1
|
Duan J, Wen P, Zhao Y, van de Leemput J, Lai Yee J, Fermin D, Warady BA, Furth SL, Ng DK, Sampson MG, Han Z. A Drosophila model to screen Alport syndrome COL4A5 variants for their functional pathogenicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583697. [PMID: 38559272 PMCID: PMC10979928 DOI: 10.1101/2024.03.06.583697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Alport syndrome is a hereditary chronic kidney disease, attributed to rare pathogenic variants in either of three collagen genes (COL4A3/4/5) with most localized in COL4A5. Trimeric type IV Collagen α3α4α5 is essential for the glomerular basement membrane that forms the kidney filtration barrier. A means to functionally assess the many candidate variants and determine pathogenicity is urgently needed. We used Drosophila, an established model for kidney disease, and identify Col4a1 as the functional homolog of human COL4A5 in the fly nephrocyte (equivalent of human podocyte). Fly nephrocytes deficient for Col4a1 showed an irregular and thickened basement membrane and significantly reduced nephrocyte filtration function. This phenotype was restored by expressing human reference (wildtype) COL4A5, but not by COL4A5 carrying any of three established pathogenic patient-derived variants. We then screened seven additional patient COL4A5 variants; their ClinVar classification was either likely pathogenic or of uncertain significance. The findings support pathogenicity for four of these variants; the three others were found benign. Thus, demonstrating the effectiveness of this Drosophila in vivo kidney platform in providing the urgently needed variant-level functional validation.
Collapse
Affiliation(s)
- Jianli Duan
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, MD 21201, USA
| | - Pei Wen
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, MD 21201, USA
| | - Yunpo Zhao
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, MD 21201, USA
| | - Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, MD 21201, USA
| | - Jennifer Lai Yee
- Division of Nephrology, Department of Pediatric, University of Michigan School of Medicine, Ann Arbor, MI 48105, USA
| | - Damian Fermin
- Division of Nephrology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI 48105, USA
| | - Bradley A Warady
- Division of Pediatric Nephrology, Children’s Mercy Kansas City, Kansas City, MO 64108, USA
| | - Susan L Furth
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Nephrology, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Derek K Ng
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, MD 21205, USA
| | - Matthew G Sampson
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School Boston, MA 02115, USA
- Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, MD 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, MD 21201, USA
| |
Collapse
|
2
|
Callaway DA, Penkala IJ, Zhou S, Knowlton JJ, Cardenas-Diaz F, Babu A, Morley MP, Lopes M, Garcia BA, Morrisey EE. TGF-β controls alveolar type 1 epithelial cell plasticity and alveolar matrisome gene transcription in mice. J Clin Invest 2024; 134:e172095. [PMID: 38488000 PMCID: PMC10947970 DOI: 10.1172/jci172095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/05/2024] [Indexed: 03/19/2024] Open
Abstract
Premature birth disrupts normal lung development and places infants at risk for bronchopulmonary dysplasia (BPD), a disease disrupting lung health throughout the life of an individual and that is increasing in incidence. The TGF-β superfamily has been implicated in BPD pathogenesis, however, what cell lineage it impacts remains unclear. We show that TGFbr2 is critical for alveolar epithelial (AT1) cell fate maintenance and function. Loss of TGFbr2 in AT1 cells during late lung development leads to AT1-AT2 cell reprogramming and altered pulmonary architecture, which persists into adulthood. Restriction of fetal lung stretch and associated AT1 cell spreading through a model of oligohydramnios enhances AT1-AT2 reprogramming. Transcriptomic and proteomic analyses reveal the necessity of TGFbr2 expression in AT1 cells for extracellular matrix production. Moreover, TGF-β signaling regulates integrin transcription to alter AT1 cell morphology, which further impacts ECM expression through changes in mechanotransduction. These data reveal the cell intrinsic necessity of TGF-β signaling in maintaining AT1 cell fate and reveal this cell lineage as a major orchestrator of the alveolar matrisome.
