1
|
Lobato S, Salomón-Soto VM, Espinosa-Méndez CM, Herrera-Moreno MN, García-Solano B, Pérez-González E, Comba-Marcó-del-Pont F, Montesano-Villamil M, Mora-Ramírez MA, Mancilla-Simbro C, Álvarez-Valenzuela R. Molecular Pathways Linking High-Fat Diet and PM 2.5 Exposure to Metabolically Abnormal Obesity: A Systematic Review and Meta-Analysis. Biomolecules 2024; 14:1607. [PMID: 39766314 PMCID: PMC11674716 DOI: 10.3390/biom14121607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Obesity, influenced by environmental pollutants, can lead to complex metabolic disruptions. This systematic review and meta-analysis examined the molecular mechanisms underlying metabolically abnormal obesity caused by exposure to a high-fat diet (HFD) and fine particulate matter (PM2.5). Following the PRISMA guidelines, articles from 2019 to 2024 were gathered from Scopus, Web of Science, and PubMed, and a random-effects meta-analysis was performed, along with subgroup analyses and pathway enrichment analyses. This study was registered in the Open Science Framework. Thirty-three articles, mainly case-control studies and murine models, were reviewed, and they revealed that combined exposure to HFD and PM2.5 resulted in the greatest weight gain (82.835 g, p = 0.048), alongside increases in high-density lipoproteins, insulin, and the superoxide dismutase. HFD enriched pathways linked to adipocytokine signaling in brown adipose tissue, while PM2.5 impacted genes associated with fat formation. Both exposures downregulated protein metabolism pathways in white adipose tissue and activated stress-response pathways in cardiac tissue. Peroxisome proliferator-activated receptor and AMP-activated protein kinase signaling pathways in the liver were enriched, influencing non-alcoholic fatty liver disease. These findings highlight that combined exposure to HFD and PM2.5 amplifies body weight gain, oxidative stress, and metabolic dysfunction, suggesting a synergistic interaction with significant implications for metabolic health.
Collapse
Affiliation(s)
- Sagrario Lobato
- Departamento de Investigación en Salud, Servicios de Salud del Estado de Puebla, 603 North 6th Street, Centro Colony, Puebla 72000, Mexico;
- Clínica de Medicina Familiar con Especialidades y Quirófano ISSSTE, 27 North Street 603, Santa Maria la Rivera Colony, Puebla 72045, Mexico
- Educación Superior, Centro de Estudios, “Justo Sierra”, Surutato, Badiraguato 80600, Mexico; (V.M.S.-S.); (M.N.H.-M.); (C.M.-S.); (R.Á.-V.)
| | - Víctor Manuel Salomón-Soto
- Educación Superior, Centro de Estudios, “Justo Sierra”, Surutato, Badiraguato 80600, Mexico; (V.M.S.-S.); (M.N.H.-M.); (C.M.-S.); (R.Á.-V.)
| | - Claudia Magaly Espinosa-Méndez
- Facultad de Cultura Física, Benemérita Universidad Autónoma de Puebla, San Claudio Avenue and 22nd South Boulevard, Ciudad Universitaria Colony, Puebla 72560, Mexico;
| | - María Nancy Herrera-Moreno
- Educación Superior, Centro de Estudios, “Justo Sierra”, Surutato, Badiraguato 80600, Mexico; (V.M.S.-S.); (M.N.H.-M.); (C.M.-S.); (R.Á.-V.)
- Departamento de Medio Ambiente, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa, Instituto Politécnico Nacional, Juan de Dios Bátiz Boulevard 250, San Joachin Colony, Guasave 81049, Mexico
| | - Beatriz García-Solano
- Facultad de Enfermería, Benemérita Universidad Autónoma de Puebla, 25th Avenue West 1304, Los Volcanes Colony, Puebla 74167, Mexico
| | - Ernestina Pérez-González
- Educación Superior, Centro de Estudios, “Justo Sierra”, Surutato, Badiraguato 80600, Mexico; (V.M.S.-S.); (M.N.H.-M.); (C.M.-S.); (R.Á.-V.)
