1
|
Liu L, Schultz SA, Saba A, Yang HS, Li A, Selkoe DJ, Chhatwal JP. The pathogenicity of PSEN2 variants is tied to Aβ production and homology to PSEN1. Alzheimers Dement 2024; 20:8867-8877. [PMID: 39559858 DOI: 10.1002/alz.14339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 11/20/2024]
Abstract
INTRODUCTION Though recognized as a potential cause of autosomal dominant Alzheimer's disease, the pathogenicity of many PSEN2 variants remains uncertain. We compared amyloid beta (Aβ) production across all missense PSEN2 variants in the AlzForum database and, when possible, to corresponding PSEN1 variants. METHODS We expressed 74 PSEN2 variants, 21 of which had known, homologous PSEN1 pathogenic variants with the same amino acid substitution, in HEK293 cells lacking presenilin 1/2. Aβ production was compared to age at symptom onset (AAO) and between PSEN1/2 homologs. RESULTS Aβ42/40 and Aβ37/42 ratios correlated with AAO across all PSEN2 variants, strongly driven by the subset of PSEN2 variants with PSEN1 homologs. Aβ production across PSEN1/2 homologs was highly correlated. PSEN2 AAO correlated with AAO in PSEN1 homologs but was an average of 18.3 years later. DISCUSSION The existence of a PSEN1 homolog and patterns of Aβ production are important considerations in assessing the pathogenicity of previously reported and new PSEN2 variants. HIGHLIGHTS There were associations between the patterns of amyloid beta (Aβ) production across presenilin 2 (PSEN2) variants and age at symptom onset (AAO). PSEN2 variants for which there is a known, corresponding variant in presenilin 1 (PSEN1) are more likely to have abnormal Aβ production patterns that strongly correlate with AAO, compared to those that lack a known PSEN1 counterpart ("non-homologous PSEN2 variants"). Most PSEN2 variants lacking PSEN1 counterparts had Aβ42/40 ratios close to those of wild-type PSN2, arguing against their pathogenicity. Homologous PSEN1 and PSEN2 variants had correlated Aβ42/40 and Aβ37/42 ratios, indicating that the corresponding amino acid substitution in each presenilin may have largely similar biochemical effects on γ-secretase processivity.
Collapse
Affiliation(s)
- Lei Liu
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Stephanie A Schultz
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Adriana Saba
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Hyun-Sik Yang
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Amy Li
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Dennis J Selkoe
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Jasmeer P Chhatwal
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Arafi P, Devkota S, Williams E, Maesako M, Wolfe MS. Alzheimer-mutant γ-secretase complexes stall amyloid β-peptide production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610520. [PMID: 39257787 PMCID: PMC11383658 DOI: 10.1101/2024.08.30.610520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Missense mutations in the amyloid precursor protein (APP) and presenilin-1 (PSEN1) cause early-onset familial Alzheimer's disease (FAD) and alter proteolytic production of secreted 38-to-43-residue amyloid β-peptides (Aβ) by the PSEN1-containing γ-secretase complex, ostensibly supporting the amyloid hypothesis of pathogenesis. However, proteolysis of APP substrate by γ-secretase is processive, involving initial endoproteolysis to produce long Aβ peptides of 48 or 49 residues followed by carboxypeptidase trimming in mostly tripeptide increments. We recently reported evidence that FAD mutations in APP and PSEN1 cause deficiencies in early steps in processive proteolysis of APP substrate C99 and that this results from stalled γ-secretase enzyme-substrate and/or enzyme-intermediate complexes. These stalled complexes triggered synaptic degeneration in a C. elegans model of FAD independently of Aβ production. Here we conducted full quantitative analysis of all proteolytic events on APP substrate by γ-secretase with six additional PSEN1 FAD mutations and found that all six are deficient in multiple processing steps. However, only one of these (F386S) was deficient in certain trimming steps but not in endoproteolysis. Fluorescence lifetime imaging microscopy in intact cells revealed that all six PSEN1 FAD mutations lead to stalled γ-secretase enzyme-substrate/intermediate complexes. The F386S mutation, however, does so only in Aβ-rich regions of the cells, not in C99-rich regions, consistent with the deficiencies of this mutant enzyme only in trimming of Aβ intermediates. These findings provide further evidence that FAD mutations lead to stalled and stabilized γ-secretase enzyme-substrate and/or enzyme-intermediate complexes and are consistent with the stalled process rather than the products of γ-secretase proteolysis as the pathogenic trigger.
Collapse
Affiliation(s)
- Parnian Arafi
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, USA
| | - Sujan Devkota
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, USA
| | - Emily Williams
- Alzheimer Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Masato Maesako
- Alzheimer Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael S Wolfe
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
3
|
Schultz SA, Liu L, Schultz AP, Fitzpatrick CD, Levin R, Bellier JP, Shirzadi Z, Joseph-Mathurin N, Chen CD, Benzinger TLS, Day GS, Farlow MR, Gordon BA, Hassenstab JJ, Jack CR, Jucker M, Karch CM, Lee JH, Levin J, Perrin RJ, Schofield PR, Xiong C, Johnson KA, McDade E, Bateman RJ, Sperling RA, Selkoe DJ, Chhatwal JP. γ-Secretase activity, clinical features, and biomarkers of autosomal dominant Alzheimer's disease: cross-sectional and longitudinal analysis of the Dominantly Inherited Alzheimer Network observational study (DIAN-OBS). Lancet Neurol 2024; 23:913-924. [PMID: 39074479 DOI: 10.1016/s1474-4422(24)00236-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/26/2024] [Accepted: 05/28/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Genetic variants that cause autosomal dominant Alzheimer's disease are highly penetrant but vary substantially regarding age at symptom onset (AAO), rates of cognitive decline, and biomarker changes. Most pathogenic variants that cause autosomal dominant Alzheimer's disease are in presenilin 1 (PSEN1), which encodes the catalytic core of γ-secretase, an enzyme complex that is crucial in production of amyloid β. We aimed to investigate whether the heterogeneity in AAO and biomarker trajectories in carriers of PSEN1 pathogenic variants could be predicted on the basis of the effects of individual PSEN1 variants on γ-secretase activity and amyloid β production. METHODS For this cross-sectional and longitudinal analysis, we used data from participants enrolled in the Dominantly Inherited Alzheimer Network observational study (DIAN-OBS) via the DIAN-OBS data freeze version 15 (data collected between Feb 29, 2008, and June 30, 2020). The data freeze included data from 20 study sites in research institutions, universities, hospitals, and clinics across Europe, North and South America, Asia, and Oceania. We included individuals with PSEN1 pathogenic variants for whom relevant genetic, clinical, imaging, and CSF data were available. PSEN1 pathogenic variants were characterised via genetically modified PSEN1 and PSEN2 double-knockout human embryonic kidney 293T cells and immunoassays for Aβ37, Aβ38, Aβ40, Aβ42, and Aβ43. A summary measure of γ-secretase activity (γ-secretase composite [GSC]) was calculated for each variant and compared with clinical history-derived AAO using correlation analyses. We used linear mixed-effect models to assess associations between GSC scores and multimodal-biomarker and clinical data from DIAN-OBS. We used separate models to assess associations with Clinical Dementia Rating Sum of Boxes (CDR-SB), Mini-Mental State Examination (MMSE), and Wechsler Memory Scale-Revised (WMS-R) Logical Memory Delayed Recall, [11C]Pittsburgh compound B (PiB)-PET and brain glucose metabolism using [18F] fluorodeoxyglucose (FDG)-PET, CSF Aβ42-to-Aβ40 ratio (Aβ42/40), CSF log10 (phosphorylated tau 181), CSF log10 (phosphorylated tau 217), and MRI-based hippocampal volume. FINDINGS Data were included from 190 people carrying PSEN1 pathogenic variants, among whom median age was 39·0 years (IQR 32·0 to 48·0) and AAO was 44·5 years (40·6 to 51·4). 109 (57%) of 190 carriers were female and 81 (43%) were male. Lower GSC values (ie, lower γ-secretase activity than wild-type PSEN1) were associated with earlier AAO (r=0·58; p<0·0001). GSC was associated with MMSE (β=0·08, SE 0·03; p=0·0043), CDR-SB (-0·05, 0·02; p=0·0027), and WMS-R Logical Memory Delayed Recall scores (0·09, 0·02; p=0·0006). Lower GSC values were associated with faster increase in PiB-PET signal (p=0·0054), more rapid decreases in hippocampal volume (4·19, 0·77; p<0·0001), MMSE (0·02, 0·01; p=0·0020), and WMS-R Logical Memory Delayed Recall (0·004, 0·001; p=0·0003). INTERPRETATION Our findings suggest that clinical heterogeneity in people with autosomal dominant Alzheimer's disease can be at least partly explained by different effects of PSEN1 variants on γ-secretase activity and amyloid β production. They support targeting γ-secretase as a therapeutic approach and suggest that cell-based models could be used to improve prediction of symptom onset. FUNDING US National Institute on Aging, Alzheimer's Association, German Center for Neurodegenerative Diseases, Raul Carrea Institute for Neurological Research, Japan Agency for Medical Research and Development, Korea Health Industry Development Institute, South Korean Ministry of Health and Welfare, South Korean Ministry of Science and ICT, and Spanish Institute of Health Carlos III.