Collapse
Affiliation(s)
- Danielle A. Callaway
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Penn-CHOP Lung Biology Institute
| | - Ian J. Penkala
- Penn-CHOP Lung Biology Institute
- Department of Cell and Developmental Biology, and
| | - Su Zhou
- Penn-CHOP Lung Biology Institute
- Department of Cell and Developmental Biology, and
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jonathan J. Knowlton
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Penn-CHOP Lung Biology Institute
| | - Fabian Cardenas-Diaz
- Penn-CHOP Lung Biology Institute
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Apoorva Babu
- Penn-CHOP Lung Biology Institute
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael P. Morley
- Penn-CHOP Lung Biology Institute
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mariana Lopes
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Benjamin A. Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward E. Morrisey
- Penn-CHOP Lung Biology Institute
- Department of Cell and Developmental Biology, and
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Pokidysheva EN, Redhair N, Ailsworth O, Page-McCaw P, Rollins-Smith L, Jamwal VS, Ohta Y, Bächinger HP, Murawala P, Flajnik M, Fogo AB, Abrahamson D, Hudson JK, Boudko SP, Hudson BG. Collagen IV of basement membranes: II. Emergence of collagen IV α345 enabled the assembly of a compact GBM as an ultrafilter in mammalian kidneys. J Biol Chem 2023; 299:105459. [PMID: 37977222 PMCID: PMC10746531 DOI: 10.1016/j.jbc.2023.105459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
The collagen IVα345 (Col-IVα345) scaffold, the major constituent of the glomerular basement membrane (GBM), is a critical component of the kidney glomerular filtration barrier. In Alport syndrome, affecting millions of people worldwide, over two thousand genetic variants occur in the COL4A3, COL4A4, and COL4A5 genes that encode the Col-IVα345 scaffold. Variants cause loss of scaffold, a suprastructure that tethers macromolecules, from the GBM or assembly of a defective scaffold, causing hematuria in nearly all cases, proteinuria, and often progressive kidney failure. How these variants cause proteinuria remains an enigma. In a companion paper, we found that the evolutionary emergence of the COL4A3, COL4A4, COL4A5, and COL4A6 genes coincided with kidney emergence in hagfish and shark and that the COL4A3 and COL4A4 were lost in amphibians. These findings opened an experimental window to gain insights into functionality of the Col-IVα345 scaffold. Here, using tissue staining, biochemical analysis and TEM, we characterized the scaffold chain arrangements and the morphology of the GBM of hagfish, shark, frog, and salamander. We found that α4 and α5 chains in shark GBM and α1 and α5 chains in amphibian GBM are spatially separated. Scaffolds are distinct from one another and from the mammalian Col-IVα345 scaffold, and the GBM morphologies are distinct. Our findings revealed that the evolutionary emergence of the Col-IVα345 scaffold enabled the genesis of a compact GBM that functions as an ultrafilter. Findings shed light on the conundrum, defined decades ago, whether the GBM or slit diaphragm is the primary filter.