- Departamento de Medio Ambiente, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa, Instituto Politécnico Nacional, Juan de Dios Bátiz Boulevard 250, San Joachin Colony, Guasave 81049, Mexico
| | - Facundo Comba-Marcó-del-Pont
- Facultad de Cultura Física, Benemérita Universidad Autónoma de Puebla, San Claudio Avenue and 22nd South Boulevard, Ciudad Universitaria Colony, Puebla 72560, Mexico;
| | - Mireya Montesano-Villamil
- Subsecretaría de Servicios de Salud Zona B, Servicios de Salud del Estado de Puebla, 603 North 6th Street, Centro Colony, Puebla 72000, Mexico;
| | - Marco Antonio Mora-Ramírez
- Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, San Claudio Avenue 1814, Ciudad Universitaria Colony, Puebla 72560, Mexico;
| | - Claudia Mancilla-Simbro
- Educación Superior, Centro de Estudios, “Justo Sierra”, Surutato, Badiraguato 80600, Mexico; (V.M.S.-S.); (M.N.H.-M.); (C.M.-S.); (R.Á.-V.)
- HybridLab, Fisiología y Biología Molecular de Células Excitables, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Prolongation of 14th South Street 6301, Ciudad Universitaria Colony, Puebla 72560, Mexico
| | - Ramiro Álvarez-Valenzuela
- Educación Superior, Centro de Estudios, “Justo Sierra”, Surutato, Badiraguato 80600, Mexico; (V.M.S.-S.); (M.N.H.-M.); (C.M.-S.); (R.Á.-V.)
| |
Collapse
|
2
|
Nawa F, Sai M, Vietor J, Schwarzenbach R, Bitić A, Wolff S, Ildefeld N, Pabel J, Wein T, Marschner JA, Heering J, Merk D. Tuning RXR Modulators for PGC1α Recruitment. J Med Chem 2024; 67:16338-16354. [PMID: 39258574 DOI: 10.1021/acs.jmedchem.4c01231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The molecular activation mechanism of the nuclear retinoid X receptors (RXRs) crucially involves ligand-induced corepressor release and coactivator recruitment which mediate transcriptional repression or activation. The ability of RXR to bind diverse coactivators suggests that a coregulator-selective modulation by ligands may open an avenue to tissue- or gene-selective RXR activation. Here, we identified strong induction of peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) binding to RXR by a synthetic agonist but not by the endogenous ligand 9-cis retinoic acid. Structure-guided diversification of this lead resulted in a set of three structurally related RXR agonists with different ability to promote PGC1α recruitment in cell-free and cellular context. These results demonstrate that selective modulation of coregulator recruitment to RXR can be achieved with molecular glues and potentially open new therapeutic opportunities by targeting the ligand-induced RXR-PGC1α interaction.
Collapse
Affiliation(s)
- Felix Nawa
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Minh Sai
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Jan Vietor
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Roman Schwarzenbach
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Anesa Bitić
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Sina Wolff
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Niklas Ildefeld
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Jörg Pabel
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Thomas Wein
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Julian A Marschner
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
| | - Daniel Merk
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| |
Collapse
|
3
|
Lai W, Yu L, Deng Y. PPARγ alleviates preeclampsia development by regulating lipid metabolism and ferroptosis. Commun Biol 2024; 7:429. [PMID: 38594496 PMCID: PMC11004023 DOI: 10.1038/s42003-024-06063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/18/2024] [Indexed: 04/11/2024] Open
Abstract
The study aims to explore the effect of PPARγ signaling on ferroptosis and preeclampsia (PE) development. Serum and placental tissue are collected from healthy subjects and PE patients. The PPARγ and Nrf2 decreases in the PE. Rosiglitazone intervention reverses hypoxia-induced trophoblast ferroptosis and decreases lipid synthesis by regulating Nfr2 and SREBP1. Compared to the Hypoxia group, the migratory and invasive abilities enhance after rosiglitazone and ferr1 treatment. Rosiglitazone reduces the effect of hypoxia and erastin. The si-Nrf2 treatment attenuats the effects of rosiglitazone on proliferation, migration, and invasion. The si-Nrf2 does not affect SREBP1 expression. PPARγ agonists alleviates ferroptosis in the placenta of the PE rats. The study confirms that PPARγ signaling and ferroptosis-related indicators were dysregulated in PE. PPARγ/Nrf2 signaling affects ferroptosis by regulating lipid oxidation rather than SREBP1-mediated lipid synthesis. In conclusion, our study find that PPARγ can alleviate PE development by regulating lipid oxidation and ferroptosis.