Collapse
Affiliation(s)
- Stephanie A Schultz
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Medical School, Harvard University, Boston, MA, USA
| | - Lei Liu
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Boston, MA, USA
| | - Aaron P Schultz
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Medical School, Harvard University, Boston, MA, USA
| | - Colleen D Fitzpatrick
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Medical School, Harvard University, Boston, MA, USA
| | - Raina Levin
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Medical School, Harvard University, Boston, MA, USA
| | - Jean-Pierre Bellier
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Boston, MA, USA
| | - Zahra Shirzadi
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Medical School, Harvard University, Boston, MA, USA; Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Charles D Chen
- Mallinckrodt Institute of Radiology, Washington University, St Louis, MO, USA
| | | | - Gregory S Day
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Martin R Farlow
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| | - Brian A Gordon
- Mallinckrodt Institute of Radiology, Washington University, St Louis, MO, USA
| | | | | | - Mathias Jucker
- German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Celeste M Karch
- Department of Psychiatry, Washington University, St Louis, MO, USA
| | - Jae-Hong Lee
- Department of Neurology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea
| | - Johannes Levin
- German Center for Neurodegenerative Diseases, Munich, Germany; Department of Neurology, Ludwig Maximilian University of Munich, Munich, Germany; Munich Cluster for Systems Neurology, Munich, Germany
| | - Richard J Perrin
- Department of Psychiatry, Washington University, St Louis, MO, USA; Department of Pathology and Immunology, Washington University, St Louis, MO, USA
| | - Peter R Schofield
- Neuroscience Research Australia, Randwick, NSW, Australia; School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Chengjie Xiong
- Division of Biostatistics, Washington University, St Louis, MO, USA
| | - Keith A Johnson
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Medical School, Harvard University, Boston, MA, USA
| | - Eric McDade
- Department of Neurology, Washington University, St Louis, MO, USA
| | | | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Medical School, Harvard University, Boston, MA, USA; Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Dennis J Selkoe
- Department of Neurology, Medical School, Harvard University, Boston, MA, USA; Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Boston, MA, USA
| | - Jasmeer P Chhatwal
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Medical School, Harvard University, Boston, MA, USA; Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Boston, MA, USA.
| |
Collapse
|
4
|
Liu L, Schultz SA, Saba A, Yang HS, Li A, Selkoe DJ, Chhatwal JP. The pathogenicity of PSEN2 variants is tied to Aβ production and homology to PSEN1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.22.600217. [PMID: 38979391 PMCID: PMC11230249 DOI: 10.1101/2024.06.22.600217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
INTRODUCTION Though recognized as a potential cause of Autosomal Dominant Alzheimer's Disease, the pathogenicity of many PSEN2 variants remains uncertain. We compared Aβ production across all missense PSEN2 variants in the Alzforum database and, when possible, to corresponding PSEN1 variants. METHODS We expressed 74 PSEN2 variants, 21 of which had homologous PSEN1 variants with the same amino acid substitution, in HEK293 cells lacking PSN1/2. Aβ production was compared to age at symptom onset (AAO) and between homologous PSEN1/2 variants. RESULTS Aβ42/40 and Aβ37/42 ratios were associated with AAO across PSEN2 variants, strongly driven by PSEN2 variants with PSEN1 homologs. PSEN2 AAO was 18.3 years later compared to PSEN1 homologs. Aβ ratios from PSEN1 / 2 homologs were highly correlated, suggesting a similar mechanism of γ-secretase dysfunction. DISCUSSION The existence of a PSEN1 homolog and patterns of Aβ production are important considerations in assessing the pathogenicity of previously-reported and new PSEN2 variants.
Collapse
|
5
|
Guzmán-Ocampo DC, Aguayo-Ortiz R, Dominguez L. Understanding the Modulatory Role of E2012 on the γ-Secretase-Substrate Interaction. J Chem Inf Model 2024; 64:3855-3864. [PMID: 38623052 DOI: 10.1021/acs.jcim.3c01993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Allosteric modulation plays a critical role in enzyme functionality and requires a deep understanding of the interactions between the active and allosteric sites. γ-Secretase (GS) is a key therapeutic target in the treatment of Alzheimer's disease (AD), through its role in the synthesis of amyloid β peptides that accumulate in AD patients. This study explores the structure and dynamic effects of GS modulation by E2012 binding, employing well-tempered metadynamics and conventional molecular dynamics simulations across three binding scenarios: (1) GS enzyme with and without L458 inhibitor, (2) the GS-substrate complex together with the modulator E2012 in two different binding modes, and (3) E2012 interacting with a C99 substrate fragment. Our findings reveal that the presence of L458 induces conformational changes that contribute to stabilization of the GS enzyme dynamics, previously reported as a key factor that allowed the resolution of the cryo-EM structure and the enhanced binding of E2012. Furthermore, we identified the most favorable binding site for E2012 within the GS-substrate complex, uncovering significant modulatory effects and a complex network of interactions that influence the position of the substrate for catalysis. In addition, we explore a potential substrate-modulator binding before the formation of the enzyme-substrate complex. The insights gained from our study emphasize the importance of these interactions in the development of potential therapeutic interventions that target the functionality of the GS enzyme in AD.
