1
|
Bogdańska-Chomczyk E, Wojtacha P, Tsai ML, Huang ACW, Kozłowska A. Alterations in Striatal Architecture and Biochemical Markers' Levels During Postnatal Development in the Rat Model of an Attention Deficit/Hyperactivity Disorder (ADHD). Int J Mol Sci 2024; 25:13652. [PMID: 39769412 PMCID: PMC11680085 DOI: 10.3390/ijms252413652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Attention deficit/hyperactivity disorder (ADHD) is defined as a neurodevelopmental condition. The precise underlying mechanisms remain incompletely elucidated. A body of research suggests disruptions in both the cellular architecture and neuronal function within the brain regions of individuals with ADHD, coupled with disturbances in the biochemical parameters. This study seeks to evaluate the morphological characteristics with a volume measurement of the striatal regions and a neuron density assessment within the studied areas across different developmental stages in Spontaneously Hypertensive Rats (SHRs) and Wistar Kyoto Rats (WKYs). Furthermore, the investigation aims to scrutinize the levels and activities of specific markers related to immune function, oxidative stress, and metabolism within the striatum of juvenile and maturing SHRs compared to WKYs. The findings reveal that the most pronounced reductions in striatal volume occur during the juvenile stage in SHRs, alongside alterations in neuronal density within these brain regions compared to WKYs. Additionally, SHRs exhibit heightened levels and activities of various markers, including RAC-alpha serine/threonine-protein kinase (AKT-1), glucocorticoid receptor (GCsRβ), malondialdehyde (MDA), sulfhydryl groups (-SH), glucose (G), iron (Fe), lactate dehydrogenase (LDH). alanine transaminase (ALT), and aspartate transaminase (AST). In summary, notable changes in striatal morphology and elevated levels of inflammatory, oxidative, and metabolic markers within the striatum may be linked to the disrupted brain development and maturation observed in ADHD.
Collapse
Affiliation(s)
- Ewelina Bogdańska-Chomczyk
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Warszawska 30, 10-082 Olsztyn, Poland;
| | - Paweł Wojtacha
- Department of Psychology and Sociology of Health and Public Health, University of Warmia and Mazury, Warszawska 30, 10-082 Olsztyn, Poland;
| | - Meng-Li Tsai
- Department of Biomechatronic Engineering, National Ilan University, Ylan 26047, Taiwan;
| | | | - Anna Kozłowska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Warszawska 30, 10-082 Olsztyn, Poland;
| |
Collapse
|
2
|
Lu X, Liu F, Chen H, Cai H, Zhang L, Li J. Effects of WN1703 on Cardiovascular Function in Chronic Hyperuricemia Rats and Myocardial Injury Mechanism Exploration in H9C2 Cells. J Appl Toxicol 2024. [PMID: 39435646 DOI: 10.1002/jat.4710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024]
Abstract
Hyperuricemia, a prevalent condition, is typically preceded by disturbances in purine metabolism and is frequently associated with hyperlipidemia and other dysfunctions of metabolism. WN1703 demonstrated an inhibitory activity against xanthine oxidoreductase (XOR) that was comparable to febuxostat in our prior investigation. In this study, we assessed the cardiovascular safety of WN1703 in a chronic hyperuricemia rat model induced by potassium oxonate in combination with hypoxanthine. We investigated the changes in cardiovascular biomarkers in chronic hyperuricemia rats treated with febuxostat and WN1703, including creatine kinase (CK), CK-MB, B type natriuretic peptide (BNP), Corin protein (CRN), Neprilysin (NEP), myeloperoxidase (MPO), 8-hydroxy-2-deoxyguanosine (8-OHdG), tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), and interleukin-8 (IL-8). Additionally, we validated the potential mechanism of cardiac injury induced by WN1703 in H9C2 cells, guided by cardiotoxicity predictions from the cardioToxCSM database and network pharmacology. We observed that excessively rapid urate-lowering, oxidative stress, and inflammation could disrupt myocardial functional homeostasis and increase the risk of cardiovascular injury in hyperuricemia rats, and WN1703 treatment effectively reduced the levels oxidative stress marker 8-OHdG and inflammatory factor TNF-α. Despite the absence of organic damage to the heart with prolonged treatment of febuxostat and WN1703, potential hazard of cardiovascular injury could be associated with the modulation of the TGFβ and RHO/ROCK signaling pathways by febuxostat and WN1703. This could offer new insights into the mechanisms underlying the adverse effects caused by XOR inhibitors.
Collapse
Affiliation(s)
- Xiaodan Lu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Fuyao Liu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Hongming Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Haojie Cai
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Lei Zhang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jing Li
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
3
|
Niepmann M. Importance of Michaelis Constants for Cancer Cell Redox Balance and Lactate Secretion-Revisiting the Warburg Effect. Cancers (Basel) 2024; 16:2290. [PMID: 39001354 PMCID: PMC11240417 DOI: 10.3390/cancers16132290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
Cancer cells metabolize a large fraction of glucose to lactate, even under a sufficient oxygen supply. This phenomenon-the "Warburg Effect"-is often regarded as not yet understood. Cancer cells change gene expression to increase the uptake and utilization of glucose for biosynthesis pathways and glycolysis, but they do not adequately up-regulate the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS). Thereby, an increased glycolytic flux causes an increased production of cytosolic NADH. However, since the corresponding gene expression changes are not neatly fine-tuned in the cancer cells, cytosolic NAD+ must often be regenerated by loading excess electrons onto pyruvate and secreting the resulting lactate, even under sufficient oxygen supply. Interestingly, the Michaelis constants (KM values) of the enzymes at the pyruvate junction are sufficient to explain the priorities for pyruvate utilization in cancer cells: 1. mitochondrial OXPHOS for efficient ATP production, 2. electrons that exceed OXPHOS capacity need to be disposed of and secreted as lactate, and 3. biosynthesis reactions for cancer cell growth. In other words, a number of cytosolic electrons need to take the "emergency exit" from the cell by lactate secretion to maintain the cytosolic redox balance.
