1
|
Li F, Yan W, Dong W, Chen Z, Chen Z. PNSC928, a plant-derived compound, specifically disrupts CtBP2-p300 interaction and reduces inflammation in mice with acute respiratory distress syndrome. Biol Direct 2024; 19:48. [PMID: 38902802 PMCID: PMC11191317 DOI: 10.1186/s13062-024-00491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Prior research has highlighted the involvement of a transcriptional complex comprising C-terminal binding protein 2 (CtBP2), histone acetyltransferase p300, and nuclear factor kappa B (NF-κB) in the transactivation of proinflammatory cytokine genes, contributing to inflammation in mice with acute respiratory distress syndrome (ARDS). Nonetheless, it remains uncertain whether the therapeutic targeting of the CtBP2-p300-NF-κB complex holds potential for ARDS suppression. METHODS An ARDS mouse model was established using lipopolysaccharide (LPS) exposure. RNA-Sequencing (RNA-Seq) was performed on ARDS mice and LPS-treated cells with CtBP2, p300, and p65 knockdown. Small molecules inhibiting the CtBP2-p300 interaction were identified through AlphaScreen. Gene and protein expression levels were quantified using RT-qPCR and immunoblots. Tissue damage was assessed via histological staining. KEY FINDINGS We elucidated the specific role of the CtBP2-p300-NF-κB complex in proinflammatory gene regulation. RNA-seq analysis in LPS-challenged ARDS mice and LPS-treated CtBP2-knockdown (CtBP2KD), p300KD, and p65KD cells revealed its significant impact on proinflammatory genes with minimal effects on other NF-κB targets. Commercial inhibitors for CtBP2, p300, or NF-κB exhibited moderate cytotoxicity in vitro and in vivo, affecting both proinflammatory genes and other targets. We identified a potent inhibitor, PNSC928, for the CtBP2-p300 interaction using AlphaScreen. PNSC928 treatment hindered the assembly of the CtBP2-p300-NF-κB complex, substantially downregulating proinflammatory cytokine gene expression without observable cytotoxicity in normal cells. In vivo administration of PNSC928 significantly reduced CtBP2-driven proinflammatory gene expression in ARDS mice, alleviating inflammation and lung injury, ultimately improving ARDS prognosis. CONCLUSION Our results position PNSC928 as a promising therapeutic candidate to specifically target the CtBP2-p300 interaction and mitigate inflammation in ARDS management.
Collapse
Affiliation(s)
- Fan Li
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Wenqing Yan
- Department of Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, Shanghai, 200065, China
- Department of Emergency, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, China
- Department of Emergency, Jiangxi Provincial People's Hospital, No. 92, Aiguo Road, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Weihua Dong
- Department of Emergency, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, China
- Department of Emergency, Jiangxi Provincial People's Hospital, No. 92, Aiguo Road, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Zhiping Chen
- Department of Emergency, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, China.
- Department of Emergency, Jiangxi Provincial People's Hospital, No. 92, Aiguo Road, Donghu District, Nanchang, Jiangxi, 330006, China.
| | - Zhi Chen
- Department of Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, Shanghai, 200065, China.
- Department of Emergency, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, China.
