [Indexed: 12/19/2022] Open
Abstract
Co-inhibitory receptors (IRs) are molecules that protect host against autoimmune reactions and maintain peripheral self-tolerance, playing an essential role in maintaining immune homeostasis. In view of the substantial clinical progresses of negative immune checkpoint blockade in cancer treatment, the role of IRs in autoimmune diseases is also obvious. Several advances highlighted the substantial impacts of T cell immunoglobulin and ITIM domain (TIGIT), a novel IR, in autoimmunity. Blockade of TIGIT pathway exacerbates multiple autoimmune diseases, whereas enhancement of TIGIT function has been shown to alleviate autoimmune settings in mice. These data suggested that TIGIT pathway can be manipulated to achieve durable tolerance to treat autoimmune disorders. In this review, we provide an overview of characteristics of TIGIT and its role in autoimmunity. We then discuss recent approaches and future directions to leverage our knowledge of TIGIT as therapeutic target in autoimmune diseases.
Collapse
Affiliation(s)
- Chenran Yue
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, China
| | - Shuting Li
- School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhouhang Xing
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hengrong Qian
- School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ying Hu
- School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenqian Wang
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Lee AY, Foulsham W. Regulatory T Cells: Therapeutic Opportunities in Uveitis. FRONTIERS IN OPHTHALMOLOGY 2022; 2:901144. [PMID: 38983511 PMCID: PMC11182269 DOI: 10.3389/fopht.2022.901144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/28/2022] [Indexed: 07/11/2024]
Abstract
Regulatory T cells (Tregs) are critical for the maintenance of immune tolerance and the suppression of excessive inflammation. Many inflammatory autoimmune disorders, including autoimmune uveitis, involve the loss of the suppressive capacities of Tregs. Over the past decade, Tregs' therapeutic potential in uveitis has garnered increasing attention. Specific subsets of Tregs, including TIGIT+ and PD-1+ Tregs, have emerged as potent immunosuppressors that may be particularly well-suited to cell-based therapeutics. Studies have elucidated the interaction between Treg development and the gut microbiome as well as various intracellular signaling pathways. Numerous cell-based therapies and therapeutic molecules have been proposed and investigated using the murine experimental autoimmune uveitis (EAU) model. However, certain challenges remain to be addressed. Studies involving the use of Tregs in human patients with uveitis are lacking, and there are concerns regarding Tregs' production and purification for practical use, their plasticity towards inflammatory phenotypes, immunogenicity, and tumorigenicity. Nevertheless, recent research has brought Tregs closer to yielding viable treatment options for uveitis.
Collapse
Affiliation(s)
| | - William Foulsham
- Department of Ophthalmology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
11
|
Saxena V, Piao W, Li L, Paluskievicz C, Xiong Y, Simon T, Lakhan R, Brinkman CC, Walden S, Hippen KL, WillsonShirkey M, Lee YS, Wagner C, Blazar BR, Bromberg JS. Treg tissue stability depends on lymphotoxin beta-receptor- and adenosine-receptor-driven lymphatic endothelial cell responses. Cell Rep 2022; 39:110727. [PMID: 35443187 PMCID: PMC9093052 DOI: 10.1016/j.celrep.2022.110727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/23/2022] [Accepted: 03/30/2022] [Indexed: 02/03/2023] Open
Abstract
Regulatory T cell (Treg) lymphatic migration is required for resolving inflammation and prolonging allograft survival. Focusing on Treg interactions with lymphatic endothelial cells (LECs), we dissect mechanisms and functional consequences of Treg transendothelial migration (TEM). Using three genetic mouse models of pancreatic islet transplantation, we show that Treg lymphotoxin (LT) αβ and LEC LTβ receptor (LTβR) signaling are required for efficient Treg migration and suppressive function to prolong allograft survival. Inhibition of LT signaling increases Treg conversion to Foxp3loCD25lo exTregs. In a transwell-based model of TEM across polarized LECs, non-migrated Tregs become exTregs. Such conversion is regulated by LTβR nuclear factor κB (NF-κB) signaling in LECs, which increases interleukin-6 (IL-6) production and drives exTreg conversion. Migrating Tregs are ectonucleotidase CD39hi and resist exTreg conversion in an adenosine-receptor-2A-dependent fashion. Human Tregs migrating across human LECs behave similarly. These molecular interactions can be targeted for therapeutic manipulation of immunity and suppression.