Collapse
Affiliation(s)
- Elena N Pokidysheva
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Aspirnaut, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | - Neve Redhair
- Aspirnaut, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Octavia Ailsworth
- Aspirnaut, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Patrick Page-McCaw
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Louise Rollins-Smith
- Department of Pathology Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | - Yuko Ohta
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | | | - Prayag Murawala
- Mount Desert Island Biological Laboratory, Bar Harbor, Maine, USA; Clinic for Kidney and Hypertension Diseases, Hannover Medical School, Hannover, Germany
| | - Martin Flajnik
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Agnes B Fogo
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dale Abrahamson
- Department of Cell Biology and Physiology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Julie K Hudson
- Aspirnaut, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sergei P Boudko
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Billy G Hudson
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Aspirnaut, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Summers JA, Yarbrough M, Liu M, McDonald WH, Hudson BG, Pastor-Pareja JC, Boudko SP. Collagen IV of basement membranes: IV. Adaptive mechanism of collagen IV scaffold assembly in Drosophila. J Biol Chem 2023; 299:105394. [PMID: 37890775 PMCID: PMC10694668 DOI: 10.1016/j.jbc.2023.105394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Collagen IV is an essential structural protein in all metazoans. It provides a scaffold for the assembly of basement membranes, a specialized form of extracellular matrix, which anchors and signals cells and provides microscale tensile strength. Defective scaffolds cause basement membrane destabilization and tissue dysfunction. Scaffolds are composed of α-chains that coassemble into triple-helical protomers of distinct chain compositions, which in turn oligomerize into supramolecular scaffolds. Chloride ions mediate the oligomerization via NC1 trimeric domains, forming an NC1 hexamer at the protomer-protomer interface. The chloride concentration-"chloride pressure"-on the outside of cells is a primordial innovation that drives the assembly and dynamic stabilization of collagen IV scaffolds. However, a Cl-independent mechanism is operative in Ctenophora, Ecdysozoa, and Rotifera, which suggests evolutionary adaptations to environmental or tissue conditions. An understanding of these exceptions, such as the example of Drosophila, could shed light on the fundamentals of how NC1 trimers direct the oligomerization of protomers into scaffolds. Here, we investigated the NC1 assembly of Drosophila. We solved the crystal structure of the NC1 hexamer, determined the chain composition of protomers, and found that Drosophila adapted an evolutionarily unique mechanism of scaffold assembly that requires divalent cations. By studying the Drosophila case we highlighted the mechanistic role of chloride pressure for maintaining functionality of the NC1 domain in humans. Moreover, we discovered that the NC1 trimers encode information for homing protomers to distant tissue locations, providing clues for the development of protein replacement therapy for collagen IV genetic diseases.
Collapse
Affiliation(s)
- Jacob A Summers
- Aspirnaut Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Madison Yarbrough
- Aspirnaut Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Min Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - W Hayes McDonald
- Proteomics Laboratory, Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Billy G Hudson
- Aspirnaut Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - José C Pastor-Pareja
- School of Life Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; Institute of Neurosciences, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Sergei P Boudko
- Aspirnaut Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
5
|
Boudko SP, Pedchenko VK, Pokidysheva EN, Budko AM, Baugh R, Coates PT, Fidler AL, Hudson HM, Ivanov SV, Luer C, Pedchenko T, Preston RL, Rafi M, Vanacore R, Bhave G, Hudson JK, Hudson BG. Collagen IV of basement membranes: III. Chloride pressure is a primordial innovation that drives and maintains the assembly of scaffolds. J Biol Chem 2023; 299:105318. [PMID: 37797699 PMCID: PMC10656227 DOI: 10.1016/j.jbc.2023.105318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023] Open
Abstract
Collagen IV scaffold is a primordial innovation enabling the assembly of a fundamental architectural unit of epithelial tissues-a basement membrane attached to polarized cells. A family of six α-chains (α1 to α6) coassemble into three distinct protomers that form supramolecular scaffolds, noted as collagen IVα121, collagen IVα345, and collagen IVα121-α556. Chloride ions play a pivotal role in scaffold assembly, based on studies of NC1 hexamers from mammalian tissues. First, Cl- activates a molecular switch within trimeric NC1 domains that initiates protomer oligomerization, forming an NC1 hexamer between adjoining protomers. Second, Cl- stabilizes the hexamer structure. Whether this Cl--dependent mechanism is of fundamental importance in animal evolution is unknown. Here, we developed a simple in vitro method of SDS-PAGE to determine the role of solution Cl- in hexamer stability. Hexamers were characterized from 34 animal species across 15 major phyla, including the basal Cnidarian and Ctenophora phyla. We found that solution Cl- stabilized the quaternary hexamer structure across all phyla except Ctenophora, Ecdysozoa, and Rotifera. Further analysis of hexamers from peroxidasin knockout mice, a model for decreasing hexamer crosslinks, showed that solution Cl- also stabilized the hexamer surface conformation. The presence of sufficient chloride concentration in solution or "chloride pressure" dynamically maintains the native form of the hexamer. Collectively, our findings revealed that chloride pressure on the outside of cells is a primordial innovation that drives and maintains the quaternary and conformational structure of NC1 hexamers of collagen IV scaffolds.