Collapse
Affiliation(s)
- Dulce C Guzmán-Ocampo
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Rodrigo Aguayo-Ortiz
- Departamento de Farmacia, Facultad de Química,Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Laura Dominguez
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| |
Collapse
|
6
|
Selkoe DJ. The advent of Alzheimer treatments will change the trajectory of human aging. NATURE AGING 2024; 4:453-463. [PMID: 38641654 DOI: 10.1038/s43587-024-00611-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/08/2024] [Indexed: 04/21/2024]
Abstract
Slowing neurodegenerative disorders of late life has lagged behind progress on other chronic diseases. But advances in two areas, biochemical pathology and human genetics, have now identified early pathogenic events, enabling molecular hypotheses and disease-modifying treatments. A salient example is the discovery that antibodies to amyloid ß-protein, long debated as a causative factor in Alzheimer's disease (AD), clear amyloid plaques, decrease levels of abnormal tau proteins and slow cognitive decline. Approval of amyloid antibodies as the first disease-modifying treatments means a gradually rising fraction of the world's estimated 60 million people with symptomatic disease may decline less or even stabilize. Society is entering an era in which the unchecked devastation of AD is no longer inevitable. This Perspective considers the impact of slowing AD and other neurodegenerative disorders on the trajectory of aging, allowing people to survive into late life with less functional decline. The implications of this moment for medicine and society are profound.
Collapse
Affiliation(s)
- Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases Brigham and Women's Hospital Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Devkota S, Zhou R, Nagarajan V, Maesako M, Do H, Noorani A, Overmeyer C, Bhattarai S, Douglas JT, Saraf A, Miao Y, Ackley BD, Shi Y, Wolfe MS. Familial Alzheimer mutations stabilize synaptotoxic γ-secretase-substrate complexes. Cell Rep 2024; 43:113761. [PMID: 38349793 PMCID: PMC10941010 DOI: 10.1016/j.celrep.2024.113761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/19/2023] [Accepted: 01/24/2024] [Indexed: 02/15/2024] Open
Abstract
Mutations that cause familial Alzheimer's disease (FAD) are found in amyloid precursor protein (APP) and presenilin, the catalytic component of γ-secretase, that together produce amyloid β-peptide (Aβ). Nevertheless, whether Aβ is the primary disease driver remains controversial. We report here that FAD mutations disrupt initial proteolytic events in the multistep processing of APP substrate C99 by γ-secretase. Cryoelectron microscopy reveals that a substrate mimetic traps γ-secretase during the transition state, and this structure aligns with activated enzyme-substrate complex captured by molecular dynamics simulations. In silico simulations and in cellulo fluorescence microscopy support stabilization of enzyme-substrate complexes by FAD mutations. Neuronal expression of C99 and/or presenilin-1 in Caenorhabditis elegans leads to synaptic loss only with FAD-mutant transgenes. Designed mutations that stabilize the enzyme-substrate complex and block Aβ production likewise led to synaptic loss. Collectively, these findings implicate the stalled process-not the products-of γ-secretase cleavage of substrates in FAD pathogenesis.
Collapse
Affiliation(s)
- Sujan Devkota
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, USA
| | - Rui Zhou
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | | | - Masato Maesako
- Alzheimer Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hung Do
- Center for Computational Biology, University of Kansas, Lawrence, KS, USA
| | - Arshad Noorani
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, USA
| | - Caitlin Overmeyer
- Graduate Program in Neurosciences, University of Kansas, Lawrence, KS, USA
| | - Sanjay Bhattarai
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, USA
| | - Justin T Douglas
- Nuclear Magnetic Resonance Core Lab, University of Kansas, Lawrence, KS, USA
| | - Anita Saraf
- Mass Spectrometry and Analytical Proteomic Laboratory, University of Kansas, Lawrence, KS, USA
| | - Yinglong Miao
- Center for Computational Biology, University of Kansas, Lawrence, KS, USA; Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Brian D Ackley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Yigong Shi
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Westlake Laboratory of Life Science and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, and Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Michael S Wolfe
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, USA; Graduate Program in Neurosciences, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
8
|
Chen J, Chen JS, Li S, Zhang F, Deng J, Zeng LH, Tan J. Amyloid Precursor Protein: A Regulatory Hub in Alzheimer's Disease. Aging Dis 2024; 15:201-225. [PMID: 37307834 PMCID: PMC10796103 DOI: 10.14336/ad.2023.0308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/08/2023] [Indexed: 06/14/2023] Open
Abstract
Decades of research have demonstrated an incontrovertible role of amyloid-β (Aβ) in the etiology of Alzheimer's disease (AD). However, the overemphasis on the pathological impacts of Aβ may obscure the role of its metabolic precursor, amyloid precursor protein (APP), as a significant hub in the occurrence and progression of AD. The complicated enzymatic processing, ubiquitous receptor-like properties, and abundant expression of APP in the brain, as well as its close links with systemic metabolism, mitochondrial function and neuroinflammation, imply that APP plays multifaceted roles in AD. In this review, we briefly describe the evolutionarily conserved biological characteristics of APP, including its structure, functions and enzymatic processing. We also discuss the possible involvement of APP and its enzymatic metabolites in AD, both detrimental and beneficial. Finally, we describe pharmacological agents or genetic approaches with the capability to reduce APP expression or inhibit its cellular internalization, which can ameliorate multiple aspects of AD pathologies and halt disease progression. These approaches provide a basis for further drug development to combat this terrible disease.
Collapse
Affiliation(s)
- Jiang Chen
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Jun-Sheng Chen
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Song Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Fengning Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Jie Deng
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Jun Tan
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Chen SY, Koch M, Chávez-Gutiérrez L, Zacharias M. How Modulator Binding at the Amyloidβ-γ-Secretase Interface Enhances Substrate Binding and Attenuates Membrane Distortion. J Med Chem 2023; 66:16772-16782. [PMID: 38059872 DOI: 10.1021/acs.jmedchem.3c01480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Inhibition of γ-secretase, an intramembrane protease, to reduce secretion of Amyloid-β (Aβ) peptides has been considered for treating Alzheimer's disease. However, γ-secretase inhibitors suffer from severe side effects. As an alternative, γ-secretase modulators (GSM) reduce the generation of toxic peptides by enhancing the cleavage processivity without diminishing the enzyme activity. Starting from a known γ-secretase structure without substrate but in complex with an E2012 GSM, we generated a structural model that included a bound Aβ43 peptide and studied interactions among enzyme, substrate, GSM, and lipids. Our result suggests that E2012 binding at the enzyme-substrate-membrane interface attenuates the membrane distortion by shielding the substrate-membrane interaction. The model predicts that the E2012 modulation is charge-dependent and explains the preserved hydrogen acceptor and the aromatic ring observed in many imidazole-based GSM. Predicted effects of γ-secretase mutations on E2012 modulation were confirmed experimentally. We anticipate that the study will facilitate the future development of effective GSMs.