Collapse
Affiliation(s)
- Vikas Saxena
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wenji Piao
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Lushen Li
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Christina Paluskievicz
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yanbao Xiong
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thomas Simon
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ram Lakhan
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - C Colin Brinkman
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sarah Walden
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | - Keli L Hippen
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | - Marina WillsonShirkey
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Young S Lee
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Chelsea Wagner
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
12
|
Qiu D, Liu X, Wang W, Jiang X, Wu X, Zheng J, Zhou K, Kong X, Wu X, Jin Z. TIGIT axis: novel immune checkpoints in anti-leukemia immunity. Clin Exp Med 2022; 23:165-174. [PMID: 35419661 DOI: 10.1007/s10238-022-00817-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/25/2022] [Indexed: 12/01/2022]
Abstract
Hematologic malignancy evades immune-mediated recognition through upregulating various checkpoint inhibitory receptors (IRs) on several types of lymphocytes. Immunotherapies targeting IRs have provided ample evidence supporting regulating innate and adaptive immunity and obtaining clinical benefits. Newly described IRs have received considerable attention and are under investigation in cancer immunotherapy. Specifically, T cell immunoglobulin and ITIM domain is a novel inhibitory checkpoint receptor, and its immune checkpoint axis includes additional receptors such as CD96 and CD226, which are very promising targets. However, how the dynamics and functions of these receptor networks remain unknown, this review addresses the recent findings of the relevance of this complex receptor-ligand system and discusses their potential approaches in translating these preclinical findings into novel clinical agents in anti-leukemia immunotherapy.
Collapse
Affiliation(s)
- Dan Qiu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiaxin Liu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Wandi Wang
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xuan Jiang
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiaofang Wu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jiamian Zheng
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Kai Zhou
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xueting Kong
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiuli Wu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Zhenyi Jin
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
13
|
McDonald T, Muhammad F, Peters K, Lee DJ. Combined Deficiency of the Melanocortin 5 Receptor and Adenosine 2A Receptor Unexpectedly Provides Resistance to Autoimmune Disease in a CD8 + T Cell-Dependent Manner. Front Immunol 2021; 12:742154. [PMID: 34867964 PMCID: PMC8634946 DOI: 10.3389/fimmu.2021.742154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Regulatory immunity that provides resistance to relapse emerges during resolution of experimental autoimmune uveitis (EAU). This post-EAU regulatory immunity requires a melanocortin 5 receptor (MC5r)-dependent suppressor antigen presenting cell (APC), as shown using a MC5r single knock-out mouse. The MC5r-dependent APC activates an adenosine 2A receptor (A2Ar)-dependent regulatory Treg cell, as shown using an A2Ar single knock-out mouse. Unexpectedly, when MC5r-/- post-EAU APC were used to activate A2Ar-/- post-EAU T cells the combination of cells significantly suppressed EAU, when transferred to EAU mice. In contrast, transfer of the reciprocal activation scheme did not suppress EAU. In order to explain this finding, MC5r-/-A2Ar-/- double knock-out (DKO) mice were bred. Naïve DKO mice had no differences in the APC populations, or inflammatory T cell subsets, but did have significantly more Treg cells. When we examined the number of CD4 and CD8 T cell subsets, we found significantly fewer CD8 T cells in the DKO mice compared to WT and both single knock-out mice. DKO mice also had significantly reduced EAU severity and accelerated resolution. In order to determine if the CD8 T cell deficiency contributed to the resistance to EAU in the DKO mice, we transferred naïve CD8 T cells from WT mice, that were immunized for EAU. Susceptibility to EAU was restored in DKO mice that received a CD8 T cell transfer. While the mechanism that contributed to the CD8 T cell deficiency in the DKO mice remains to be determined, these observations indicate an importance of CD8 T cells in the initiation of EAU. The involvement of CD4 and CD8 T cells suggests that both class I and class II antigen presentation can trigger an autoimmune response, suggesting a much wider range of antigens may trigger autoimmune disease.