Collapse
Affiliation(s)
- Sergei P Boudko
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA.
| | - Vadim K Pedchenko
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Elena N Pokidysheva
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Rachel Baugh
- Department of Medical Education and Administration, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Patrick Toby Coates
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, Australia
| | - Aaron L Fidler
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Heather M Hudson
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sergey V Ivanov
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Carl Luer
- Mote Marine Laboratory, Sarasota, Florida, USA
| | - Tetyana Pedchenko
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Robert L Preston
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Mohamed Rafi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Roberto Vanacore
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Gautam Bhave
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Julie K Hudson
- Department of Medical Education and Administration, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Billy G Hudson
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Lv R, Duan L, Gao J, Si J, Feng C, Hu J, Zheng X. Bioinformatics-based analysis of the roles of basement membrane-related gene AGRN in systemic lupus erythematosus and pan-cancer development. Front Immunol 2023; 14:1231611. [PMID: 37841281 PMCID: PMC10570813 DOI: 10.3389/fimmu.2023.1231611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Systemic lupus erythematosus (SLE) is an autoimmune disease involving many systems and organs, and individuals with SLE exhibit unique cancer risk characteristics. The significance of the basement membrane (BM) in the occurrence and progression of human autoimmune diseases and tumors has been established through research. However, the roles of BM-related genes and their protein expression mechanisms in the pathogenesis of SLE and pan-cancer development has not been elucidated. Methods In this study, we applied bioinformatics methods to perform differential expression analysis of BM-related genes in datasets from SLE patients. We utilized LASSO logistic regression, SVM-RFE, and RandomForest to screen for feature genes and construct a diagnosis model for SLE. In order to attain a comprehensive comprehension of the biological functionalities of the feature genes, we conducted GSEA analysis, ROC analysis, and computed levels of immune cell infiltration. Finally, we sourced pan-cancer expression profiles from the TCGA and GTEx databases and performed pan-cancer analysis. Results We screened six feature genes (AGRN, PHF13, SPOCK2, TGFBI, COL4A3, and COLQ) to construct an SLE diagnostic model. Immune infiltration analysis showed a significant correlation between AGRN and immune cell functions such as parainflammation and type I IFN response. After further gene expression validation, we finally selected AGRN for pan-cancer analysis. The results showed that AGRN's expression level varied according to distinct tumor types and was closely correlated with some tumor patients' prognosis, immune cell infiltration, and other indicators. Discussion In conclusion, BM-related genes play a pivotal role in the pathogenesis of SLE, and AGRN shows immense promise as a target in SLE and the progression of multiple tumors.
Collapse
Affiliation(s)
- Rundong Lv
- Department of Clinical Pharmacy, Zibo Central Hospital, Zibo, Shandong, China
| | - Lei Duan
- Department of Clinical Pharmacy, Zibo Central Hospital, Zibo, Shandong, China
| | - Jie Gao
- Department of Clinical Pharmacy, Zibo Central Hospital, Zibo, Shandong, China
| | - Jigang Si
- Department of Clinical Pharmacy, Zibo Central Hospital, Zibo, Shandong, China
| | - Chen Feng
- Department of Pharmacy, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jun Hu
- Department of Children’s Health, Zibo Central Hospital, Zibo, Shandong, China
| | - Xiulan Zheng
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Callaway DA, Penkala IJ, Zhou S, Cardenas-Diaz F, Babu A, Morley MP, Lopes M, Garcia BA, Morrisey EE. TGFβ controls alveolar type 1 epithelial cell plasticity and alveolar matrisome gene transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540035. [PMID: 37214932 PMCID: PMC10197675 DOI: 10.1101/2023.05.09.540035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Premature birth disrupts normal lung development and places infants at risk for bronchopulmonary dysplasia (BPD), a disease increasing in incidence which disrupts lung health throughout the lifespan. The TGFβ superfamily has been implicated in BPD pathogenesis, however, what cell lineage it impacts remains unclear. We show that Tgfbr2 is critical for AT1 cell fate maintenance and function. Loss of Tgfbr2 in AT1 cells during late lung development leads to AT1-AT2 cell reprogramming and altered pulmonary architecture, which persists into adulthood. Restriction of fetal lung stretch and associated AT1 cell spreading through a model of oligohydramnios enhances AT1-AT2 reprogramming. Transcriptomic and proteomic analysis reveal the necessity of Tgfbr2 expression in AT1 cells for extracellular matrix production. Moreover, TGFβ signaling regulates integrin transcription to alter AT1 cell morphology, which further impacts ECM expression through changes in mechanotransduction. These data reveal the cell intrinsic necessity of TGFβ signaling in maintaining AT1 cell fate and reveal this cell lineage as a major orchestrator of the alveolar matrisome.