Collapse
Affiliation(s)
- Michael Niepmann
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, 35392 Giessen, Germany
| |
Collapse
|
4
|
Agudelo JP, Kim Y, Agarwal S, Sriram R, Bok R, Kurhanewicz J, Mattis AN, Maher JJ, von Morze C, Ohliger MA. Hyperpolarized [1- 13 C] pyruvate MRSI to detect metabolic changes in liver in a methionine and choline-deficient diet rat model of fatty liver disease. Magn Reson Med 2024; 91:1625-1636. [PMID: 38115605 PMCID: PMC11032123 DOI: 10.1002/mrm.29954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/21/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE Nonalcoholic fatty liver disease is an important cause of chronic liver disease. There are limited methods for monitoring metabolic changes during progression to steatohepatitis. Hyperpolarized 13 C MRSI (HP 13 C MRSI) was used to measure metabolic changes in a rodent model of fatty liver disease. METHODS Fifteen Wistar rats were placed on a methionine- and choline-deficient (MCD) diet for 1-18 weeks. HP 13 C MRSI, T2 -weighted imaging, and fat-fraction measurements were obtained at 3 T. Serum aspartate aminotransaminase, alanine aminotransaminase, and triglycerides were measured. Animals were sacrificed for histology and measurement of tissue lactate dehydrogenase (LDH) activity. RESULTS Animals lost significant weight (13.6% ± 2.34%), an expected characteristic of the MCD diet. Steatosis, inflammation, and mild fibrosis were observed. Liver fat fraction was 31.7% ± 4.5% after 4 weeks and 22.2% ± 4.3% after 9 weeks. Lactate-to-pyruvate and alanine-to-pyruvate ratios decreased significantly over the study course; were negatively correlated with aspartate aminotransaminase and alanine aminotransaminase (r = -[0.39-0.61]); and were positively correlated with triglycerides (r = 0.59-0.60). Despite observed decreases in hyperpolarized lactate signal, LDH activity increased by a factor of 3 in MCD diet-fed animals. Observed decreases in lactate and alanine hyperpolarized signals on the MCD diet stand in contrast to other studies of liver injury, where lactate and alanine increased. Observed hyperpolarized metabolite changes were not explained by alterations in LDH activity, suggesting that changes may reflect co-factor depletion known to occur as a result of oxidative stress in the MCD diet. CONCLUSION HP 13 C MRSI can noninvasively measure metabolic changes in the MCD model of chronic liver disease.
Collapse
Affiliation(s)
- Joao Piraquive Agudelo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Yaewon Kim
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Shubhangi Agarwal
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Aras N. Mattis
- University of California, San Francisco, Liver Center, University of California, San Francisco, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, San Francisco, California, USA
| | - Jacquelyn J. Maher
- University of California, San Francisco, Liver Center, University of California, San Francisco, San Francisco, California, USA
- Department of Medicine, Division of Gastroenterology, University of California, San Francisco, San Francisco, California, USA
| | - Cornelius von Morze
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael A. Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
- University of California, San Francisco, Liver Center, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
5
|
Zhao Y, Li X, Bao H, Nan J. Effects of biochar-derived dissolved organic matter on the gut microbiomes and metabolomics in earthworm Eisenia fetida. ENVIRONMENTAL RESEARCH 2024; 245:117932. [PMID: 38104913 DOI: 10.1016/j.envres.2023.117932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
The ecological risks of biochar-derived dissolved organic matter (DOM) to soil invertebrates at different organismal levels remains limited. This study comprehensively explored the ecological risks of biochar-derived DOM on earthworm gut through assessments of enzyme activity response, histopathology, gut microbiomes, and metabolomics. Results demonstrated that DOM disturbed the digestive enzymes in earthworm, especially for 10% DOM300 groups. The integrated biomarker response v2 (IBRv2) indicated that the perturbation of earthworm digestive enzymes induced by DOM was both time-dependent and dose-dependent. Pathological observations revealed that 10% DOM300 damaged intestinal epithelium and digestive lumen of earthworms. The significant damage and injury to earthworms caused by DOM300 due to its higher concentrations of heavy metal ions and organic substrates (e.g., toluene, hexane, butanamide, and hexanamide) compared to DOM500 and DOM700. Analysis of 16S rRNA from the gut microbiota showed a significant decrease in genera (Verminephrobacter, Bacillus, and Microbacteriaceae) associated with inflammation, disease, and detoxification processes. Furthermore, 10% DOM300 caused the abnormality of metabolites, such as glutamate, fumaric acid, pyruvate, and citric acid, which were involved in energy metabolism, These findings contributed to improve our understanding of the toxic mechanism of biochar DOM from multiple perspectives.
Collapse
Affiliation(s)
- Yue Zhao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xin Li
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Huanyu Bao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Nan
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
6
|
Narita T, Tobisawa Y, Bobkov A, Jackson M, Ohyama C, Irie F, Yamaguchi Y. TMEM2 is a bona fide hyaluronidase possessing intrinsic catalytic activity. J Biol Chem 2023; 299:105120. [PMID: 37527776 PMCID: PMC10474455 DOI: 10.1016/j.jbc.2023.105120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023] Open
Abstract
Transmembrane protein 2 (TMEM2) was originally identified as a membrane-anchored protein of unknown function. We previously demonstrated that TMEM2 can degrade hyaluronan (HA). Furthermore, we showed that induced global knockout of Tmem2 in adult mice results in rapid accumulation of incompletely degraded HA in bodily fluids and organs, supporting the identity of TMEM2 as a cell surface hyaluronidase. In spite of these advances, no direct evidence has been presented to demonstrate the intrinsic hyaluronidase activity of TMEM2. Here, we directly establish the catalytic activity of TMEM2. The ectodomain of TMEM2 (TMEM2ECD) was expressed as a His-tagged soluble protein and purified by affinity and size-exclusion chromatography. Both human and mouse TMEM2ECD robustly degrade fluorescein-labeled HA into 5 to 10 kDa fragments. TMEM2ECD exhibits this HA-degrading activity irrespective of the species of TMEM2 origin and the position of epitope tag insertion. The HA-degrading activity of TMEM2ECD is more potent than that of HYAL2, a hyaluronidase which, like TMEM2, has been implicated in cell surface HA degradation. Finally, we show that TMEM2ECD can degrade not only fluorescein-labeled HA but also native high-molecular weight HA. In addition to these core findings, our study reveals hitherto unrecognized confounding factors, such as the quality of reagents and the choice of assay systems, that could lead to erroneous conclusions regarding the catalytic activity of TMEM2. In conclusion, our results demonstrate that TMEM2 is a legitimate functional hyaluronidase. Our findings also raise cautions regarding the choice of reagents and methods for performing degradation assays for hyaluronidases.