Collapse
Affiliation(s)
- Trisha McDonald
- Dean McGee Eye Institute, Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Fauziyya Muhammad
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Kayleigh Peters
- Dean McGee Eye Institute, Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Darren J. Lee
- Dean McGee Eye Institute, Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States,*Correspondence: Darren J. Lee,
| |
Collapse
|
14
|
Chen YH, Lightman S, Calder VL. CD4 + T-Cell Plasticity in Non-Infectious Retinal Inflammatory Disease. Int J Mol Sci 2021; 22:9584. [PMID: 34502490 PMCID: PMC8431487 DOI: 10.3390/ijms22179584] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 01/14/2023] Open
Abstract
Non-infectious uveitis (NIU) is a potentially sight-threatening disease. Effector CD4+ T cells, especially interferon-γ-(IFNγ) producing Th1 cells and interleukin-17-(IL-17) producing Th17 cells, are the major immunopathogenic cells, as demonstrated by adoptive transfer of disease in a model of experimental autoimmune uveitis (EAU). CD4+FoxP3+CD25+ regulatory T cells (Tregs) were known to suppress function of effector CD4+ T cells and contribute to resolution of disease. It has been recently reported that some CD4+ T-cell subsets demonstrate shared phenotypes with another CD4+ T-cell subset, offering the potential for dual function. For example, Th17/Th1 (co-expressing IFNγ and IL-17) cells and Th17/Treg (co-expressing IL-17 and FoxP3) cells have been identified in NIU and EAU. In this review, we have investigated the evidence as to whether these 'plastic CD4+ T cells' are functionally active in uveitis. We conclude that Th17/Th1 cells are generated locally, are resistant to the immunosuppressive effects of steroids, and contribute to early development of EAU. Th17/Treg cells produce IL-17, not IL-10, and act similar to Th17 cells. These cells were considered pathogenic in uveitis. Future studies are needed to better clarify their function, and in the future, these cell subsets may in need to be taken into consideration for designing treatment strategies for disease.
Collapse
Affiliation(s)
- Yi-Hsing Chen
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (Y.-H.C.); (S.L.)
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Sue Lightman
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (Y.-H.C.); (S.L.)
| | - Virginia L. Calder
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (Y.-H.C.); (S.L.)
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| |
Collapse
|
15
|
Lyu Q, Peng L, Hong X, Fan T, Li J, Cui Y, Zhang H, Zhao J. Smart nano-micro platforms for ophthalmological applications: The state-of-the-art and future perspectives. Biomaterials 2021; 270:120682. [PMID: 33529961 DOI: 10.1016/j.biomaterials.2021.120682] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 12/18/2022]
Abstract
Smart nano-micro platforms have been extensively applied for diverse biomedical applications, mostly focusing on cancer therapy. In comparison with conventional nanotechnology, the smart nano-micro matrix can exhibit specific response to exogenous or endogenous triggers, and thus can achieve multiple functions e.g. site-specific drug delivery, bio-imaging and detection of bio-molecules. These intriguing techniques have expanded into ophthalmology in recent years, yet few works have been summarized in this field. In this work, we provide the state-of-the-art of diverse nano-micro platforms based on both the conventional materials (e.g. natural or synthetic polymers, lipid nanomaterials, metal and metal oxide nanoparticles) and emerging nanomaterials (e.g. up-conversion nanoparticles, quantum dots and carbon materials) in ophthalmology, with some smart nano/micro platformers highlighted. The common ocular diseases studied in the field of nano-micro systems are firstly introduced, and their therapeutic method and the related drawback in clinic treatment are presented. The recent progress of different materials for diverse ocular applications is then demonstrated, with the representative nano- and micro-systems highlighted in detail. At last, an in-depth discussion on the clinical translation challenges faced in this field and the future direction are provided. This review would allow the researchers to design more smart nanomedicines in a more rational manner for specific ophthalmology applications.
Collapse
Affiliation(s)
- Qinghua Lyu
- Shenzhen Eye Hospital, School of Ophthalmology & Optometry Affiliated to Shenzhen University, Shenzhen, 518040, PR China; Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Ling Peng
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Xiangqian Hong
- Shenzhen Eye Hospital, School of Ophthalmology & Optometry Affiliated to Shenzhen University, Shenzhen, 518040, PR China; Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Taojian Fan
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Jingying Li
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen, 518000, PR China
| | - Yubo Cui
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College,Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, PR China
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| | - Jun Zhao
- Shenzhen Eye Hospital, School of Ophthalmology & Optometry Affiliated to Shenzhen University, Shenzhen, 518040, PR China; Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College,Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, PR China.
| |
Collapse
|