Collapse
Affiliation(s)
- Weisi Lai
- Department of Obstetrics and Gynecology, Second XiangYa Hospital of Central South University, Changsha, China
| | - Ling Yu
- Department of Obstetrics and Gynecology, Second XiangYa Hospital of Central South University, Changsha, China
| | - Yali Deng
- Department of Obstetrics and Gynecology, Second XiangYa Hospital of Central South University, Changsha, China.
| |
Collapse
|
4
|
Kruglov V, Jang IH, Camell CD. Inflammaging and fatty acid oxidation in monocytes and macrophages. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00038. [PMID: 38249577 PMCID: PMC10798594 DOI: 10.1097/in9.0000000000000038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
Fatty acid oxidation (FAO), primarily known as β-oxidation, plays a crucial role in breaking down fatty acids within mitochondria and peroxisomes to produce cellular energy and preventing metabolic dysfunction. Myeloid cells, including macrophages, microglia, and monocytes, rely on FAO to perform essential cellular functions and uphold tissue homeostasis. As individuals age, these cells show signs of inflammaging, a condition that includes a chronic onset of low-grade inflammation and a decline in metabolic function. These lead to changes in fatty acid metabolism and a decline in FAO pathways. Recent studies have shed light on metabolic shifts occurring in macrophages and monocytes during aging, correlating with an altered tissue environment and the onset of inflammaging. This review aims to provide insights into the connection of inflammatory pathways and altered FAO in macrophages and monocytes from older organisms. We describe a model in which there is an extended activation of receptor for advanced glycation end products, nuclear factor-κB (NF-κB) and the nod-like receptor family pyrin domain containing 3 inflammasome within macrophages and monocytes. This leads to an increased level of glycolysis, and also promotes pro-inflammatory cytokine production and signaling. As a result, FAO-related enzymes such as 5' AMP-activated protein kinase and peroxisome proliferator-activated receptor-α are reduced, adding to the escalation of inflammation, accumulation of lipids, and heightened cellular stress. We examine the existing body of literature focused on changes in FAO signaling within macrophages and monocytes and their contribution to the process of inflammaging.
Collapse
Affiliation(s)
- Victor Kruglov
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - In Hwa Jang
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Christina D. Camell
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
5
|
Xu M, Wang W, Feng J, Ruan Z, Le Y, Liu Y, Zhang Q, Wang C. The mechanism underlying pentabromoethylbenzene-induced adipogenesis and the obesogenic outcome in both cell and mouse model. ENVIRONMENT INTERNATIONAL 2023; 178:108088. [PMID: 37429055 DOI: 10.1016/j.envint.2023.108088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
Convergent evidence links traditional brominated flame retardants (BFRs) exposure to weight gain, while the obesogenic potency of new BFRs (NBFRs) remain largely unknown. Aiding by luciferase-reporter gene assay, the present study revealed only pentabromoethylbenzene (PBEB), an alternative for penta-BDEs, binds with retinoid X receptor α (RXRα) but not peroxisomeproliferator receptor γ (PPARγ) among the seven testing NBFRs. An apparent induction of adipogenesis in 3T3-L1 cells was observed at nanomolar of PBEB, much lower than penta-BFRs. Mechanistic research uncovered PBEB initiated the adipogenesis by demethylated CpG sites in the PPARγ promoter region. Specifically, activation RXRα by PBEB strengthened the activity of RXRα/PPARγ heterodimer, tightened the interaction between the heterodimer and PPAR response elements, and further enhanced adipogenesis. RNA sequencing combined with k-means clustering analysis exposed adenosine 5'-monophosphate (AMP)-activated protein kinase and phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT) signaling as two predominant pathways that enriched in PBEB-induced lipogenesis. The obesogenic outcome was further corroborated in offspring mice when the maternal mice exposed to environmental relevant doses of PBEB. We found the male offspring exhibited adipocyte hypertrophy and increased weight gain in the epididymal white adipose tissue (eWAT). Consistent with in vitro findings, the reduction in protein phosphorylation of both AMPK and PI3K/AKT were observed within eWAT. Thus, we posited PBEB disrupts the pathways controlling adipogenesis and adipose tissue maintenance, supporting its potential as an environmental obesogen.