Collapse
Affiliation(s)
- Shu-Yu Chen
- Center for Functional Protein Assemblies, Garching 85748, Germany
| | - Matthias Koch
- VIB/KU Leuven, VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium
| | | | - Martin Zacharias
- Center for Functional Protein Assemblies, Garching 85748, Germany
| |
Collapse
|
10
|
Do HN, Malvankar SR, Wolfe MS, Miao Y. Molecular Dynamics Activation of γ-Secretase for Cleavage of the Notch1 Substrate. ACS Chem Neurosci 2023; 14:4216-4226. [PMID: 37942767 PMCID: PMC10900880 DOI: 10.1021/acschemneuro.3c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
γ-Secretase is an intramembrane aspartyl protease complex that cleaves the transmembrane domain of over 150 peptide substrates, including amyloid precursor protein (APP) and the Notch family of receptors, via two conserved aspartates D257 and D385 in the presenilin-1 (PS1) catalytic subunit. However, while the activation of γ-secretase for cleavage of APP has been widely studied, the cleavage of Notch by γ-secretase remains poorly explored. Here, we combined Gaussian accelerated molecular dynamics (GaMD) simulations and mass spectrometry (MS) analysis of proteolytic products to present the first dynamic models for cleavage of Notch by γ-secretase. MS showed that γ-secretase cleaved the WT Notch at Notch residue G34, while cleavage of the L36F mutant Notch occurred at Notch residue C33. Initially, we prepared our simulation systems starting from the cryoEM structure of Notch-bound γ-secretase (PDB: 6IDF) and failed to capture the proper cleavages of WT and L36F Notch by γ-secretase. We then discovered an incorrect registry of the Notch substrate in the PS1 active site through alignment of the experimental structure of Notch-bound (PDB: 6IDF) and APP-bound γ-secretase (PDB: 6IYC). Every residue of the APP substrate was systematically mutated to the corresponding Notch residue to prepare a resolved model of Notch-bound γ-secretase complexes. GaMD simulations of the resolved model successfully captured γ-secretase activation for proper cleavages of both WT and L36F mutant Notch. Our findings presented here provided mechanistic insights into the structural dynamics and enzyme-substrate interactions required for γ-secretase activation for cleavage of Notch and other substrates.
Collapse
|
11
|
Barmaki H, Nourazarian A, Khaki-Khatibi F. Proteostasis and neurodegeneration: a closer look at autophagy in Alzheimer's disease. Front Aging Neurosci 2023; 15:1281338. [PMID: 38020769 PMCID: PMC10652403 DOI: 10.3389/fnagi.2023.1281338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of misfolded amyloid-beta and tau proteins. Autophagy acts as a proteostasis process to remove protein clumps, although it progressively weakens with aging and AD, thus facilitating the accumulation of toxic proteins and causing neurodegeneration. This review examines the impact of impaired autophagy on the progression of AD disease pathology. Under normal circumstances, autophagy removes abnormal proteins and damaged organelles, but any dysfunction in this process can lead to the exacerbation of amyloid and tau pathology, particularly in AD. There is increasing attention to therapeutic tactics to revitalize autophagy, including reduced caloric intake, autophagy-stimulating drugs, and genetic therapy. However, the translation of these strategies into clinical practice faces several hurdles. In summary, this review integrates the understanding of the intricate role of autophagy dysfunction in Alzheimer's disease progression and reinforces the promising prospects of autophagy as a beneficial target for treatments to modify the course of Alzheimer's disease.
Collapse
Affiliation(s)
- Haleh Barmaki
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Fatemeh Khaki-Khatibi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Schultz SA, Shirzadi Z, Schultz AP, Liu L, Fitzpatrick CD, McDade E, Barthelemy NR, Renton A, Esposito B, Joseph‐Mathurin N, Cruchaga C, Chen CD, Goate A, Allegri RF, Benzinger TLS, Berman S, Chui HC, Fagan AM, Farlow MR, Fox NC, Gordon BA, Day GS, Graff‐Radford NR, Hassenstab JJ, Hanseeuw BJ, Hofmann A, Jack CR, Jucker M, Karch CM, Koeppe RA, Lee J, Levey AI, Levin J, Martins RN, Mori H, Morris JC, Noble J, Perrin RJ, Rosa‐Neto P, Salloway SP, Sanchez‐Valle R, Schofield PR, Xiong C, Johnson KA, Bateman RJ, Sperling RA, Chhatwal JP. Location of pathogenic variants in PSEN1 impacts progression of cognitive, clinical, and neurodegenerative measures in autosomal-dominant Alzheimer's disease. Aging Cell 2023; 22:e13871. [PMID: 37291760 PMCID: PMC10410059 DOI: 10.1111/acel.13871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 06/10/2023] Open
Abstract
Although pathogenic variants in PSEN1 leading to autosomal-dominant Alzheimer disease (ADAD) are highly penetrant, substantial interindividual variability in the rates of cognitive decline and biomarker change are observed in ADAD. We hypothesized that this interindividual variability may be associated with the location of the pathogenic variant within PSEN1. PSEN1 pathogenic variant carriers participating in the Dominantly Inherited Alzheimer Network (DIAN) observational study were grouped based on whether the underlying variant affects a transmembrane (TM) or cytoplasmic (CY) protein domain within PSEN1. CY and TM carriers and variant non-carriers (NC) who completed clinical evaluation, multimodal neuroimaging, and lumbar puncture for collection of cerebrospinal fluid (CSF) as part of their participation in DIAN were included in this study. Linear mixed effects models were used to determine differences in clinical, cognitive, and biomarker measures between the NC, TM, and CY groups. While both the CY and TM groups were found to have similarly elevated Aβ compared to NC, TM carriers had greater cognitive impairment, smaller hippocampal volume, and elevated phosphorylated tau levels across the spectrum of pre-symptomatic and symptomatic phases of disease as compared to CY, using both cross-sectional and longitudinal data. As distinct portions of PSEN1 are differentially involved in APP processing by γ-secretase and the generation of toxic β-amyloid species, these results have important implications for understanding the pathobiology of ADAD and accounting for a substantial portion of the interindividual heterogeneity in ongoing ADAD clinical trials.