Collapse
Affiliation(s)
- Takuma Narita
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Yuki Tobisawa
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA; Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Andrey Bobkov
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Michael Jackson
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Chikara Ohyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Fumitoshi Irie
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Yu Yamaguchi
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| |
Collapse
|
7
|
Deen SS, Rooney C, Shinozaki A, McGing J, Grist JT, Tyler DJ, Serrão E, Gallagher FA. Hyperpolarized Carbon 13 MRI: Clinical Applications and Future Directions in Oncology. Radiol Imaging Cancer 2023; 5:e230005. [PMID: 37682052 PMCID: PMC10546364 DOI: 10.1148/rycan.230005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/16/2023] [Accepted: 08/02/2023] [Indexed: 09/09/2023]
Abstract
Hyperpolarized carbon 13 MRI (13C MRI) is a novel imaging approach that can noninvasively probe tissue metabolism in both normal and pathologic tissues. The process of hyperpolarization increases the signal acquired by several orders of magnitude, allowing injected 13C-labeled molecules and their downstream metabolites to be imaged in vivo, thus providing real-time information on kinetics. To date, the most important reaction studied with hyperpolarized 13C MRI is exchange of the hyperpolarized 13C signal from injected [1-13C]pyruvate with the resident tissue lactate pool. Recent preclinical and human studies have shown the role of several biologic factors such as the lactate dehydrogenase enzyme, pyruvate transporter expression, and tissue hypoxia in generating the MRI signal from this reaction. Potential clinical applications of hyperpolarized 13C MRI in oncology include using metabolism to stratify tumors by grade, selecting therapeutic pathways based on tumor metabolic profiles, and detecting early treatment response through the imaging of shifts in metabolism that precede tumor structural changes. This review summarizes the foundations of hyperpolarized 13C MRI, presents key findings from human cancer studies, and explores the future clinical directions of the technique in oncology. Keywords: Hyperpolarized Carbon 13 MRI, Molecular Imaging, Cancer, Tissue Metabolism © RSNA, 2023.
Collapse
Affiliation(s)
- Surrin S Deen
- From the Department of Radiology, Cambridge University Hospitals, Biomedical Campus, Cambridge, CB2 0QQ, England (S.S.D., E.S., F.A.G.); Department of Physiology, Anatomy, and Genetics (C.R., A.S., J.T.G., D.J.T.) and the Oxford Centre for Clinical Magnetic Resonance Research (A.S., J.T.G., D.J.T.), University of Oxford, Oxford, England; Department of Radiology, Oxford University Hospitals, Oxford, England (J.M., J.T.G.); Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England (J.T.G.); Department of Radiology, University of Cambridge, Cambridge, England (E.S., F.A.G.); Cancer Research UK Cambridge Centre, Cambridge, England (F.A.G.); and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada (E.S.)
| | - Catriona Rooney
- From the Department of Radiology, Cambridge University Hospitals, Biomedical Campus, Cambridge, CB2 0QQ, England (S.S.D., E.S., F.A.G.); Department of Physiology, Anatomy, and Genetics (C.R., A.S., J.T.G., D.J.T.) and the Oxford Centre for Clinical Magnetic Resonance Research (A.S., J.T.G., D.J.T.), University of Oxford, Oxford, England; Department of Radiology, Oxford University Hospitals, Oxford, England (J.M., J.T.G.); Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England (J.T.G.); Department of Radiology, University of Cambridge, Cambridge, England (E.S., F.A.G.); Cancer Research UK Cambridge Centre, Cambridge, England (F.A.G.); and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada (E.S.)
| | - Ayaka Shinozaki
- From the Department of Radiology, Cambridge University Hospitals, Biomedical Campus, Cambridge, CB2 0QQ, England (S.S.D., E.S., F.A.G.); Department of Physiology, Anatomy, and Genetics (C.R., A.S., J.T.G., D.J.T.) and the Oxford Centre for Clinical Magnetic Resonance Research (A.S., J.T.G., D.J.T.), University of Oxford, Oxford, England; Department of Radiology, Oxford University Hospitals, Oxford, England (J.M., J.T.G.); Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England (J.T.G.); Department of Radiology, University of Cambridge, Cambridge, England (E.S., F.A.G.); Cancer Research UK Cambridge Centre, Cambridge, England (F.A.G.); and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada (E.S.)
| | - Jordan McGing
- From the Department of Radiology, Cambridge University Hospitals, Biomedical Campus, Cambridge, CB2 0QQ, England (S.S.D., E.S., F.A.G.); Department of Physiology, Anatomy, and Genetics (C.R., A.S., J.T.G., D.J.T.) and the Oxford Centre for Clinical Magnetic Resonance Research (A.S., J.T.G., D.J.T.), University of Oxford, Oxford, England; Department of Radiology, Oxford University Hospitals, Oxford, England (J.M., J.T.G.); Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England (J.T.G.); Department of Radiology, University of Cambridge, Cambridge, England (E.S., F.A.G.); Cancer Research UK Cambridge Centre, Cambridge, England (F.A.G.); and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada (E.S.)
| | - James T Grist
- From the Department of Radiology, Cambridge University Hospitals, Biomedical Campus, Cambridge, CB2 0QQ, England (S.S.D., E.S., F.A.G.); Department of Physiology, Anatomy, and Genetics (C.R., A.S., J.T.G., D.J.T.) and the Oxford Centre for Clinical Magnetic Resonance Research (A.S., J.T.G., D.J.T.), University of Oxford, Oxford, England; Department of Radiology, Oxford University Hospitals, Oxford, England (J.M., J.T.G.); Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England (J.T.G.); Department of Radiology, University of Cambridge, Cambridge, England (E.S., F.A.G.); Cancer Research UK Cambridge Centre, Cambridge, England (F.A.G.); and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada (E.S.)