Collapse
Affiliation(s)
- Mengting Xu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Wanyue Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Jiafan Feng
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Zheng Ruan
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, Zhejiang, People's Republic of China
| | - Yifei Le
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Ying Liu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Cui Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
6
|
Arifi S, Marschner JA, Pollinger J, Isigkeit L, Heitel P, Kaiser A, Obeser L, Höfner G, Proschak E, Knapp S, Chaikuad A, Heering J, Merk D. Targeting the Alternative Vitamin E Metabolite Binding Site Enables Noncanonical PPARγ Modulation. J Am Chem Soc 2023. [PMID: 37385602 DOI: 10.1021/jacs.3c03417] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The lipid-sensing transcription factor PPARγ is the target of antidiabetic thiazolidinediones (TZD). At two sites within its ligand binding domain, it also binds oxidized vitamin E metabolites and the vitamin E mimetic garcinoic acid. While the canonical interaction within the TZD binding site mediates classical PPARγ activation, the effects of the second binding on PPARγ activity remain elusive. Here, we identified an agonist mimicking dual binding of vitamin E metabolites and developed a selective ligand of the second site, unveiling potential noncanonical regulation of PPARγ activities. We found that this alternative binding event can simultaneously occur with orthosteric ligands and it exerted different effects on PPARγ-cofactor interactions compared to both orthosteric PPARγ agonists and antagonists, indicating the diverse roles of the two binding sites. Alternative site binding lacked the pro-adipogenic effect of TZD and mediated no classical PPAR signaling in differential gene expression analysis but markedly diminished FOXO signaling, suggesting potential therapeutic applications.
Collapse
Affiliation(s)
- Silvia Arifi
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany
| | - Julian A Marschner
- Department of Pharmacy, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Julius Pollinger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany
| | - Laura Isigkeit
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany
| | - Pascal Heitel
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany
| | - Astrid Kaiser
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany
| | - Lennart Obeser
- Department of Pharmacy, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Georg Höfner
- Department of Pharmacy, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, D-60596 Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany
- Structural Genomics Consortium, BMLS, Goethe University Frankfurt, D-60438 Frankfurt, Germany
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany
- Structural Genomics Consortium, BMLS, Goethe University Frankfurt, D-60438 Frankfurt, Germany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, D-60596 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany
- Department of Pharmacy, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| |
Collapse
|
7
|
Díaz-Holguín A, Rashidian A, Pijnenburg D, Monteiro Ferreira G, Stefela A, Kaspar M, Kudova E, Poso A, van Beuningen R, Pavek P, Kronenberger T. When Two Become One: Conformational Changes in FXR/RXR Heterodimers Bound to Steroidal Antagonists. ChemMedChem 2023; 18:e202200556. [PMID: 36398403 DOI: 10.1002/cmdc.202200556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Farnesoid X receptor (FXR) is a nuclear receptor with an essential role in regulating bile acid synthesis and cholesterol homeostasis. FXR activation by agonists is explained by an αAF-2-trapping mechanism; however, antagonism mechanisms are diverse. We discuss microsecond molecular dynamics (MD) simulations investigating our recently reported FXR antagonists 2a and 2 h. We study the antagonist-induced conformational changes in the FXR ligand-binding domain, when compared to the synthetic (GW4064) or steroidal (chenodeoxycholic acid, CDCA) FXR agonists in the FXR monomer or FXR/RXR heterodimer r, and in the presence and absence of the coactivator. Our MD data suggest ligand-specific influence on conformations of different FXR-LBD regions, including the α5/α6 region, αAF-2, and α9-11. Changes in the heterodimerization interface induced by antagonists seem to be associated with αAF-2 destabilization, which prevents both co-activator and co-repressor recruitment. Our results provide new insights into the conformational behaviour of FXR, suggesting that FXR antagonism/agonism shift requires a deeper assessment than originally proposed by crystal structures.
Collapse
Affiliation(s)
- Alejandro Díaz-Holguín
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, 70211, Finland.,Current address: Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, 75124, Uppsala, Sweden
| | - Azam Rashidian
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.,Department of Internal Medicine VIII, University Hospital of Tübingen, Otfried-Müller-Strasse 14, 72076, Tübingen, Germany
| | - Dirk Pijnenburg
- PamGene International B.V., Wolvenhoek 10, 5211HH, 's-Hertogenbosch, Netherlands
| | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, 05508-000, São Paulo, Brazil
| | - Alzbeta Stefela
- Department of Pharmacology and Toxicology, Charles University, Heyrovskeho 1203, 50005, Hradec Kralove, Czechia
| | - Miroslav Kaspar
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542/2, 16000, Prague, Czechia.,Faculty of Sciences, Charles University in Prague, Albertov 6, Prague 2, 12843, Czechia
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542/2, 16000, Prague, Czechia
| | - Antti Poso
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.,Department of Internal Medicine VIII, University Hospital of Tübingen, Otfried-Müller-Strasse 14, 72076, Tübingen, Germany.,School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Rinie van Beuningen