- Department of Emergency, Jiangxi Provincial People's Hospital, No. 92, Aiguo Road, Donghu District, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
2
|
Picavet LW, Samat AAK, Calis J, Nijhuis L, Scholman R, Mokry M, Tough DF, Prinjha RK, Vastert SJ, van Loosdregt J. CBP/P300 Inhibition Impairs CD4+ T Cell Activation: Implications for Autoimmune Disorders. Biomedicines 2024; 12:1344. [PMID: 38927552 PMCID: PMC11202127 DOI: 10.3390/biomedicines12061344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
T cell activation is critical for an effective immune response against pathogens. However, dysregulation contributes to the pathogenesis of autoimmune diseases, including Juvenile Idiopathic Arthritis (JIA). The molecular mechanisms underlying T cell activation are still incompletely understood. T cell activation promotes the acetylation of histone 3 at Lysine 27 (H3K27ac) at enhancer and promoter regions of proinflammatory cytokines, thereby increasing the expression of these genes which is essential for T cell function. Co-activators E1A binding protein P300 (P300) and CREB binding protein (CBP), collectively known as P300/CBP, are essential to facilitate H3K27 acetylation. Presently, the role of P300/CBP in human CD4+ T cells activation remains incompletely understood. To assess the function of P300/CBP in T cell activation and autoimmune disease, we utilized iCBP112, a selective inhibitor of P300/CBP, in T cells obtained from healthy controls and JIA patients. Treatment with iCBP112 suppressed T cell activation and cytokine signaling pathways, leading to reduced expression of many proinflammatory cytokines, including IL-2, IFN-γ, IL-4, and IL-17A. Moreover, P300/CBP inhibition in T cells derived from the inflamed synovium of JIA patients resulted in decreased expression of similar pathways and preferentially suppressed the expression of disease-associated genes. This study underscores the regulatory role of P300/CBP in regulating gene expression during T cell activation while offering potential insights into the pathogenesis of autoimmune diseases. Our findings indicate that P300/CBP inhibition could potentially be leveraged for the treatment of autoimmune diseases such as JIA in the future.
Collapse
Affiliation(s)
- Lucas Wilhelmus Picavet
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (A.A.K.S.); (J.C.); (L.N.); (R.S.); (S.J.V.)
| | - Anoushka A. K. Samat
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (A.A.K.S.); (J.C.); (L.N.); (R.S.); (S.J.V.)
| | - Jorg Calis
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (A.A.K.S.); (J.C.); (L.N.); (R.S.); (S.J.V.)
| | - Lotte Nijhuis
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (A.A.K.S.); (J.C.); (L.N.); (R.S.); (S.J.V.)
| | - Rianne Scholman
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (A.A.K.S.); (J.C.); (L.N.); (R.S.); (S.J.V.)
| | - Michal Mokry
- Department of Experimental Cardiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - David F. Tough
- Immunology Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK; (D.F.T.); (R.K.P.)
| | - Rabinder K. Prinjha
- Immunology Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK; (D.F.T.); (R.K.P.)
| | - Sebastiaan J. Vastert
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (A.A.K.S.); (J.C.); (L.N.); (R.S.); (S.J.V.)
- Department of Pediatric Rheumatology and Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jorg van Loosdregt
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (A.A.K.S.); (J.C.); (L.N.); (R.S.); (S.J.V.)
| |
Collapse
|
3
|
Lei YH, Tang Q, Ni Y, Li CH, Luo P, Huang K, Chen X, Zhu YX, Wang NY. Design, synthesis and biological evaluation of new RNF126-based p300/CBP degraders. Bioorg Chem 2024; 148:107427. [PMID: 38728911 DOI: 10.1016/j.bioorg.2024.107427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Histone acetyltransferase CREB-binding protein (CBP) and its homologous protein p300 are key transcriptional activators that can activate oncogene transcription, which present promising targets for cancer therapy. Here, we designed and synthesized a series of p300/CBP targeted low molecular weight PROTACs by assembling the covalent ligand of RNF126 E3 ubiquitin ligase and the bromodomain ligand of the p300/CBP. The optimal molecule A8 could effectively degrade p300 and CBP through the ubiquitin-proteasome system in time- and concentration-dependent manners, with half-maximal degradation (DC50) concentrations of 208.35/454.35 nM and 82.24/79.45 nM for p300/CBP in MV4-11 and Molm13 cell lines after 72 h of treatment. And the degradation of p300/CBP by A8 is dependent on the ubiquitin-proteasome pathway and its simultaneous interactions with the target proteins and RNF126. A8 exhibits good antiproliferative activity in a series of p300/CBP-dependent cancer cells. It could transcriptionally inhibit the expression of c-Myc, induce cell cycle arrest in the G0/G1 phase and apoptosis in MV4-11 cells. This study thus provided us a new chemotype for the development of drug-like PROTACs targeting p300/CBP, which is expected to be applied in cancer therapy.