Collapse
|
8
|
Kuang H, Liu J, Jia XY, Cui Z, Zhao MH. Autoimmunity in Anti-Glomerular Basement Membrane Disease: A Review of Mechanisms and Prospects for Immunotherapy. Am J Kidney Dis 2023; 81:90-99. [PMID: 36334986 DOI: 10.1053/j.ajkd.2022.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/10/2022] [Indexed: 11/06/2022]
Abstract
Anti-glomerular basement membrane (anti-GBM) disease is an organ-specific autoimmune disorder characterized by autoantibodies against the glomerular and alveolar basement membranes, leading to rapidly progressive glomerulonephritis and severe alveolar hemorrhage. The noncollagenous domain of the α3 chain of type IV collagen, α3(IV)NC1, contains the main target autoantigen in this disease. Epitope mapping studies of α3(IV)NC1 have identified several nephritogenic epitopes and critical residues that bind to autoantibodies and trigger anti-GBM disease. The discovery of novel target antigens has revealed the heterogeneous nature of this disease. In addition, both epitope spreading and mimicry have been implicated in the pathogenesis of anti-GBM disease. Epitope spreading refers to the development of autoimmunity to new autoepitopes, thus worsening disease progression, whereas epitope mimicry, which occurs via sharing of critical residues with microbial peptides, can initiate autoimmunity. An understanding of these autoimmune responses may open opportunities to explore potential new therapeutic approaches for this disease. We review how current advances in epitope mapping, identification of novel autoantigens, and the phenomena of epitope spreading and mimicry have heightened the understanding of autoimmunity in the pathogenesis of anti-GBM disease, and we discuss prospects for immunotherapy.
Collapse
Affiliation(s)
- Huang Kuang
- Renal Division, Peking University First Hospital, Beijing, People's Republic of China; Institute of Nephrology, Peking University, Beijing, People's Republic of China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, People's Republic of China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jing Liu
- Renal Division, Peking University First Hospital, Beijing, People's Republic of China; Institute of Nephrology, Peking University, Beijing, People's Republic of China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, People's Republic of China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Peking-Tsinghua Center for Life Sciences, Beijing, People's Republic of China
| | - Xiao-Yu Jia
- Renal Division, Peking University First Hospital, Beijing, People's Republic of China; Institute of Nephrology, Peking University, Beijing, People's Republic of China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, People's Republic of China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| | - Zhao Cui
- Renal Division, Peking University First Hospital, Beijing, People's Republic of China; Institute of Nephrology, Peking University, Beijing, People's Republic of China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, People's Republic of China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Ming-Hui Zhao
- Renal Division, Peking University First Hospital, Beijing, People's Republic of China; Institute of Nephrology, Peking University, Beijing, People's Republic of China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, People's Republic of China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Peking-Tsinghua Center for Life Sciences, Beijing, People's Republic of China
| |
Collapse
|
9
|
Gibson JT, Sadeghi-Alavijeh O, Gale DP, Rothe H, Savige J. Pathogenicity of missense variants affecting the collagen IV α5 carboxy non-collagenous domain in X-linked Alport syndrome. Sci Rep 2022; 12:11257. [PMID: 35789182 PMCID: PMC9253329 DOI: 10.1038/s41598-022-14928-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/15/2022] [Indexed: 12/05/2022] Open
Abstract
X-linked Alport syndrome is a genetic kidney disease caused by pathogenic COL4A5 variants, but little is known of the consequences of missense variants affecting the NC1 domain of the corresponding collagen IV α5 chain. This study examined these variants in a normal (gnomAD) and other databases (LOVD, Clin Var and 100,000 Genomes Project) to determine their pathogenicity and clinical significance. Males with Cys substitutions in the collagen IV α5 NC1 domain reported in LOVD (n = 25) were examined for typical Alport features, including age at kidney failure. All NC1 variants in LOVD (n = 86) were then assessed for structural damage using an online computational tool, Missense3D. Variants in the ClinVar, gnomAD and 100,000 Genomes Project