- PamGene International B.V., Wolvenhoek 10, 5211HH, 's-Hertogenbosch, Netherlands
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Charles University, Heyrovskeho 1203, 50005, Hradec Kralove, Czechia
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.,Department of Internal Medicine VIII, University Hospital of Tübingen, Otfried-Müller-Strasse 14, 72076, Tübingen, Germany.,School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| |
Collapse
|
8
|
Bohn T, de Lera AR, Landrier JF, Carlsen H, Merk D, Todt T, Renaut J, Rühl R. State-of-the-art methodological investigation of carotenoid activity and metabolism - from organic synthesis via metabolism to biological activity - exemplified by a novel retinoid signalling pathway. Food Funct 2023; 14:621-638. [PMID: 36562448 DOI: 10.1039/d2fo02816f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Carotenoids are the most abundant lipophilic secondary plant metabolites and their dietary intake has been related to a large number of potential health benefits relevant for humans, including even reduced total mortality. An important feature is their potential to impact oxidative stress and inflammatory pathways, by interacting with transcription factors. For example, they may act as precursors of bioactive derivatives activating nuclear hormone receptor mediated signalling. These bioactive derivatives, originating e.g. from β-carotene, i.e. retinoids / vitamin A, can activate the nuclear hormone receptors RARs (retinoic acid receptors). Due to new analytical insights, various novel metabolic pathways were recently outlined to be mediated via distinct nuclear hormone receptor activating pathways that were predicted and further confirmed. In this article, we describe old and novel metabolic pathways from various carotenoids towards novel ligands of alternative nuclear hormone receptors. However, to fully elucidate these pathways, a larger array of techniques and tools, starting from organic synthesis, lipidomics, reporter models, classical in vitro and in vivo models and further omics-approaches and their statistical evaluation are needed to comprehensively and conclusively study this topic. Thus, we further describe state-of-the-art techniques from A to Ω elucidating carotenoid biological mediated activities and describe in detail required materials and methods needed - in practical protocol form - for the various steps of carotenoid investigations.
Collapse
Affiliation(s)
- Torsten Bohn
- Luxembourg Institute of Health, Nutrition and Health Research Group, Department of Precision Health, 1 A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, 36310 Vigo, Spain
| | | | - Harald Carlsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Daniel Merk
- Ludwig-Maximilians-Universität München, Department of Pharmacy, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Tilman Todt
- HAN University of Applied Sciences, School of Applied Biosciences and Chemistry, Nijmegen, The Netherlands
| | - Jenny Renaut
- Luxembourg Institute of Science and Technology, 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | - Ralph Rühl
- CISCAREX UG, Berlin, Germany. .,Paprika Bioanalytics BT, Debrecen, Hungary
| |
Collapse
|
9
|
Interactions governing transcriptional activity of nuclear receptors. Biochem Soc Trans 2022; 50:1941-1952. [DOI: 10.1042/bst20220338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
The key players in transcriptional regulation are transcription factors (TFs), proteins that bind specific DNA sequences. Several mechanisms exist to turn TFs ‘on’ and ‘off’, including ligand binding which induces conformational changes within TFs, subsequently influencing multiple inter- and intramolecular interactions to drive transcriptional responses. Nuclear receptors are a specific family of ligand-regulated TFs whose activity relies on interactions with DNA, coregulator proteins and other receptors. These multidomain proteins also undergo interdomain interactions on multiple levels, further modulating transcriptional outputs. Cooperation between these distinct interactions is critical for appropriate transcription and remains an intense area of investigation. In this review, we report and summarize recent findings that continue to advance our mechanistic understanding of how interactions between nuclear receptors and diverse partners influence transcription.
Collapse
|
10
|
Heering J, Jores N, Kilu W, Schallmayer E, Peelen E, Muehler A, Kohlhof H, Vitt D, Linhard V, Gande SL, Chaikuad A, Sreeramulu S, Schwalbe H, Merk D. Mechanistic Impact of Different Ligand Scaffolds on FXR Modulation Suggests Avenues to Selective Modulators. ACS Chem Biol 2022; 17:3159-3168. [PMID: 36318238 DOI: 10.1021/acschembio.2c00599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The bile-acid sensing nuclear farnesoid X receptor (FXR) is an attractive target for the treatment of hepatic and metabolic diseases, but application of this chemotherapeutic concept remains limited due to adverse effects of FXR activation observed in clinical trials. To elucidate the mechanistic basis of FXR activation at the molecular level, we have systematically studied FXR co-regulator interactions and dimerization in response to seven chemically diverse FXR ligands. Different molecular effects on FXR activation mediated by different scaffolds were evident and aligned with characteristic structural changes within the ligand binding domain of FXR. A partial FXR agonist acted mainly through co-repressor displacement from FXR and caused an FXR-regulated gene expression pattern markedly differing from FXR agonist effects. These results suggest selective modulation of FXR dimerization and co-regulator interactions for different ligands, offering a potential avenue for the design of gene- or tissue-selective FXR modulators.