Collapse
Affiliation(s)
- Yan-Hua Lei
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Qing Tang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yang Ni
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Cai-Hua Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Peng Luo
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Kun Huang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xin Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yong-Xia Zhu
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology, Chengdu, China.
| | - Ning-Yu Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Gou P, Zhang W. Protein lysine acetyltransferase CBP/p300: A promising target for small molecules in cancer treatment. Biomed Pharmacother 2024; 171:116130. [PMID: 38215693 DOI: 10.1016/j.biopha.2024.116130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/14/2024] Open
Abstract
CBP and p300 are homologous proteins exhibiting remarkable structural and functional similarity. Both proteins function as acetyltransferase and coactivator, underscoring their significant roles in cellular processes. The function of histone acetyltransferases is to facilitate the release of DNA from nucleosomes and act as transcriptional co-activators to promote gene transcription. Transcription factors recruit CBP/p300 by co-condensation and induce transcriptional bursting. Disruption of CBP or p300 functions is associated with different diseases, especially cancer, which can result from either loss of function or gain of function. CBP and p300 are multidomain proteins containing HAT (histone acetyltransferase) and BRD (bromodomain) domains, which perform acetyltransferase activity and maintenance of HAT signaling, respectively. Inhibitors targeting HAT and BRD have been explored for decades, and some BRD inhibitors have been evaluated in clinical trials for treating hematologic malignancies or advanced solid tumors. Here, we review the development and application of CBP/p300 inhibitors. Several inhibitors have been evaluated in vivo, exhibiting notable potency but limited selectivity. Exploring these inhibitors emphasizes the promise of targeting CBP and p300 with small molecules in cancer therapy.
Collapse
Affiliation(s)
- Panhong Gou
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenchao Zhang
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Krošel M, Gabathuler M, Moser L, Maciukiewicz M, Züllig T, Seifritz T, Tomšič M, Distler O, Ospelt C, Klein K. The histone acetyl transferases CBP and p300 regulate stress response pathways in synovial fibroblasts at transcriptional and functional levels. Sci Rep 2023; 13:17112. [PMID: 37816914 PMCID: PMC10564874 DOI: 10.1038/s41598-023-44412-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/08/2023] [Indexed: 10/12/2023] Open
Abstract
The activation of stress response pathways in synovial fibroblasts (SF) is a hallmark of rheumatoid arthritis (RA). CBP and p300 are two highly homologous histone acetyl transferases and writers of activating histone 3 lysine 27 acetylation (H3K27ac) marks. Furthermore, they serve as co-factors for transcription factors and acetylate many non-histone proteins. Here we showed that p300 but not CBP protein expression was down regulated by TNF and 4-hydroxynonenal, two factors that mimic inflammation and oxidative stress in the synovial microenvironment. We used existing RNA-sequencing data sets as a basis for a further in-depth investigation of individual functions of CBP and p300 in regulating different stress response pathways in SF. Pathway enrichment analysis pointed to a profound role of CBP and/ or p300 in regulating stress response-related gene expression, with an enrichment of pathways associated with oxidative stress, hypoxia, autophagy and proteasome function. We silenced CBP or p300, and performed confirmatory experiments on transcriptome, protein and functional levels. We have identified some overlap of CBP and p300 target genes in the oxidative stress response pathway, however, with several genes being regulated in opposite directions. The majority of stress response genes was regulated by p300, with a specific function of p300 in regulating hypoxia response genes and genes encoding proteasome subunits. Silencing of p300 suppressed proteasome enzymatic activities. CBP and p300 regulated autophagy on transcriptome and functional levels. Whereas CBP was indispensable for autophagy synthesis, silencing of p300 affected late-stage autophagy. In line with impaired autophagy and proteasome function, poly-ubiquitinated proteins accumulated after silencing of p300.