databases were also examined for structural effects. Predicted damage associated with NC1 substitutions was then correlated with the level of conservation of the affected residues. Cys substitutions in males were associated with the typical features of X-linked Alport syndrome, with a median age at kidney failure of 31 years. NC1 substitutions predicted to cause structural damage were overrepresented in LOVD (p < 0.001), and those affecting Cys residues or 'buried' Gly residues were more common than expected (both p < 0.001). Most NC1 substitutions in gnomAD (88%) were predicted to be structurally-neutral. Substitutions affecting conserved residues resulted in more structural damage than those affecting non-conserved residues (p < 0.001). Many pathogenic missense variants affecting the collagen IV α5 NC1 domain have their effect through molecular structural damage and 3D modelling is a useful tool in their assessment.
Collapse
Affiliation(s)
- Joel T Gibson
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Omid Sadeghi-Alavijeh
- Department of Renal Medicine, University College London, London, UK
- Genomics England, Queen Mary University of London, London, UK
| | - Daniel P Gale
- Department of Renal Medicine, University College London, London, UK
- Genomics England, Queen Mary University of London, London, UK
| | - Hansjörg Rothe
- Centre for Nephrology and Metabolic Disorders, 02943, Weisswasser, Germany
| | - Judy Savige
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Parkville, VIC, 3050, Australia.
- Genomics England, Queen Mary University of London, London, UK.
| |
Collapse
|
10
|
Chakravarti S, Enzo E, de Barros MRM, Maffezzoni MBR, Pellegrini G. Genetic Disorders of the Extracellular Matrix: From Cell and Gene Therapy to Future Applications in Regenerative Medicine. Annu Rev Genomics Hum Genet 2022; 23:193-222. [PMID: 35537467 DOI: 10.1146/annurev-genom-083117-021702] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metazoans have evolved to produce various types of extracellular matrix (ECM) that provide structural support, cell adhesion, cell-cell communication, and regulated exposure to external cues. Epithelial cells produce and adhere to a specialized sheet-like ECM, the basement membrane, that is critical for cellular homeostasis and tissue integrity. Mesenchymal cells, such as chondrocytes in cartilaginous tissues and keratocytes in the corneal stroma, produce a pericellular matrix that presents optimal levels of growth factors, cytokines, chemokines, and nutrients to the cell and regulates mechanosensory signals through specific cytoskeletal and cell surface receptor interactions. Here, we discuss laminins, collagen types IV and VII, and perlecan, which are major components of these two types of ECM. We examine genetic defects in these components that cause basement membrane pathologies such as epidermolysis bullosa, Alport syndrome, rare pericellular matrix-related chondrodysplasias, and corneal keratoconus and discuss recent advances in cell and gene therapies being developed for some of these disorders. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Shukti Chakravarti
- Department of Ophthalmology and Department of Pathology, Grossman School of Medicine, New York University, New York, NY, USA; ,
| | - Elena Enzo
- Center for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, Modena, Italy; , ,
| | - Maithê Rocha Monteiro de Barros
- Department of Ophthalmology and Department of Pathology, Grossman School of Medicine, New York University, New York, NY, USA; ,
| | | | - Graziella Pellegrini
- Center for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, Modena, Italy; , ,
| |
Collapse
|
11
|
Kashtan CE. What the Adult Nephrologist Should Know About Alport Syndrome. Adv Chronic Kidney Dis 2022; 29:225-230. [PMID: 36084969 DOI: 10.1053/j.ackd.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/11/2022]
Abstract
Recent trends in the diagnosis, treatment, and classification of collagen IV-associated kidney disease are likely to result in increasing numbers of people in adult nephrology practices who have a confirmed diagnosis of Alport syndrome. These trends include the increasing use of genetic testing in the diagnostic evaluation of people with hematuria, focal segmental glomerulosclerosis, and chronic kidney disease of unknown etiology; early treatment with inhibitors of the renin-angiotensin-aldosterone system to delay kidney failure; and application of an expanded definition of Alport syndrome based on genotype rather than phenotype. This commentary discusses these trends and their implications for the adult nephrologist.