Collapse
Affiliation(s)
| | - Zahra Shirzadi
- Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Aaron P. Schultz
- Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Lei Liu
- Brigham and Women's HospitalBostonMassachusettsUSA
- Ann Romney Center for Neurologic DiseasesBostonMassachusettsUSA
| | | | - Eric McDade
- Washington University in St. Louis School of MedicineSt. LouisMissouriUSA
| | | | - Alan Renton
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Bianca Esposito
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Carlos Cruchaga
- Washington University in St. Louis School of MedicineSt. LouisMissouriUSA
| | - Charles D. Chen
- Washington University in St. Louis School of MedicineSt. LouisMissouriUSA
| | - Alison Goate
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | | | - Sarah Berman
- University of PittsburghPittsburghPennsylvaniaUSA
| | - Helena C. Chui
- Department of Neurology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Anne M. Fagan
- Washington University in St. Louis School of MedicineSt. LouisMissouriUSA
| | - Martin R. Farlow
- Indiana Alzheimer's Disease Research CenterIndianapolisIndianaUSA
| | - Nick C. Fox
- Dementia Research Centre & UK Dementia Research InstituteUCL Institute of NeurologyLondonUK
| | - Brian A. Gordon
- Washington University in St. Louis School of MedicineSt. LouisMissouriUSA
| | | | | | | | - Bernard J. Hanseeuw
- Institute of Neuroscience, UCLouvainBrusselsBelgium
- Gordon Center for Medical Imaging in the Radiology Department of MGHBostonMassachusettsUSA
| | - Anna Hofmann
- German Center for Neurodegenerative Diseases (DZNE)TuebingenGermany
| | | | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE)TuebingenGermany
| | - Celeste M. Karch
- Washington University in St. Louis School of MedicineSt. LouisMissouriUSA
| | | | - Jae‐Hong Lee
- Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Allan I. Levey
- Emory Goizueta Alzheimer's Disease Research CenterAtlantaGeorgiaUSA
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- Department of NeurologyLudwig‐Maximilians‐Universität MünchenMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | | | | | - John C. Morris
- Washington University in St. Louis School of MedicineSt. LouisMissouriUSA
| | | | - Richard J. Perrin
- Washington University in St. Louis School of MedicineSt. LouisMissouriUSA
| | - Pedro Rosa‐Neto
- Translational Neuroimaging Laboratory, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest‐de‐l'Île‐de‐Montréal; Department of Neurology and NeurosurgeryMcGill UniversityMontrealCanada
| | | | - Raquel Sanchez‐Valle
- Alzheimer's disease and other cognitive disorders Unit, Neurology Department, Hospital Clínic de BarcelonaInstitut d'Investigacions BiomediquesBarcelonaSpain
| | - Peter R. Schofield
- Neuroscience Research AustraliaRandwickNew South WalesAustralia
- School of Medical SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Chengjie Xiong
- Washington University in St. Louis School of MedicineSt. LouisMissouriUSA
| | - Keith A. Johnson
- Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Brigham and Women's HospitalBostonMassachusettsUSA
| | - Randall J. Bateman
- Washington University in St. Louis School of MedicineSt. LouisMissouriUSA
| | - Reisa A. Sperling
- Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Brigham and Women's HospitalBostonMassachusettsUSA
| | - Jasmeer P. Chhatwal
- Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Brigham and Women's HospitalBostonMassachusettsUSA
| | | |
Collapse
|
13
|
Yang Y, Bagyinszky E, An SSA. Presenilin-1 (PSEN1) Mutations: Clinical Phenotypes beyond Alzheimer's Disease. Int J Mol Sci 2023; 24:8417. [PMID: 37176125 PMCID: PMC10179041 DOI: 10.3390/ijms24098417] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Presenilin 1 (PSEN1) is a part of the gamma secretase complex with several interacting substrates, including amyloid precursor protein (APP), Notch, adhesion proteins and beta catenin. PSEN1 has been extensively studied in neurodegeneration, and more than 300 PSEN1 mutations have been discovered to date. In addition to the classical early onset Alzheimer's disease (EOAD) phenotypes, PSEN1 mutations were discovered in several atypical AD or non-AD phenotypes, such as frontotemporal dementia (FTD), Parkinson's disease (PD), dementia with Lewy bodies (DLB) or spastic paraparesis (SP). For example, Leu113Pro, Leu226Phe, Met233Leu and an Arg352 duplication were discovered in patients with FTD, while Pro436Gln, Arg278Gln and Pro284Leu mutations were also reported in patients with motor dysfunctions. Interestingly, PSEN1 mutations may also impact non-neurodegenerative phenotypes, including PSEN1 Pro242fs, which could cause acne inversa, while Asp333Gly was reported in a family with dilated cardiomyopathy. The phenotypic diversity suggests that PSEN1 may be responsible for atypical disease phenotypes or types of disease other than AD. Taken together, neurodegenerative diseases such as AD, PD, DLB and FTD may share several common hallmarks (cognitive and motor impairment, associated with abnormal protein aggregates). These findings suggested that PSEN1 may interact with risk modifiers, which may result in alternative disease phenotypes such as DLB or FTD phenotypes, or through less-dominant amyloid pathways. Next-generation sequencing and/or biomarker analysis may be essential in clearly differentiating the possible disease phenotypes and pathways associated with non-AD phenotypes.
Collapse
Affiliation(s)
- Youngsoon Yang
- Department of Neurology, Soonchunhyang University College of Medicine, Cheonan Hospital, Cheonan 31151, Republic of Korea;
| | - Eva Bagyinszky
- Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
14
|
Liu L, Lauro BM, He A, Lee H, Bhattarai S, Wolfe MS, Bennett DA, Karch CM, Young-Pearse T, Selkoe DJ. Identification of the Aβ37/42 peptide ratio in CSF as an improved Aβ biomarker for Alzheimer's disease. Alzheimers Dement 2023; 19:79-96. [PMID: 35278341 PMCID: PMC9464800 DOI: 10.1002/alz.12646] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Identifying CSF-based biomarkers for the β-amyloidosis that initiates Alzheimer's disease (AD) could provide inexpensive and dynamic tests to distinguish AD from normal aging and predict future cognitive decline. METHODS We developed immunoassays specifically detecting all C-terminal variants of secreted amyloid β-protein and identified a novel biomarker, the Aβ 37/42 ratio, that outperforms the canonical Aβ42/40 ratio as a means to evaluate the γ-secretase activity and brain Aβ accumulation. RESULTS We show that Aβ 37/42 can distinguish physiological and pathological status in (1) presenilin-1 mutant vs wild-type cultured cells, (2) AD vs control brain tissue, and (3) AD versus cognitively normal (CN) subjects in CSF, where 37/42 (AUC 0.9622) outperformed 42/40 (AUC 0.8651) in distinguishing CN from AD. DISCUSSION We conclude that the Aβ 37/42 ratio sensitively detects presenilin/γ-secretase dysfunction and better distinguishes CN from AD than Aβ42/40 in CSF. Measuring this novel ratio alongside promising phospho-tau analytes may provide highly discriminatory fluid biomarkers for AD.
Collapse
Affiliation(s)
- Lei Liu
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Bianca M. Lauro
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Amy He
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Hyo Lee
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Sanjay Bhattarai
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS USA
| | - Michael S. Wolfe
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center Rush University Medical Center, Chicago, IL USA
| | - Celeste M. Karch
- Department of Psychiatry, Washington University in St Louis, St. Louis, MO USA
- Hope Center for Neurologic Disorders, St. Louis, MO USA
| | - Tracy Young-Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | | | - Dennis J. Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
15
|
Hanbouch L, Schaack B, Kasri A, Fontaine G, Gkanatsiou E, Brinkmalm G, Camporesi E, Portelius E, Blennow K, Mourier G, Gilles N, Millan MJ, Marquer C, Zetterberg H, Boussicault L, Potier MC. Specific Mutations in the Cholesterol-Binding Site of APP Alter Its Processing and Favor the Production of Shorter, Less Toxic Aβ Peptides. Mol Neurobiol 2022; 59:7056-7073. [PMID: 36076005 PMCID: PMC9525381 DOI: 10.1007/s12035-022-03025-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/31/2022] [Indexed: 12/05/2022]
Abstract
Excess brain cholesterol is strongly implicated in the pathogenesis of Alzheimer's disease (AD). Here we evaluated how the presence of a cholesterol-binding site (CBS) in the transmembrane and juxtamembrane regions of the amyloid precursor protein (APP) regulates its processing. We generated nine point mutations in the APP gene, changing the charge and/or hydrophobicity of the amino-acids which were previously shown as part of the CBS. Most mutations triggered a reduction of amyloid-β peptides Aβ40 and Aβ42 secretion from transiently transfected HEK293T cells. Only the mutations at position 28 of Aβ in the APP sequence resulted in a concomitant significant increase in the production of shorter Aβ peptides. Mass spectrometry (MS) confirmed the predominance of Aβx-33 and Aβx-34 with the APPK28A mutant. The enzymatic activity of α-, β-, and γ-secretases remained unchanged in cells expressing all mutants. Similarly, subcellular localization of the mutants in early endosomes did not differ from the APPWT protein. A transient increase of plasma membrane cholesterol enhanced the production of Aβ40 and Aβ42 by APPWT, an effect absent in APPK28A mutant. Finally, WT but not CBS mutant Aβ derived peptides bound to cholesterol-rich exosomes. Collectively, the present data revealed a major role of juxtamembrane amino acids of the APP CBS in modulating the production of toxic Aβ species. More generally, they underpin the role of cholesterol in the pathophysiology of AD.