Collapse
Affiliation(s)
- Monika Krošel
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marcel Gabathuler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Larissa Moser
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Malgorzata Maciukiewicz
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of BioMedical Research, University of Bern, Murtenstrasse 28, 3008, Bern, Switzerland
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Thomas Züllig
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Tanja Seifritz
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matija Tomšič
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Caroline Ospelt
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kerstin Klein
- Department of BioMedical Research, University of Bern, Murtenstrasse 28, 3008, Bern, Switzerland.
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, Bern, Switzerland.
| |
Collapse
|
6
|
Krošel M, Moser L, Houtman M, Friščić J, Tomšič M, Distler O, Hoffmann MH, Ospelt C, Klein K. Bromodomain Protein Inhibitors Reorganize the Chromatin of Synovial Fibroblasts. Cells 2023; 12:cells12081149. [PMID: 37190058 DOI: 10.3390/cells12081149] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/28/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Bromodomain- and extra-terminal domain (BET) proteins are epigenetic reader proteins that regulate transcription of their target genes by binding to acetylated histone side chains. Small molecule inhibitors, such as I-BET151, have anti-inflammatory properties in fibroblast-like synoviocytes (FLS) and in animal models of arthritis. Here, we investigated whether BET inhibition can also affect the levels of histone modifications, a novel mechanism underlying BET protein inhibition. On the one hand, FLSs were treated with I-BET151 (1 µM) for 24 h in absence and presence of TNF. On the other hand, FLSs were washed with PBS after 48 h of I-BET151 treatment, and the effects were measured 5 days after I-BET151 treatment or after an additional 24 h stimulation with TNF (5 d + 24 h). Mass spectrometry analysis indicated that I-BET151 induced profound changes in histone modifications, with a global reduction in acetylation on different histone side chains 5 days after treatment. We confirmed changes on acetylated histone side chains in independent samples by Western blotting. I-BET151 treatment reduced mean TNF-induced levels of total acetylated histone 3 (acH3), H3K18ac, and H3K27ac. In line with these changes, the TNF-induced expression of BET protein target genes was suppressed 5 d after I-BET151 treatment. Our data indicate that BET inhibitors not only prevent the reading of acetylated histones but directly influence overall chromatin organization, in particular after stimulation with TNF.
Collapse
Affiliation(s)
- Monika Krošel
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Larissa Moser
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Miranda Houtman
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Jasna Friščić
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, 23562 Lübeck, Germany
| | - Matija Tomšič
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Markus H Hoffmann
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, 23562 Lübeck, Germany
| | - Caroline Ospelt
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Kerstin Klein
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, 3008 Bern, Switzerland
| |
Collapse
|
7
|
The p300/CBP Inhibitor A485 Normalizes Psoriatic Fibroblast Gene Expression In Vitro and Reduces Psoriasis-Like Skin Inflammation In Vivo. J Invest Dermatol 2023; 143:431-443.e19. [PMID: 36174717 DOI: 10.1016/j.jid.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease that often recurs at the same locations, indicating potential epigenetic changes in lesional skin cells. In this study, we discovered that fibroblasts isolated from psoriatic skin lesions retain an abnormal phenotype even after several passages in culture. Transcriptomic profiling revealed the upregulation of several genes, including the extra domain A splice variant of fibronectin and ITGA4 in psoriatic fibroblasts. A phenotypic library screening of small-molecule epigenetic modifier drugs revealed that selective CBP/p300 inhibitors were able to rescue the psoriatic fibroblast phenotype, reducing the expression levels of extra domain A splice variant of fibronectin and ITGA4. In the imiquimod-induced mouse model of psoriasis-like skin inflammation, systemic treatment with A485, a potent CBP/p300 blocker, significantly reduced skin inflammation, immune cell recruitment, and inflammatory cytokine production. Our findings indicate that epigenetic reprogramming might represent a new approach for the treatment and/or prevention of relapses of psoriasis.
Collapse
|