| | - Damian J Tyler
- From the Department of Radiology, Cambridge University Hospitals, Biomedical Campus, Cambridge, CB2 0QQ, England (S.S.D., E.S., F.A.G.); Department of Physiology, Anatomy, and Genetics (C.R., A.S., J.T.G., D.J.T.) and the Oxford Centre for Clinical Magnetic Resonance Research (A.S., J.T.G., D.J.T.), University of Oxford, Oxford, England; Department of Radiology, Oxford University Hospitals, Oxford, England (J.M., J.T.G.); Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England (J.T.G.); Department of Radiology, University of Cambridge, Cambridge, England (E.S., F.A.G.); Cancer Research UK Cambridge Centre, Cambridge, England (F.A.G.); and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada (E.S.)
| | - Eva Serrão
- From the Department of Radiology, Cambridge University Hospitals, Biomedical Campus, Cambridge, CB2 0QQ, England (S.S.D., E.S., F.A.G.); Department of Physiology, Anatomy, and Genetics (C.R., A.S., J.T.G., D.J.T.) and the Oxford Centre for Clinical Magnetic Resonance Research (A.S., J.T.G., D.J.T.), University of Oxford, Oxford, England; Department of Radiology, Oxford University Hospitals, Oxford, England (J.M., J.T.G.); Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England (J.T.G.); Department of Radiology, University of Cambridge, Cambridge, England (E.S., F.A.G.); Cancer Research UK Cambridge Centre, Cambridge, England (F.A.G.); and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada (E.S.)
| | - Ferdia A Gallagher
- From the Department of Radiology, Cambridge University Hospitals, Biomedical Campus, Cambridge, CB2 0QQ, England (S.S.D., E.S., F.A.G.); Department of Physiology, Anatomy, and Genetics (C.R., A.S., J.T.G., D.J.T.) and the Oxford Centre for Clinical Magnetic Resonance Research (A.S., J.T.G., D.J.T.), University of Oxford, Oxford, England; Department of Radiology, Oxford University Hospitals, Oxford, England (J.M., J.T.G.); Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England (J.T.G.); Department of Radiology, University of Cambridge, Cambridge, England (E.S., F.A.G.); Cancer Research UK Cambridge Centre, Cambridge, England (F.A.G.); and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada (E.S.)
| |
Collapse
|
8
|
Abstract
Traditional views of cellular metabolism imply that it is passively adapted to meet the demands of the cell. It is becoming increasingly clear, however, that metabolites do more than simply supply the substrates for biological processes; they also provide critical signals, either through effects on metabolic pathways or via modulation of other regulatory proteins. Recent investigation has also uncovered novel roles for several metabolites that expand their signalling influence to processes outside metabolism, including nutrient sensing and storage, embryonic development, cell survival and differentiation, and immune activation and cytokine secretion. Together, these studies suggest that, in contrast to the prevailing notion, the biochemistry of a cell is frequently governed by its underlying metabolism rather than vice versa. This important shift in perspective places common metabolites as key regulators of cell phenotype and behaviour. Yet the signalling metabolites, and the cognate targets and transducers through which they signal, are only beginning to be uncovered. In this Review, we discuss the emerging links between metabolism and cellular behaviour. We hope this will inspire further dissection of the mechanisms through which metabolic pathways and intermediates modulate cell function and will suggest possible drug targets for diseases linked to metabolic deregulation.
Collapse
Affiliation(s)
| | - Jared Rutter
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
- Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
9
|
Sharma G, Enriquez JS, Armijo R, Wang M, Bhattacharya P, Pudakalakatti S. Enhancing Cancer Diagnosis with Real-Time Feedback: Tumor Metabolism through Hyperpolarized 1- 13C Pyruvate MRSI. Metabolites 2023; 13:606. [PMID: 37233647 PMCID: PMC10224418 DOI: 10.3390/metabo13050606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023] Open
Abstract
This review article discusses the potential of hyperpolarized (HP) 13C magnetic resonance spectroscopic imaging (MRSI) as a noninvasive technique for identifying altered metabolism in various cancer types. Hyperpolarization significantly improves the signal-to-noise ratio for the identification of 13C-labeled metabolites, enabling dynamic and real-time imaging of the conversion of [1-13C] pyruvate to [1-13C] lactate and/or [1-13C] alanine. The technique has shown promise in identifying upregulated glycolysis in most cancers, as compared to normal cells, and detecting successful treatment responses at an earlier stage than multiparametric MRI in breast and prostate cancer patients. The review provides a concise overview of the applications of HP [1-13C] pyruvate MRSI in various cancer systems, highlighting its potential for use in preclinical and clinical investigations, precision medicine, and long-term studies of therapeutic response. The article also discusses emerging frontiers in the field, such as combining multiple metabolic imaging techniques with HP MRSI for a more comprehensive view of cancer metabolism, and leveraging artificial intelligence to develop real-time, actionable biomarkers for early detection, assessing aggressiveness, and interrogating the early efficacy of therapies.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Cardiovascular & Thoracic Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA;
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - José S. Enriquez
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 75390, USA; (J.S.E.); (R.A.); (M.W.); (P.B.)
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 75390, USA
| | - Ryan Armijo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 75390, USA; (J.S.E.); (R.A.); (M.W.); (P.B.)
| | - Muxin Wang
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 75390, USA; (J.S.E.); (R.A.); (M.W.); (P.B.)
| | - Pratip Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 75390, USA; (J.S.E.); (R.A.); (M.W.); (P.B.)