Collapse
Affiliation(s)
- Linda Hanbouch
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Béatrice Schaack
- Univ. Grenoble Alpes, CNRS, INP, TheRex Team, TIMC-IMAG, 38700, La Tronche, France
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38044, Grenoble, France
| | - Amal Kasri
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Gaëlle Fontaine
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Eleni Gkanatsiou
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
| | - Elena Camporesi
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
| | - Gilles Mourier
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
- Département Médicaments Et Technologies Pour La Santé (DMTS), Université Paris Saclay, CEA, INRAE, SIMoS, 91191, Gif-sur-Yvette, France
| | - Nicolas Gilles
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
- Département Médicaments Et Technologies Pour La Santé (DMTS), Université Paris Saclay, CEA, INRAE, SIMoS, 91191, Gif-sur-Yvette, France
| | - Mark J Millan
- Neuroscience Inflammation Thérapeutic Area, IDR Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
- Institute of Neuroscience and Psychology, College of Medicine, Vet and Life Sciences, Glasgow University, 62 Hillhead Street, Glasgow, G12 8QB, Scotland
| | - Catherine Marquer
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - Lydie Boussicault
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Marie-Claude Potier
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France.
| |
Collapse
|
16
|
Papadopoulos N, Suelves N, Perrin F, Vadukul DM, Vrancx C, Constantinescu SN, Kienlen-Campard P. Structural Determinant of β-Amyloid Formation: From Transmembrane Protein Dimerization to β-Amyloid Aggregates. Biomedicines 2022; 10:2753. [PMID: 36359274 PMCID: PMC9687742 DOI: 10.3390/biomedicines10112753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 10/03/2023] Open
Abstract
Most neurodegenerative diseases have the characteristics of protein folding disorders, i.e., they cause lesions to appear in vulnerable regions of the nervous system, corresponding to protein aggregates that progressively spread through the neuronal network as the symptoms progress. Alzheimer's disease is one of these diseases. It is characterized by two types of lesions: neurofibrillary tangles (NFTs) composed of tau proteins and senile plaques, formed essentially of amyloid peptides (Aβ). A combination of factors ranging from genetic mutations to age-related changes in the cellular context converge in this disease to accelerate Aβ deposition. Over the last two decades, numerous studies have attempted to elucidate how structural determinants of its precursor (APP) modify Aβ production, and to understand the processes leading to the formation of different Aβ aggregates, e.g., fibrils and oligomers. The synthesis proposed in this review indicates that the same motifs can control APP function and Aβ production essentially by regulating membrane protein dimerization, and subsequently Aβ aggregation processes. The distinct properties of these motifs and the cellular context regulate the APP conformation to trigger the transition to the amyloid pathology. This concept is critical to better decipher the patterns switching APP protein conformation from physiological to pathological and improve our understanding of the mechanisms underpinning the formation of amyloid fibrils that devastate neuronal functions.
Collapse
Affiliation(s)
- Nicolas Papadopoulos
- SIGN Unit, de Duve Institute, UCLouvain, 1200 Brussels, Belgium
- Ludwig Institute for Cancer Research Brussels, 1348 Brussels, Belgium
| | - Nuria Suelves
- Aging and Dementia Research Group, Cellular and Molecular (CEMO) Division, Institute of Neuroscience, UCLouvain, 1200 Brussels, Belgium
| | - Florian Perrin
- Memory Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Devkee M. Vadukul
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London SW7 2BX, UK
| | - Céline Vrancx
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
- Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Stefan N. Constantinescu
- SIGN Unit, de Duve Institute, UCLouvain, 1200 Brussels, Belgium
- Ludwig Institute for Cancer Research Brussels, 1348 Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, Oxford University, Oxford OX1 2JD, UK
| | - Pascal Kienlen-Campard
- Aging and Dementia Research Group, Cellular and Molecular (CEMO) Division, Institute of Neuroscience, UCLouvain, 1200 Brussels, Belgium
| |
Collapse
|
17
|
van der Linden RJ, Gerritsen JS, Liao M, Widomska J, Pearse RV, White FM, Franke B, Young-Pearse TL, Poelmans G. RNA-binding protein ELAVL4/HuD ameliorates Alzheimer's disease-related molecular changes in human iPSC-derived neurons. Prog Neurobiol 2022; 217:102316. [PMID: 35843356 PMCID: PMC9912016 DOI: 10.1016/j.pneurobio.2022.102316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/18/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
Abstract
The RNA binding protein ELAVL4/HuD regulates the translation and splicing of multiple Alzheimer's disease (AD) candidate genes. We generated ELAVL4 knockout (KO) human induced pluripotent stem cell-derived neurons to study the effect that ELAVL4 has on AD-related cellular phenotypes. ELAVL4 KO significantly increased the levels of specific APP isoforms and intracellular phosphorylated tau, molecular changes that are related to the pathological hallmarks of AD. Overexpression of ELAVL4 in wild-type neurons and rescue experiments in ELAVL4 KO cells showed opposite effects and also led to a reduction of the extracellular amyloid-beta (Aβ)42/40 ratio. All these observations were made in familial AD (fAD) and fAD-corrected neurons. To gain insight into the molecular cascades involved in neuronal ELAVL4 signaling, we conducted pathway and upstream regulator analyses of transcriptomic and proteomic data from the generated neurons. These analyses revealed that ELAVL4 affects multiple biological pathways linked to AD, including those involved in synaptic function, as well as gene expression downstream of APP and tau signaling. The analyses also suggest that ELAVL4 expression is regulated by insulin receptor-FOXO1 signaling in neurons. Taken together, ELAVL4 expression ameliorates AD-related molecular changes in neurons and affects multiple synaptic pathways, making it a promising target for novel drug development.