Collapse
Affiliation(s)
- Clifford E Kashtan
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN.
| |
Collapse
|
12
|
Boudko SP, Pokidysheva E, Hudson BG. Prospective collagen IVα345 therapies for Alport syndrome. Curr Opin Nephrol Hypertens 2022; 31:213-220. [PMID: 35283436 PMCID: PMC9159491 DOI: 10.1097/mnh.0000000000000789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE OF REVIEW In Alport syndrome, over 1,700 genetic variants in the COL4A3, COL4A4, and COL4A5 genes cause the absence or malfunctioning of the collagen IVα345 scaffold - an essential component of the glomerular basement membrane (GBM). Therapies are limited to treatment with Angiotensin-Converting enzyme (ACE) inhibitors to slow progression of the disease. Here, we review recent progress in therapy development to replace the scaffold or restore its function. RECENT FINDINGS Multiple approaches emerged recently for development of therapies that target different stages of production and assembly of the collagen IVα345 scaffold in the GBM. These approaches are based on (1) recent advances in technologies allowing to decipher pathogenic mechanisms that underlie scaffold assembly and dysfunction, (2) development of DNA editing tools for gene therapy, (3) RNA splicing interference, and (4) control of mRNA translation. SUMMARY There is a growing confidence that these approaches will ultimately provide cure for Alport patients. The development of therapy will be accelerated by studies that provide a deeper understanding of mechanisms that underlie folding, assembly, and function of the collagen IVα345 scaffold.
Collapse
Affiliation(s)
- Sergei P. Boudko
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Elena Pokidysheva
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Billy G. Hudson
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
13
|
Sobotta M, Moerer O, Gross O. Case Report: Eculizumab and ECMO Rescue Therapy of Severe ARDS in Goodpasture Syndrome. Front Med (Lausanne) 2021; 8:720949. [PMID: 34631746 PMCID: PMC8495060 DOI: 10.3389/fmed.2021.720949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/31/2021] [Indexed: 01/07/2023] Open
Abstract
Introduction: Goodpasture's syndrome is a life-threatening autoimmune type IV collagen disease characterized by the presence anti-glomerular basement membrane antibodies, rapid progressive glomerulonephritis and/or pulmonary hemorrhage. Methods: Here, we describe new therapeutic options, which take recent advances in unraveling Goodpasture's pathogenesis into account. Results: In a 17-year old male, severe Goodpasture's syndrome resulted in acute respiratory distress syndrome (ARDS). Within 1 day after hospital admission, the patient required extracorporeal membrane oxygenation (ECMO). Despite steroid-pulse and plasmapheresis, ARDS further deteriorated. Eleven days after admission, the patient was in a pre-final stage. At last, we decided to block the complement-driven lung damage by Eculizumab. Three days after, lung-failure has stabilized in a way allowing us to initiate Cyclophosphamide-therapy. As mechanical ventilation further triggers Goodpasture-epitope exposure, the patient was taken from pressure support - breathing spontaneously by the help of maintaining ECMO therapy. After a total of 24 days, ECMO could be stopped and pulmonary function further recovered. Conclusions: In conclusion, our findings suggest that life-threatening organ-damage in Goodpasture's syndrome can be halted by Eculizumab as well as by lung-protective early withdrawal from pressure support by the help of ECMO. Both therapeutic options serve as new tools in otherwise hopeless situations to prevent further organ-damage and to gain time until the established immunosuppressive therapy works in otherwise lethal autoimmune-diseases.