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 75390, USA
| | - Shivanand Pudakalakatti
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 75390, USA; (J.S.E.); (R.A.); (M.W.); (P.B.)
| |
Collapse
|
10
|
Yang X, Zhang X, Shu X, Zhang W, Kai J, Tang M, Gong J, Yang J, Lin J, Chai Y, Liu J. Effects of multi-walled carbon nanotubes in soil on earthworm growth and reproduction, enzymatic activities, and metabolomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114158. [PMID: 36228358 DOI: 10.1016/j.ecoenv.2022.114158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Increased production and environmental release of multi-walled carbon nanotubes (MWCNTs) increase soil exposure and potential risk to earthworms. However, MWCNT toxicity to earthworms remains unclear, with some studies identifying negative effects and others negligible effects. In this study, to determine whether exposure to MWCNTs negatively affects earthworms and to elucidate possible mechanisms of toxicity, earthworms were exposed to sublethal soil concentrations of MWCNTs (10, 50, and 100 mg/kg) for 28 days. Earthworm growth and reproduction, activities of cytochrome P450 (CYP) isoforms (1A2, 2C9, and 3A4) and antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and glutathione-s-transferase (GST)), and metabolomics were determined. Effects of MWCNTs on earthworms depended on exposure concentration. Exposure to MWCNTs did not significantly affect growth and reproduction of individual earthworms. Exposure to 50 mg/kg MWCNTs significantly increased activities of CYP2C9, CYP3A4, SOD, CAT, and GST but clearly reduced levels of L-aspartate, L-asparagine, and glutamine. With exposure to 100 mg/kg MWCNTs, toxic effects on earthworms were observed, with significant inhibition in activities of CYP isoenzymes and SOD, significant reductions in L-aspartate, L-asparagine, glutamine, and tryptophan, and simultaneous accumulations of citrate, isocitrate, fumarate, 2-oxoglutarate, pyruvate, D-galactose, carbamoyl phosphate, formyl anthranilate, hypoxanthine, and xanthine. Results suggest that toxicity of MWCNTs to earthworms is associated with reduced detoxification capacity, excessive oxidative stress, and disturbance of multiple metabolic pathways, including amino acids metabolism, the tricarboxylic acid cycle, pyruvate metabolism, D-galactose metabolism, and purine metabolism. The study provides new insights to better understand and predict the toxicity of MWCNTs in soil.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China.
| | - Xuemei Zhang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Xiao Shu
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Wei Zhang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Jianrong Kai
- Institute of Quality Standard and Testing Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750000, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Mingfeng Tang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China.
| | - Jiuping Gong
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Junying Yang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Junjie Lin
- Institute of Quality Standard and Testing Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750000, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Yong Chai
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Jianfei Liu
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| |
Collapse
|
11
|
Jedlička M, Feglarová T, Janstová L, Hortová-Kohoutková M, Frič J. Lactate from the tumor microenvironment - A key obstacle in NK cell-based immunotherapies. Front Immunol 2022; 13:932055. [DOI: 10.3389/fimmu.2022.932055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Recent findings about the new roles of lactate have changed our understanding of this end product of glycolysis or fermentation that was once considered only a waste product. It is now well accepted that lactate acts as a signaling molecule and fuel source for cancer cells in a glucose-restricted environment. Moreover, lactate and lactate dehydrogenase are markers of poor prognosis of many cancers and regulate many functions of immune cells. The presence of lactate in the tumor microenvironment (TME) leads to polarization of the immunosuppressive phenotypes of dendritic cells and impairs the cytotoxic abilities of T cells and NK cells, and as such lactate is a major obstacle to immune-cell effector functions and the efficacy of cell-based immunotherapies. Emerging evidence suggests that lactate in the TME might be a novel therapeutic target to enhance the immunotherapeutic potential of cell-based therapies. This review describes our current understanding of the role of lactate in tumor biology, including its detrimental effects on cell-based immunotherapy in cancer. We also highlight how the role of lactate in the TME must be considered when producing cell therapies designed for adoptive transfer and describe how targeted modulation of lactate in the TME might boost immune-cell functions and positively impact cellular immunotherapy, with a focus on NK cell.
Collapse
|
12
|
Wang J, Wang T, Li Y, Fan Z, Lv Z, Liu L, Li X, Li B. Comparative genomic analysis of Lacticaseibacillus paracasei SMN-LBK from koumiss. Front Microbiol 2022; 13:1042117. [DOI: 10.3389/fmicb.2022.1042117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Lacticaseibacillus paracasei SMN-LBK, which was isolated in Xinjiang, has been shown to be a probiotic strain and used as the auxiliary starter for dairy fermentation. Comparative genomic analysis was performed to investigate the metabolic preference and ethanol tolerance mechanisms of L. paracasei SMN-LBK. The results of comparative genomics showed that L. paracasei strains had high conservation and genetic diversity. SMN-LBK encoded various genes related to carbohydrate and amino acid metabolism pathways, which endow this strain with good fermentation potential. In addition, 6 CRISPR sequences and 8 cas proteins were found in SMN-LBK, and these could play vital roles in the immune system. Furthermore, a unique cluster of potential secondary metabolism genes related to bacteriocins was detected in the genome of SMN-LBK, and this could be important for the preservation of fermented foods. Multiple genes related to alcohol tolerance were also identified. In conclusion, our study explained the traits that were previously demonstrated for SMN-LBK as phenotypes and provided a theoretical basis for the application of SMN-LBK in the food industry.
Collapse
|
13
|
Liu M, Dai Y, Song C, Wang J, Liu Y, Wang Q. Structural Characterization of a Pleurotus sajor-caju Polysaccharide and Its Neuroprotection Related to the Inhibition of Oxidative Stress. Nutrients 2022; 14:nu14194047. [PMID: 36235700 PMCID: PMC9573675 DOI: 10.3390/nu14194047] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/24/2022] Open
Abstract
A novel polysaccharide PSP2-1 was isolated and purified from Pleurotus sajor-caju. The structural characterization data displayed that the molecular weight of PSP2-1 was 44.9 kDa, and PSP2-1 consisted of fucose, galactose, glucose, and mannose. The methylation results showed that the glycosidic bonds of PSP2-1 included T-Fuc, 1,6-Gal, T-Glc, 1,6-Glc, 1,3,6-Glc, 1,3-Man, 1,2,6-Man, and T-Man. Neuroprotective studies indicated that PSP2-1 significantly improved the cell viability of the H2O2-induced oxidatively damaged neuronal cell HT22, reduced the release of LDH, inhibited apoptosis and release of cytochrome c, and alleviated the decline of mitochondrial membrane potential and ROS accumulation. Furthermore, PSP2-1 decreased the phosphorylation levels of cleaved PARP and cleaved caspase-3, and increased the ratio of bcl-2/bax. Additionally, PSP2-1 could inhibit the phosphorylation of MAPK family members including JNK, p38, and Erk. Finally, animal experiments showed that PSP2-1 could improve the oxidative stress injury and the learning and memory ability of mice with aging induced by D-galactose. Our results confirmed that PSP2-1 significantly ameliorated the oxidative stress injury, inhibited the apoptosis in H2O2-induced neuronal cells via MAPK pathway, and also improved cognition in mice with aging induced by D-galactose. Our research gives the foundation for the functional food application of P. sajor-caju polysaccharides in the future.