Collapse
Affiliation(s)
- Robert J van der Linden
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jacqueline S Gerritsen
- Koch Institute for Integrative Cancer Research; Center for Precision Cancer Medicine; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Meichen Liao
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joanna Widomska
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Richard V Pearse
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Forest M White
- Koch Institute for Integrative Cancer Research; Center for Precision Cancer Medicine; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands; Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Geert Poelmans
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
18
|
Genetics, Functions, and Clinical Impact of Presenilin-1 (PSEN1) Gene. Int J Mol Sci 2022; 23:ijms231810970. [PMID: 36142879 PMCID: PMC9504248 DOI: 10.3390/ijms231810970] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/29/2022] Open
Abstract
Presenilin-1 (PSEN1) has been verified as an important causative factor for early onset Alzheimer's disease (EOAD). PSEN1 is a part of γ-secretase, and in addition to amyloid precursor protein (APP) cleavage, it can also affect other processes, such as Notch signaling, β-cadherin processing, and calcium metabolism. Several motifs and residues have been identified in PSEN1, which may play a significant role in γ-secretase mechanisms, such as the WNF, GxGD, and PALP motifs. More than 300 mutations have been described in PSEN1; however, the clinical phenotypes related to these mutations may be diverse. In addition to classical EOAD, patients with PSEN1 mutations regularly present with atypical phenotypic symptoms, such as spasticity, seizures, and visual impairment. In vivo and in vitro studies were performed to verify the effect of PSEN1 mutations on EOAD. The pathogenic nature of PSEN1 mutations can be categorized according to the ACMG-AMP guidelines; however, some mutations could not be categorized because they were detected only in a single case, and their presence could not be confirmed in family members. Genetic modifiers, therefore, may play a critical role in the age of disease onset and clinical phenotypes of PSEN1 mutations. This review introduces the role of PSEN1 in γ-secretase, the clinical phenotypes related to its mutations, and possible significant residues of the protein.
Collapse
|
19
|
Petit D, Hitzenberger M, Koch M, Lismont S, Zoltowska KM, Enzlein T, Hopf C, Zacharias M, Chávez-Gutiérrez L. Enzyme-substrate interface targeting by imidazole-based γ-secretase modulators activates γ-secretase and stabilizes its interaction with APP. EMBO J 2022; 41:e111084. [PMID: 36121025 DOI: 10.15252/embj.2022111084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
Alzheimer's disease (AD) pathogenesis has been linked to the accumulation of longer, aggregation-prone amyloid β (Aβ) peptides in the brain. Γ-secretases generate Aβ peptides from the amyloid precursor protein (APP). Γ-secretase modulators (GSMs) promote the generation of shorter, less-amyloidogenic Aβs and have therapeutic potential. However, poorly defined drug-target interactions and mechanisms of action have hampered their therapeutic development. Here, we investigate the interactions between the imidazole-based GSM and its target γ-secretase-APP using experimental and in silico approaches. We map the GSM binding site to the enzyme-substrate interface, define a drug-binding mode that is consistent with functional and structural data, and provide molecular insights into the underlying mechanisms of action. In this respect, our analyses show that occupancy of a γ-secretase (sub)pocket, mediating binding of the modulator's imidazole moiety, is sufficient to trigger allosteric rearrangements in γ-secretase as well as stabilize enzyme-substrate interactions. Together, these findings may facilitate the rational design of new modulators of γ-secretase with improved pharmacological properties.
Collapse
Affiliation(s)
- Dieter Petit
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| | - Manuel Hitzenberger
- Center for Functional Protein Assemblies, Theoretical Biophysics (T38), Technical University of Munich, Garching, Germany
| | - Matthias Koch
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| | - Sam Lismont
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| | - Katarzyna Marta Zoltowska
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| | - Thomas Enzlein
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium.,Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Martin Zacharias
- Center for Functional Protein Assemblies, Theoretical Biophysics (T38), Technical University of Munich, Garching, Germany
| | - Lucía Chávez-Gutiérrez
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Liu L, Cai Y, Lauro BM, Meunier AL, Chhatwal J, Selkoe DJ. Generation and application of semi-synthetic p-Tau181 calibrator for immunoassay calibration. Biochem Biophys Res Commun 2022; 611:85-90. [PMID: 35483223 DOI: 10.1016/j.bbrc.2022.04.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/08/2022] [Accepted: 04/17/2022] [Indexed: 12/28/2022]
Abstract
Evidence suggests that plasma levels of tau protein phosphorylated at specific residues such as p-T181, p-T217, and p-T231 can be used as biomarkers for Alzheimer's disease (AD) diagnosis and prognosis. Accurate tools to calibrate immunoassays (calibrators) to precisely detect phosphorylated residues on tau protein will provide important gains in reliability and specificity. This study sought to establish a method to generate those accurate calibrators. We generated a semi-synthetic (chimeric) p-Tau181 calibrator by coupling a recombinant tau fragment (residues 1-174) with a synthetic peptide containing a single phosphorylated residue (p-T181) via thioester bond formation. The generation of a semi-synthetic protein containing both the N-terminal region of tau and the pT181 epitope was demonstrated by mobility shift assays using CBB staining and immunoblotting with N-terminal and pT181-specific antibodies. p-Tau 181 assays performed with the novel calibrator on multiple platforms revealed LLoQs as low as 0.14 pg/ml. Our facile and inexpensive method generates a semi-synthetic tau pT181 calibrator suitable for different immunoassay platforms. The same method can easily be adapted to other AD-relevant phospho-epitopes such as pT217 and pT231.
Collapse
Affiliation(s)
- Lei Liu
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Yuqi Cai
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Bianca M Lauro
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Angela L Meunier
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jasmeer Chhatwal
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
21
|
Wolfe MS, Miao Y. Structure and mechanism of the γ-secretase intramembrane protease complex. Curr Opin Struct Biol 2022; 74:102373. [PMID: 35461161 DOI: 10.1016/j.sbi.2022.102373] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 12/25/2022]
Abstract
γ-Secretase is a membrane protein complex that proteolyzes within the transmembrane domain of >100 substrates, including those derived from the amyloid precursor protein and the Notch family of cell surface receptors. The nine-transmembrane presenilin is the catalytic component of this aspartyl protease complex that carries out hydrolysis in the lipid bilayer. Advances in cryoelectron microscopy have led to the elucidation of the structure of the γ-secretase complex at atomic resolution. Recently, structures of the enzyme have been determined with bound APP- or Notch-derived substrates, providing insight into the nature of substrate recognition and processing. Molecular dynamics simulations of substrate-bound enzymes suggest dynamic mechanisms of intramembrane proteolysis. Structures of the enzyme bound to small-molecule inhibitors and modulators have also been solved, setting the stage for rational structure-based drug discovery targeting γ-secretase.
Collapse
Affiliation(s)
- Michael S Wolfe
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, 66045, USA.
| | - Yinglong Miao
- Center for Computational Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA. https://twitter.com/yinglongmiao
| |
Collapse
|
22
|
Luo JE, Li YM. Turning the tide on Alzheimer's disease: modulation of γ-secretase. Cell Biosci 2022; 12:2. [PMID: 34983641 PMCID: PMC8725520 DOI: 10.1186/s13578-021-00738-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of neurodegenerative disorder. Amyloid-beta (Aβ) plaques are integral to the "amyloid hypothesis," which states that the accumulation of Aβ peptides triggers a cascade of pathological events leading to neurodegeneration and ultimately AD. While the FDA approved aducanumab, the first Aβ-targeted therapy, multiple safe and effective treatments will be needed to target the complex pathologies of AD. γ-Secretase is an intramembrane aspartyl protease that is critical for the generation of Aβ peptides. Activity and specificity of γ-secretase are regulated by both obligatory subunits and modulatory proteins. Due to its complex structure and function and early clinical failures with pan inhibitors, γ-secretase has been a challenging drug target for AD. γ-secretase modulators, however, have dramatically shifted the approach to targeting γ-secretase. Here we review γ-secretase and small molecule modulators, from the initial characterization of a subset of NSAIDs to the most recent clinical candidates. We also discuss the chemical biology of γ-secretase, in which small molecule probes enabled structural and functional insights into γ-secretase before the emergence of high-resolution structural studies. Finally, we discuss the recent crystal structures of γ-secretase, which have provided valuable perspectives on substrate recognition and molecular mechanisms of small molecules. We conclude that modulation of γ-secretase will be part of a new wave of AD therapeutics.