Collapse
Affiliation(s)
- Michael Sobotta
- Clinic of Anaesthesiology, University Medical Center Goettingen, Goettingen, Germany
| | - Onnen Moerer
- Clinic of Anaesthesiology, University Medical Center Goettingen, Goettingen, Germany
| | - Oliver Gross
- Clinic of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
14
|
|
15
|
Boudko SP, Bauer R, Chetyrkin SV, Ivanov S, Smith J, Voziyan PA, Hudson BG. Collagen IV α345 dysfunction in glomerular basement membrane diseases. II. Crystal structure of the α345 hexamer. J Biol Chem 2021; 296:100591. [PMID: 33775698 PMCID: PMC8093946 DOI: 10.1016/j.jbc.2021.100591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 12/30/2022] Open
Abstract
Our recent work identified a genetic variant of the α345 hexamer of the collagen IV scaffold that is present in patients with glomerular basement membrane diseases, Goodpasture’s disease (GP) and Alport syndrome (AS), and phenocopies of AS in knock-in mice. To understand the context of this “Zurich” variant, an 8-amino acid appendage, we developed a construct of the WT α345 hexamer using the single-chain NC1 trimer technology, which allowed us to solve a crystal structure of this key connection module. The α345 hexamer structure revealed a ring of 12 chloride ions at the trimer–trimer interface, analogous to the collagen α121 hexamer, and the location of the 170 AS variants. The hexamer surface is marked by multiple pores and crevices that are potentially accessible to small molecules. Loop-crevice-loop features constitute bioactive sites, where pathogenic pathways converge that are linked to AS and GP, and, potentially, diabetic nephropathy. In Pedchenko et al., we demonstrate that these sites exhibit conformational plasticity, a dynamic property underlying assembly of bioactive sites and hexamer dysfunction. The α345 hexamer structure is a platform to decipher how variants cause AS and how hypoepitopes can be triggered, causing GP. Furthermore, the bioactive sites, along with the pores and crevices on the hexamer surface, are prospective targets for therapeutic interventions.
Collapse
Affiliation(s)
- Sergei P Boudko
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biochemistry, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA.
| | - Ryan Bauer
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sergei V Chetyrkin
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sergey Ivanov
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jarrod Smith
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Paul A Voziyan
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Billy G Hudson
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biochemistry, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Aspirnaut, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
16
|
Collagen IV α345 dysfunction in glomerular basement membrane diseases. III. A functional framework for α345 hexamer assembly. J Biol Chem 2021; 296:100592. [PMID: 33775696 PMCID: PMC8099640 DOI: 10.1016/j.jbc.2021.100592] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/11/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
We identified a genetic variant, an 8-residue appendage, of the α345 hexamer of collagen IV present in patients with glomerular basement membrane diseases, Goodpasture’s disease and Alport syndrome, and determined the long-awaited crystal structure of the hexamer. We sought to elucidate how variants cause glomerular basement membrane disease by exploring the mechanism of the hexamer assembly. Chloride ions induced in vitro hexamer assembly in a composition-specific manner in the presence of equimolar concentrations of α3, α4, and α5 NC1 monomers. Chloride ions, together with sulfilimine crosslinks, stabilized the assembled hexamer. Furthermore, the chloride ion–dependent assembly revealed the conformational plasticity of the loop-crevice-loop bioactive sites, a critical property underlying bioactivity and pathogenesis. We explored the native mechanism by expressing recombinant α345 miniprotomers in the cell culture and characterizing the expressed proteins. Our findings revealed NC1-directed trimerization, forming protomers inside the cell; hexamerization, forming scaffolds outside the cell; and a Cl gradient–signaled hexamerization. This assembly detail, along with a crystal structure, provides a framework for understanding hexamer dysfunction. Restoration of the native conformation of bioactive sites and α345 hexamer replacement are prospective approaches to therapeutic intervention.
Collapse
|