Collapse
Affiliation(s)
- Mengdi Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Yingdi Dai
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Chengming Song
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Jia Wang
- Guang’anmen Hospital China Academy of Chinese Medical Sciences Respiratory Department, Beijing 100053, China
| | - Yang Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (Y.L.); (Q.W.); Tel./Fax: +86-431-84532989 (Y.L.); +86-431-84533269 (Q.W.)
| | - Qi Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (Y.L.); (Q.W.); Tel./Fax: +86-431-84532989 (Y.L.); +86-431-84533269 (Q.W.)
| |
Collapse
|
14
|
Wen Y, Huang H, Huang B, Liao X. HSA-miR-34a-5p regulates the SIRT1/TP53 axis in prostate cancer. Am J Transl Res 2022; 14:4493-4504. [PMID: 35958506 PMCID: PMC9360830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
SIRT1 is tightly associated with the progression of prostate cancer while the role of Hsa-miR-34a-5p in SIRT1-mediated prostate cancer is not fully understood. We have thoroughly mined the data from two databases, namely the Lipidemia and the cancer genome atlas (TCGA) and found that SIRT1 was highly expressed in human carcinoma tissues as compared to normal tissues, and patients with high SIRT1 expression level had a shorter survival time. The online tool "Gene-RADAR" was applied to investigate the interaction among SIRT1, the TP53 gene and miR-34a-5p. We found that SIRT1 was up-regulated in cancer tissues from patients diagnosed with prostate and castration-resistant prostate cancer when compared to healthy controls. Pearson analysis indicated a positive correlation between SIRT1 and miR-34a-5p, while data mining on the TargetScan database predicted the binding site between the two. An apoptosis assay of prostate cancer cells (PRAD) confirmed that the overexpression of miR-34a-5p inhibited paclitaxel-induced apoptosis and promoted cell proliferation. Cell cycle analysis verified that miR-34a-5p overexpression blocked PRAD cells in the G2/S phase of the cell cycle. Moreover, the Western blotting (WB) and quantitative PCR (qPCR) assays demonstrated that the overexpression of miR-34a-5p induced down-regulation of the SIRT-related proteins HIF2α and PGC1α, while on the contrary, it up-regulated the expression of two tumour suppressor genes, TP53 and VEGF. In conclusion, we have shown that miR-34a-5p is involved in the oncogenesis of PRAD cells via the SIRT1/TP53 axis.
Collapse
Affiliation(s)
- Yongqin Wen
- Department of Pathology, Affiliated Dongguan Hospital, Southern Medical University Dongguan 523059, Guangdong, P. R. China
| | - Huijie Huang
- Department of Pathology, Affiliated Dongguan Hospital, Southern Medical University Dongguan 523059, Guangdong, P. R. China
| | - Bo Huang
- Department of Pathology, Affiliated Dongguan Hospital, Southern Medical University Dongguan 523059, Guangdong, P. R. China
| | - Xiaomin Liao
- Department of Pathology, Affiliated Dongguan Hospital, Southern Medical University Dongguan 523059, Guangdong, P. R. China
| |
Collapse
|
15
|
Zhou FQ. Pyruvate as a Potential Beneficial Anion in Resuscitation Fluids. Front Med (Lausanne) 2022; 9:905978. [PMID: 35991638 PMCID: PMC9382911 DOI: 10.3389/fmed.2022.905978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
There have been ongoing debates about resuscitation fluids because each of the current fluids has its own disadvantages. The debates essentially reflect an embarrassing clinical status quo that all fluids are not quite ideal in most clinical settings. Therefore, a novel fluid that overcomes the limitations of most fluids is necessary for most patients, particularly diabetic and older patients. Pyruvate is a natural potent antioxidant/nitrosative and anti-inflammatory agent. Exogenous pyruvate as an alkalizer can increase cellular hypoxia and anoxia tolerance with the preservation of classic glycolytic pathways and the reactivation of pyruvate dehydrogenase activity to promote oxidative metabolism and reverse the Warburg effect, robustly preventing and treating hypoxic lactic acidosis, which is one of the fatal complications in critically ill patients. In animal studies and clinical reports, pyruvate has been shown to play a protective role in multi-organ functions, especially the heart, brain, kidney, and intestine, demonstrating a great potential to improve patient survival. Pyruvate-enriched fluids including crystalloids and colloids and oral rehydration solution (ORS) may be ideal due to the unique beneficial properties of pyruvate relative to anions in contemporary existing fluids, such as acetate, bicarbonate, chloride, citrate, lactate, and even malate. Preclinical studies have demonstrated that pyruvate-enriched saline is superior to 0.9% sodium chloride. Moreover, pyruvate-enriched Ringer’s solution is advantageous over lactated Ringer’s solution. Furthermore, pyruvate as a carrier in colloids, such as hydroxyethyl starch 130/0.4, is more beneficial than its commercial counterparts. Similarly, pyruvate-enriched ORS is more favorable than WHO-ORS in organ protection and shock resuscitation. It is critical that pay attention first to improving abnormal saline with pyruvate for ICU patients. Many clinical trials with a high dose of intravenous or oral pyruvate were conducted over the past half century, and results indicated its effectiveness and safety in humans. The long-term instability of pyruvate aqueous solutions and para-pyruvate cytotoxicity is not a barrier to the pharmaceutical manufacturing of pyruvate-enriched fluids for ICU patients. Clinical trials with sodium pyruvate-enriched solutions are urgently warranted.