Collapse
Affiliation(s)
- Joanna E Luo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. .,Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, 10021, USA.
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. .,Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, 10021, USA.
| |
Collapse
|
23
|
Bhattarai S, Liu L, Wolfe MS. Discovery of aryl aminothiazole γ-secretase modulators with novel effects on amyloid β-peptide production. Bioorg Med Chem Lett 2021; 54:128446. [PMID: 34767913 DOI: 10.1016/j.bmcl.2021.128446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022]
Abstract
A series of analogs based on a prototype aryl aminothiazole γ-secretase modulator (GSM) were synthesized and tested for their effects on the profile of 37-to-42-residue amyloid β-peptides (Aβ), generated through processive proteolysis of precursor protein substrate by γ-secretase. Certain substitutions on the terminal aryl D ring resulted in an altered profile of Aβ production compared to that seen with the parent molecule. Small structural changes led to concentration-dependent increases in Aβ37 and Aβ38 production without parallel decreases in their precursors Aβ40 and Aβ42, respectively. The new compounds therefore apparently also stimulate carboxypeptidase trimming of Aβ peptides ≥ 43 residues, providing novel chemical tools for mechanistic studies of processive proteolysis by γ-secretase.
Collapse
Affiliation(s)
- Sanjay Bhattarai
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Lei Liu
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael S Wolfe
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
24
|
Lagomarsino VN, Pearse RV, Liu L, Hsieh YC, Fernandez MA, Vinton EA, Paull D, Felsky D, Tasaki S, Gaiteri C, Vardarajan B, Lee H, Muratore CR, Benoit CR, Chou V, Fancher SB, He A, Merchant JP, Duong DM, Martinez H, Zhou M, Bah F, Vicent MA, Stricker JMS, Xu J, Dammer EB, Levey AI, Chibnik LB, Menon V, Seyfried NT, De Jager PL, Noggle S, Selkoe DJ, Bennett DA, Young-Pearse TL. Stem cell-derived neurons reflect features of protein networks, neuropathology, and cognitive outcome of their aged human donors. Neuron 2021; 109:3402-3420.e9. [PMID: 34473944 DOI: 10.1016/j.neuron.2021.08.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/30/2021] [Accepted: 08/05/2021] [Indexed: 11/26/2022]
Abstract
We have generated a controlled and manipulable resource that captures genetic risk for Alzheimer's disease: iPSC lines from 53 individuals coupled with RNA and proteomic profiling of both iPSC-derived neurons and brain tissue of the same individuals. Data collected for each person include genome sequencing, longitudinal cognitive scores, and quantitative neuropathology. The utility of this resource is exemplified here by analyses of neurons derived from these lines, revealing significant associations between specific Aβ and tau species and the levels of plaque and tangle deposition in the brain and, more importantly, with the trajectory of cognitive decline. Proteins and networks are identified that are associated with AD phenotypes in iPSC neurons, and relevant associations are validated in brain. The data presented establish this iPSC collection as a resource for investigating person-specific processes in the brain that can aid in identifying and validating molecular pathways underlying AD.
Collapse
Affiliation(s)
- Valentina N Lagomarsino
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Richard V Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lei Liu
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yi-Chen Hsieh
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Marty A Fernandez
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Elizabeth A Vinton
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Daniel Paull
- New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Daniel Felsky
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry and Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Shinya Tasaki
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Chris Gaiteri
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Badri Vardarajan
- Center for Translational and Computational Neuroimmunology, Department of Neurology and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Hyo Lee
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Christina R Muratore
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Courtney R Benoit
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Vicky Chou
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Seeley B Fancher
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Amy He
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Julie P Merchant
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Duc M Duong
- Department of Biochemistry, Emory School of Medicine, Atlanta, GA, USA
| | - Hector Martinez
- New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Monica Zhou
- New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Fatmata Bah
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Maria A Vicent
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jonathan M S Stricker
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jishu Xu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory School of Medicine, Atlanta, GA, USA
| | - Allan I Levey
- Department of Neurology, Emory School of Medicine, Atlanta, GA, USA
| | - Lori B Chibnik
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vilas Menon
- Center for Translational and Computational Neuroimmunology, Department of Neurology and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory School of Medicine, Atlanta, GA, USA; Department of Neurology, Emory School of Medicine, Atlanta, GA, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Scott Noggle
- New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
25
|
Liu L, Kwak H, Lawton TL, Jin SX, Meunier AL, Dang Y, Ostaszewski B, Pietras AC, Stern AM, Selkoe DJ. An ultra-sensitive immunoassay detects and quantifies soluble Aβ oligomers in human plasma. Alzheimers Dement 2021; 18:1186-1202. [PMID: 34550630 DOI: 10.1002/alz.12457] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/02/2021] [Accepted: 07/30/2021] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Evidence strongly suggests that soluble oligomers of amyloid beta protein (oAβ) help initiate the pathogenic cascade of Alzheimer's disease (AD). To date, there have been no validated assays specific for detecting and quantifying oAβ in human blood. METHODS We developed an ultrasensitive oAβ immunoassay using a novel capture antibody (71A1) with N-terminal antibody 3D6 for detection that specifically quantifies soluble oAβ in the human brain, cerebrospinal fluid (CSF), and plasma. RESULTS Two new antibodies (71A1; 1G5) are oAβ-selective, label Aβ plaques in non-fixed AD brain sections, and potently neutralize the synaptotoxicity of AD brain-derived oAβ. The 71A1/3D6 assay showed excellent dilution linearity in CSF and plasma without matrix effects, good spike recovery, and specific immunodepletion. DISCUSSION We have created a sensitive, high throughput, and inexpensive method to quantify synaptotoxic oAβ in human plasma for analyzing large cohorts of aged and AD subjects to assess the dynamics of this key pathogenic species and response to therapy.
Collapse
Affiliation(s)
- Lei Liu
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, Massachusetts, 02115, USA
| | - Hyunchang Kwak
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, Massachusetts, 02115, USA
| | - Trebor L Lawton
- Abyssinia Biologics, LLC, 23 Cedar Point Rd, Durham, New Hampshire, 03824, USA
| | - Shan-Xue Jin
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, Massachusetts, 02115, USA
| | - Angela L Meunier
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, Massachusetts, 02115, USA
| | - Yifan Dang
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, Massachusetts, 02115, USA
| | - Beth Ostaszewski
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, Massachusetts, 02115, USA
| | - Alison C Pietras
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, Massachusetts, 02115, USA
| | - Andrew M Stern
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, Massachusetts, 02115, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, Massachusetts, 02115, USA
| |
Collapse
|