Collapse
Affiliation(s)
- Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596Frankfurt, Germany
| | - Nathalie Jores
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, 60438Frankfurt, Germany
| | - Whitney Kilu
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, 60438Frankfurt, Germany
| | - Espen Schallmayer
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, 60438Frankfurt, Germany
| | | | | | | | | | - Verena Linhard
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, 60438Frankfurt, Germany
| | - Santosh L Gande
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, 60438Frankfurt, Germany
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, 60438Frankfurt, Germany
| | - Sridhar Sreeramulu
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, 60438Frankfurt, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, 60438Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, 60438Frankfurt, Germany.,Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377Munich, Germany
| |
Collapse
|
11
|
Zaienne D, Arifi S, Marschner JA, Heering J, Merk D. Druggability Evaluation of the Neuron Derived Orphan Receptor (NOR-1) Reveals Inverse NOR-1 Agonists. ChemMedChem 2022; 17:e202200259. [PMID: 35704774 PMCID: PMC9542104 DOI: 10.1002/cmdc.202200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 11/23/2022]
Abstract
The neuron derived orphan receptor (NOR-1, NR4A3) is among the least studied nuclear receptors. Its physiological role and therapeutic potential remain widely elusive which is in part due to the lack of chemical tools that can directly modulate NOR-1 activity. To probe the possibility of pharmacological NOR-1 modulation, we have tested a drug fragment library for NOR-1 activation and repression. Despite low hit-rate (<1 %), we have obtained three NOR-1 ligand chemotypes one of which could be rapidly expanded to an analogue comprising low micromolar inverse NOR-1 agonist potency and altering NOR-1 regulated gene expression in a cellular setting. It confirms druggability of the transcription factor and may serve as an early tool to assess the role and potential of NOR-1.
Collapse
Affiliation(s)
- Daniel Zaienne
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
| | - Silvia Arifi
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
| | - Julian A. Marschner
- Department of PharmacyLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPTheodor-Stern-Kai 760596FrankfurtGermany
| | - Daniel Merk
- Department of PharmacyLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
| |
Collapse
|
12
|
Wang X, Kong C, Liu P, Zhou B, Geng W, Tang H. Therapeutic Effects of Retinoic Acid in Lipopolysaccharide-Induced Cardiac Dysfunction: Network Pharmacology and Experimental Validation. J Inflamm Res 2022; 15:4963-4979. [PMID: 36105385 PMCID: PMC9467448 DOI: 10.2147/jir.s358374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Sepsis, which is deemed as a systemic inflammation reaction syndrome in the face of infectious stimuli, is the primary cause of death in ICUs. Sepsis-induced cardiomyopathy (SIC) may derive from systemic inflammation reaction and oxidative stress. Retinoic acid (RA) is recognized by its beneficial roles in terms of the immunoresponse to infections and antioxygen actions. However, the treatment efficacy and potential causal links of RA in SIC are still elusive. Methods By virtue of the STITCH database, we identified the targets of RA. Differentially expressed genes in SIC were acquired from the GEO database. The PPI network of intersected targets was established. GO and KEGG pathway enrichment analysis was completed. Hub genes were analyzed by cytoHubba plug-in. In the process of experimental validation, a mouse sepsis model was established by lipopolysaccharide (LPS), and the treated mice were intraperitoneally injected with RA or Dexamethasone (DEX) 60 min prior to LPS injections. Survival conditions, cardiac functions and antioxidant levels of the mice were assessed. Cardiac inflammation and injury were detected by HE and TUNEL. The levels of key genes and signal pathway expression were analyzed by RT-PCR and Western blot. Results PPARA, ITGAM, VCAM-1, IGF-1 and IL-6 were identified as key therapeutic targets of RA by network pharmacology. PI3K-Akt signaling pathway is the main regulatory pathway of RA. In vivo researches unraveled that RA can improve the survival rate and cardiac function of LPS-treated mice, inhibit inflammatory factors and myocardial injury, and regulate the expression of key therapeutic targets and key pathways, which is PI3K-Akt signaling pathway. Conclusion Network pharmacological method offers a predicative strategy to explore the treatment efficacy and causal links of RA in endotoxemic myocarditis. Through experimental verification, we discover that RA can reduce lipopolysaccharide-induced cardiac dysfunction by regulating the PI3K-Akt signaling pathway and key genes.