Collapse
|
16
|
Kerk SA, Lin L, Myers AL, Sutton DJ, Andren A, Sajjakulnukit P, Zhang L, Zhang Y, Jiménez JA, Nelson BS, Chen B, Robinson A, Thurston G, Kemp SB, Steele NG, Hoffman MT, Wen HJ, Long D, Ackenhusen SE, Ramos J, Gao X, Nwosu ZC, Galban S, Halbrook CJ, Lombard DB, Piwnica-Worms DR, Ying H, Pasca di Magliano M, Crawford HC, Shah YM, Lyssiotis CA. Metabolic requirement for GOT2 in pancreatic cancer depends on environmental context. eLife 2022; 11:e73245. [PMID: 35815941 PMCID: PMC9328765 DOI: 10.7554/elife.73245] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 07/09/2022] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial glutamate-oxaloacetate transaminase 2 (GOT2) is part of the malate-aspartate shuttle, a mechanism by which cells transfer reducing equivalents from the cytosol to the mitochondria. GOT2 is a key component of mutant KRAS (KRAS*)-mediated rewiring of glutamine metabolism in pancreatic ductal adenocarcinoma (PDA). Here, we demonstrate that the loss of GOT2 disturbs redox homeostasis and halts proliferation of PDA cells in vitro. GOT2 knockdown (KD) in PDA cell lines in vitro induced NADH accumulation, decreased Asp and α-ketoglutarate (αKG) production, stalled glycolysis, disrupted the TCA cycle, and impaired proliferation. Oxidizing NADH through chemical or genetic means resolved the redox imbalance induced by GOT2 KD, permitting sustained proliferation. Despite a strong in vitro inhibitory phenotype, loss of GOT2 had no effect on tumor growth in xenograft PDA or autochthonous mouse models. We show that cancer-associated fibroblasts (CAFs), a major component of the pancreatic tumor microenvironment (TME), release the redox active metabolite pyruvate, and culturing GOT2 KD cells in CAF conditioned media (CM) rescued proliferation in vitro. Furthermore, blocking pyruvate import or pyruvate-to-lactate reduction prevented rescue of GOT2 KD in vitro by exogenous pyruvate or CAF CM. However, these interventions failed to sensitize xenografts to GOT2 KD in vivo, demonstrating the remarkable plasticity and differential metabolism deployed by PDA cells in vitro and in vivo. This emphasizes how the environmental context of distinct pre-clinical models impacts both cell-intrinsic metabolic rewiring and metabolic crosstalk with the TME.
Collapse
Affiliation(s)
- Samuel A Kerk
- Doctoral Program in Cancer Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Lin Lin
- Department of Molecular and Integrative Physiology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Amy L Myers
- Department of Molecular and Integrative Physiology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Damien J Sutton
- Department of Molecular and Integrative Physiology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Anthony Andren
- Department of Molecular and Integrative Physiology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Peter Sajjakulnukit
- Doctoral Program in Cancer Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Li Zhang
- Department of Molecular and Integrative Physiology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Yaqing Zhang
- Department of Surgery, University of Michigan-Ann ArborAnn ArborUnited States
| | - Jennifer A Jiménez
- Doctoral Program in Cancer Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Barbara S Nelson
- Doctoral Program in Cancer Biology, University of Michigan-Ann ArborAnn ArborUnited States
- Department of Molecular and Integrative Physiology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Brandon Chen
- Department of Molecular and Integrative Physiology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Anthony Robinson
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Galloway Thurston
- Department of Molecular and Integrative Physiology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Samantha B Kemp
- Molecular and Cellular Pathology Graduate Program, University of Michigan-Ann ArborAnn ArborUnited States
| | - Nina G Steele
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Megan T Hoffman
- Department of Molecular and Integrative Physiology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Hui-Ju Wen
- Department of Molecular and Integrative Physiology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Daniel Long
- Department of Molecular and Integrative Physiology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Sarah E Ackenhusen
- Program in Chemical Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Johanna Ramos
- Department of Molecular and Integrative Physiology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Xiaohua Gao
- Department of Molecular and Integrative Physiology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Zeribe C Nwosu
- Department of Molecular and Integrative Physiology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Stefanie Galban
- Department of Radiology, University of MichiganAnn ArborUnited States
- Rogel Cancer Center, University of MichiganAnn ArborUnited States
| | - Christopher J Halbrook
- Department of Molecular and Integrative Physiology, University of Michigan-Ann ArborAnn ArborUnited States
| | - David B Lombard
- Department of Pathology and Institute of Gerontology, University of MichiganAnn ArborUnited States
| | - David R Piwnica-Worms
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan-Ann ArborAnn ArborUnited States
- Rogel Cancer Center, University of MichiganAnn ArborUnited States
| | - Howard C Crawford
- Department of Molecular and Integrative Physiology, University of Michigan-Ann ArborAnn ArborUnited States
- Rogel Cancer Center, University of MichiganAnn ArborUnited States
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan-Ann ArborAnn ArborUnited States
- Rogel Cancer Center, University of MichiganAnn ArborUnited States
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of MichiganAnn ArborUnited States
| | - Costas A Lyssiotis
- Doctoral Program in Cancer Biology, University of Michigan-Ann ArborAnn ArborUnited States
- Department of Molecular and Integrative Physiology, University of Michigan-Ann ArborAnn ArborUnited States
- Rogel Cancer Center, University of MichiganAnn ArborUnited States
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of MichiganAnn ArborUnited States
| |
Collapse
|
17
|
An amino acid-defined diet impairs tumour growth in mice by promoting endoplasmic reticulum stress and mTOR inhibition. Mol Metab 2022; 60:101478. [PMID: 35367410 PMCID: PMC9014392 DOI: 10.1016/j.molmet.2022.101478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 12/17/2022] Open
|
18
|
Human lactate dehydrogenase A undergoes allosteric transitions under pH conditions inducing the dissociation of the tetrameric enzyme. Biosci Rep 2022; 42:230681. [PMID: 35048959 PMCID: PMC8799922 DOI: 10.1042/bsr20212654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
The aerobic energetic metabolism of eukaryotic cells relies on the glycolytic generation of pyruvate, which is subsequently channelled to the oxidative phosphorylation taking place in mitochondria. However, under conditions limiting oxidative phosphorylation pyruvate is coupled to alternative energetic pathways, e.g. its reduction to lactate catalysed by lactate dehydrogenases (LDHs). This biochemical process is known to induce a significant decrease of cytosolic pH, and is accordingly denoted lactic acidosis. Nevertheless, the mutual dependence of LDHs action and lactic acidosis is far from being fully understood. Using human LDH-A, here we show that when exposed to acidic pH this enzyme is subjected to homotropic allosteric transitions triggered by pyruvate. Conversely, human LDH-A features Michaelis-Menten kinetics at pH values equal to 7.0 or higher. Further, citrate, isocitrate, and malate were observed to activate human LDH-A, both at pH 5.0 and 6.5, with citrate and isocitrate being responsible for major effects. Dynamic light scattering experiments revealed that the occurrence of allosteric kinetics in human LDH-A is mirrored by a consistent dissociation of the enzyme tetramer, suggesting that pyruvate promotes tetramer association under acidic conditions. Finally, using the human liver cancer cell line HepG2 we isolated cells featuring cytosolic pH equal to 7.3 or 6.5, and we observed a concomitant decrease of cytosolic pH and lactate secretion. Overall, our observations indicate the occurrence of a negative feedback between lactic acidosis and human LDH-A activity, and a complex regulation of this feedback by pyruvate and by some intermediates of the Krebs cycle.
Collapse
|
19
|
Effect of Coix Seed Extracts on Growth and Metabolism of Limosilactobacillus reuteri. Foods 2022; 11:foods11020187. [PMID: 35053919 PMCID: PMC8774368 DOI: 10.3390/foods11020187] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/20/2022] Open
Abstract
Coix seed (Coix lachryma-jobi L.) is an important nourishing food and traditional Chinese medicine. The role of their bioactive constituents in physiology and pharmacology has received considerable scientific attention. However, very little is known about the role of coix seed bioactive components in the growth of Limosilactobacillus reuteri (L. reuteri). This study aimed to evaluate the effects of coix seed extract (CSE) on the growth, acidifying activity, and metabolism of L. reuteri. The results showed that CSE can increase the growth and acidifying activity of L. reuteri compared with the control group. During the stationary phase, the viable bacteria in the medium supplemented with coix seed oil (CSO, 13.72 Log10 CFU/mL), coix polysaccharide (CPO, 12.24 Log10 CFU/mL), and coix protein (CPR, 11.91 Log10 CFU/mL) were significantly higher (p < 0.05) than the control group (MRS, 9.16 Log10 CFU/mL). CSE also enhanced the biosynthesis of lactic acid and acetic acid of L. reuteri. Untargeted metabolomics results indicated that the carbohydrate metabolism, amino acid metabolism, and nucleotide metabolism activities of L. reuteri were increased after adding CSE. Furthermore, CSE increased the accumulation of bioactive metabolites, such as phenyl lactic acid, vitamins, and biotin. Overall, CSE may have prebiotic potential and can be used to culture L. reuteri with high viable bacteria.
Collapse
|
20
|
Gaunt AP, Lewis JS, Hesse F, Cheng T, Marco‐Rius I, Brindle KM, Comment A. Labile Photo-Induced Free Radical in α-Ketoglutaric Acid: a Universal Endogenous Polarizing Agent for In Vivo Hyperpolarized 13 C Magnetic Resonance. Angew Chem Int Ed Engl 2022; 61:e202112982. [PMID: 34679201 PMCID: PMC7612908 DOI: 10.1002/anie.202112982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 12/25/2022]
Abstract
Hyperpolarized (HP) 13 C magnetic resonance enables non-invasive probing of metabolism in vivo. To date, only 13 C-molecules hyperpolarized with persistent trityl radicals have been injected in humans. We show here that the free radical photo-induced in alpha-ketoglutaric acid (α-KG) can be used to hyperpolarize photo-inactive 13 C-molecules such as [1-13 C]lactate. α-KG is an endogenous molecule with an exceptionally high radical yield under photo-irradiation, up to 50 %, and its breakdown product, succinic acid, is also endogenous. This radical precursor therefore exhibits an excellent safety profile for translation to human studies. The labile nature of the radical means that no filtration is required prior to injection while also offering the opportunity to extend the 13 C relaxation time in frozen HP 13 C-molecules for storage and transport. The potential for in vivo metabolic studies is demonstrated in the rat liver following the injection of a physiological dose of HP [1-13 C]lactate.
Collapse
Affiliation(s)
- Adam P. Gaunt
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Jennifer S. Lewis
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Friederike Hesse
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Tian Cheng
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Irene Marco‐Rius
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Kevin M. Brindle
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Arnaud Comment
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
- General Electric HealthcarePollards Wood, Nightingales LaneChalfont St GilesHP8 4SPUK
| |
Collapse
|
21
|
Gaunt AP, Lewis JS, Hesse F, Cheng T, Marco‐Rius I, Brindle KM, Comment A. Labile Photo-Induced Free Radical in α-Ketoglutaric Acid: a Universal Endogenous Polarizing Agent for In Vivo Hyperpolarized 13C Magnetic Resonance. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202112982. [PMID: 38505340 PMCID: PMC10947361 DOI: 10.1002/ange.202112982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 11/11/2022]
Abstract
Hyperpolarized (HP) 13C magnetic resonance enables non-invasive probing of metabolism in vivo. To date, only 13C-molecules hyperpolarized with persistent trityl radicals have been injected in humans. We show here that the free radical photo-induced in alpha-ketoglutaric acid (α-KG) can be used to hyperpolarize photo-inactive 13C-molecules such as [1-13C]lactate. α-KG is an endogenous molecule with an exceptionally high radical yield under photo-irradiation, up to 50 %, and its breakdown product, succinic acid, is also endogenous. This radical precursor therefore exhibits an excellent safety profile for translation to human studies. The labile nature of the radical means that no filtration is required prior to injection while also offering the opportunity to extend the 13C relaxation time in frozen HP 13C-molecules for storage and transport. The potential for in vivo metabolic studies is demonstrated in the rat liver following the injection of a physiological dose of HP [1-13C]lactate.
Collapse
Affiliation(s)
- Adam P. Gaunt
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Jennifer S. Lewis
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Friederike Hesse
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Tian Cheng
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Irene Marco‐Rius
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Kevin M. Brindle
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Arnaud Comment
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
- General Electric HealthcarePollards Wood, Nightingales LaneChalfont St GilesHP8 4SPUK
| |
Collapse
|