Collapse
Affiliation(s)
- Xi Wang
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou, People’s Republic of China
| | - Chang Kong
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Pan Liu
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou, People’s Republic of China
| | - Baofeng Zhou
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou, People’s Republic of China
| | - Wujun Geng
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou, People’s Republic of China
| | - Hongli Tang
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou, People’s Republic of China
- Correspondence: Hongli Tang; Wujun Geng, Doctor’s Degree, Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang, 325000, People’s Republic of China, Tel +86 13587436057; +86 15325502139, Fax +86 0577-88069555, Email ;
| |
Collapse
|
13
|
H M Ehrler J, Brunst S, Tjaden A, Kilu W, Heering J, Hernandez-Olmos V, Krommes A, Kramer JS, Steinhilber D, Schubert-Zsilavecz M, Müller-Knapp S, Merk D, Proschak E. Compilation and Evaluation of Fatty Acid Mimetics Screening Library. Biochem Pharmacol 2022; 204:115191. [PMID: 35907497 DOI: 10.1016/j.bcp.2022.115191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/02/2022]
Abstract
Focused compound libraries are well-established tools for hit identification in drug discovery and chemical probe development. We present the compilation and application of a focused screening library of fatty acid mimetics (FAMs), which are compounds designed to bind the orthosteric site proteins that endogenously accommodate natural fatty acids and lipid metabolites. This set complies with chemical properties of FAM and was found suitable for use also in cellular setting. Several hits were retrieved in screening the focused library against diverse fatty acid binding targets including the enzymes soluble epoxide hydrolase (sEH) and leukotriene A4 hydrolase (LTA4H), the nuclear receptors peroxisome proliferator-activated receptor γ (PPARγ) and retinoid X receptor α (RXRα), the carrier proteins fatty acid binding protein 4 and 5 (FABP4 and FABP5), as well as the G-protein coupled receptors leukotriene B4 receptor 1 (BLT1) and free-fatty acid receptor 1 (FFAR1). Thus, the focused FAM library is suitable to obtain chemical starting matter for fatty acid binding proteins and valuable extends available screening collections.
Collapse
Affiliation(s)
- Johanna H M Ehrler
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Steffen Brunst
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Amelie Tjaden
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Whitney Kilu
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Victor Hernandez-Olmos
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Andrè Krommes
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Jan S Kramer
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Manfred Schubert-Zsilavecz
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Susanne Müller-Knapp
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Ludwig-Maximilians-Universität München, Department of Pharmacy, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany.
| |
Collapse
|
14
|
de Vink PJ, Koops AA, D'Arrigo G, Cruciani G, Spyrakis F, Brunsveld L. Cooperativity as quantification and optimization paradigm for nuclear receptor modulators. Chem Sci 2022; 13:2744-2752. [PMID: 35340861 PMCID: PMC8890100 DOI: 10.1039/d1sc06426f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/19/2022] [Indexed: 01/01/2023] Open
Abstract
A cooperativity framework describes the formation of nuclear receptor ternary complexes and deconvolutes ligand and cofactor binding into intrinsic affinities and a cooperativity factor, providing a conceptually new understanding of NR modulation.
Collapse
Affiliation(s)
- Pim J. de Vink
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Auke A. Koops
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Giulia D'Arrigo
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O. Box 513, 5600MB Eindhoven, The Netherlands
- Department of Drug Science and Technology, University of Turin, via Giuria 9, 10125 Turin, Italy
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, via Giuria 9, 10125 Turin, Italy
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O. Box 513, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
15
|
Faudone G, Kilu W, Ni X, Chaikuad A, Sreeramulu S, Heitel P, Schwalbe H, Knapp S, Schubert-Zsilavecz M, Heering J, Merk D. The Transcriptional Repressor Orphan Nuclear Receptor TLX Is Responsive to Xanthines. ACS Pharmacol Transl Sci 2021; 4:1794-1807. [PMID: 34927011 PMCID: PMC8669710 DOI: 10.1021/acsptsci.1c00195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 11/28/2022]
Abstract
The orphan nuclear receptor tailless homologue (TLX) is expressed almost exclusively in neural stem cells acting as an essential factor for their survival and is hence considered as a promising drug target in neurodegeneration. However, few studies have characterized the roles of TLX due to the lack of ligands and limited functional understanding. Here, we identify xanthines including caffeine and istradefylline as TLX modulators that counteract the receptor's intrinsic repressor activity. Mutagenesis of residues lining a cavity within the TLX ligand binding domain altered the activity of these ligands, suggesting direct interactions with helix 5. Using xanthines as tool compounds, we observed a ligand-sensitive recruitment of the co-repressor silencing mediator for retinoid or thyroid-hormone receptors, TLX homodimerization, and heterodimerization with the retinoid X receptor. These protein-protein interactions evolve as factors that modulate the TLX function and suggest an unprecedented role of TLX in directly repressing other nuclear receptors.
Collapse
Affiliation(s)
- Giuseppe Faudone
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Whitney Kilu
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Xiaomin Ni
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
- Structural
Genomics Consortium, BMLS, Goethe University
Frankfurt, Max-von-Laue-Str. 15, D-60438 Frankfurt, Germany
| | - Apirat Chaikuad
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
- Structural
Genomics Consortium, BMLS, Goethe University
Frankfurt, Max-von-Laue-Str. 15, D-60438 Frankfurt, Germany
| | - Sridhar Sreeramulu
- Center
for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic
Chemistry and Chemical Biology, Goethe University
Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt, Germany
| | - Pascal Heitel
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Harald Schwalbe
- Center
for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic
Chemistry and Chemical Biology, Goethe University
Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt, Germany
| | - Stefan Knapp
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
- Structural
Genomics Consortium, BMLS, Goethe University
Frankfurt, Max-von-Laue-Str. 15, D-60438 Frankfurt, Germany
| | - Manfred Schubert-Zsilavecz
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Jan Heering
- Fraunhofer
Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Daniel Merk
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
- Department
of Pharmacy, Ludwig-Maximilians-Universität
München, Butenandtstr.
5-13, D-81377 Munich, Germany
| |
Collapse
|
16
|
Lillich FF, Willems S, Ni X, Kilu W, Borkowsky C, Brodsky M, Kramer JS, Brunst S, Hernandez-Olmos V, Heering J, Schierle S, Kestner RI, Mayser FM, Helmstädter M, Göbel T, Weizel L, Namgaladze D, Kaiser A, Steinhilber D, Pfeilschifter W, Kahnt AS, Proschak A, Chaikuad A, Knapp S, Merk D, Proschak E. Structure-Based Design of Dual Partial Peroxisome Proliferator-Activated Receptor γ Agonists/Soluble Epoxide Hydrolase Inhibitors. J Med Chem 2021; 64:17259-17276. [PMID: 34818007 DOI: 10.1021/acs.jmedchem.1c01331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polypharmaceutical regimens often impair treatment of patients with metabolic syndrome (MetS), a complex disease cluster, including obesity, hypertension, heart disease, and type II diabetes. Simultaneous targeting of soluble epoxide hydrolase (sEH) and peroxisome proliferator-activated receptor γ (PPARγ) synergistically counteracted MetS in various in vivo models, and dual sEH inhibitors/PPARγ agonists hold great potential to reduce the problems associated with polypharmacy in the context of MetS. However, full activation of PPARγ leads to fluid retention associated with edema and weight gain, while partial PPARγ agonists do not have these drawbacks. In this study, we designed a dual partial PPARγ agonist/sEH inhibitor using a structure-guided approach. Exhaustive structure-activity relationship studies lead to the successful optimization of the designed lead. Crystal structures of one representative compound with both targets revealed potential points for optimization. The optimized compounds exhibited favorable metabolic stability, toxicity, selectivity, and desirable activity in adipocytes and macrophages.
Collapse
Affiliation(s)
- Felix F Lillich
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Xiaomin Ni
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University, Max-von-Laue-Str. 15, D-60438 Frankfurt, Germany
| | - Whitney Kilu
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Carmen Borkowsky
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Mirko Brodsky
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Jan S Kramer
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Steffen Brunst
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Victor Hernandez-Olmos
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Simone Schierle
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Roxane-I Kestner
- Department of Neurology, University Hospital Frankfurt, Goethe University, D-60590 Frankfurt am Main, Germany
| | - Franziska M Mayser
- Department of Neurology, University Hospital Frankfurt, Goethe University, D-60590 Frankfurt am Main, Germany
| | - Moritz Helmstädter
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Tamara Göbel
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Lilia Weizel
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Dmitry Namgaladze
- Institute of Biochemistry I, University Hospital Frankfurt, Goethe University, D-60590 Frankfurt am Main, Germany
| | - Astrid Kaiser
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Waltraud Pfeilschifter
- Department of Neurology, University Hospital Frankfurt, Goethe University, D-60590 Frankfurt am Main, Germany
| | - Astrid S Kahnt
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Anna Proschak
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University, Max-von-Laue-Str. 15, D-60438 Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University, Max-von-Laue-Str. 15, D-60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| |
Collapse
|