1
|
Zhang W, Dong E, Zhang J, Zhang Y. CaMKII, 'jack of all trades' in inflammation during cardiac ischemia/reperfusion injury. J Mol Cell Cardiol 2023; 184:48-60. [PMID: 37813179 DOI: 10.1016/j.yjmcc.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023]
Abstract
Myocardial infarction and revascularization cause cardiac ischemia/reperfusion (I/R) injury featuring cardiomyocyte death and inflammation. The Ca2+/calmodulin dependent protein kinase II (CaMKII) family are serine/ threonine protein kinases that are involved in I/R injury. CaMKII exists in four different isoforms, α, β, γ, and δ. In the heart, CaMKII-δ is the predominant isoform,with multiple splicing variants, such as δB, δC and δ9. During I/R, elevated intracellular Ca2+ concentrations and reactive oxygen species activate CaMKII. In this review, we summarized the regulation and function of CaMKII in multiple cell types including cardiomyocytes, endothelial cells, and macrophages during I/R. We conclude that CaMKII mediates inflammation in the microenvironment of the myocardium, resulting in cell dysfunction, elevated inflammation, and cell death. However, different CaMKII-δ variants exhibit distinct or even opposite functions. Therefore, reagents/approaches that selectively target specific CaMKII isoforms and variants are needed for evaluating and counteracting the exact role of CaMKII in I/R injury and developing effective treatments against I/R injury.
Collapse
Affiliation(s)
- Wenjia Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Erdan Dong
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China; Haihe Laboratory of Cell Ecosystem, Beijing 100191, China
| | - Junxia Zhang
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China; Haihe Laboratory of Cell Ecosystem, Beijing 100191, China.
| | - Yan Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| |
Collapse
|
2
|
Xiang W, Zhou N, Li L, Chen F, Li L, Wang Y. βIV-Spectrin in Cardiac Fibroblasts: Implications for Fibrosis and Therapeutic Targeting in Cardiac Diseases. Comment on Nassal et al. Spectrin-Based Regulation of Cardiac Fibroblast Cell-Cell Communication. Cells 2023, 12, 748. Cells 2023; 12:2186. [PMID: 37681918 PMCID: PMC10486720 DOI: 10.3390/cells12172186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Fibroblasts in the heart, traditionally recognized as interstitial cells, have long been overlooked in the study of cardiac physiology and pathology [...].
Collapse
Affiliation(s)
- Wenjing Xiang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China (F.C.)
| | - Ning Zhou
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China (F.C.)
| | - Lei Li
- School of Public Health, Xi’an Jiaotong University, Xi’an 710061, China;
| | - Faming Chen
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China (F.C.)
| | - Lei Li
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China (F.C.)
| | - Ying Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China (F.C.)
| |
Collapse
|
3
|
Nassal DM, Shaheen R, Patel NJ, Yu J, Leahy N, Bibidakis D, Parinandi NL, Hund TJ. Spectrin-Based Regulation of Cardiac Fibroblast Cell-Cell Communication. Cells 2023; 12:748. [PMID: 36899883 PMCID: PMC10001335 DOI: 10.3390/cells12050748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Cardiac fibroblasts (CFs) maintain the fibrous extracellular matrix (ECM) that supports proper cardiac function. Cardiac injury induces a transition in the activity of CFs to promote cardiac fibrosis. CFs play a critical role in sensing local injury signals and coordinating the organ level response through paracrine communication to distal cells. However, the mechanisms by which CFs engage cell-cell communication networks in response to stress remain unknown. We tested a role for the action-associated cytoskeletal protein βIV-spectrin in regulating CF paracrine signaling. Conditioned culture media (CCM) was collected from WT and βIV-spectrin deficient (qv4J) CFs. WT CFs treated with qv4J CCM showed increased proliferation and collagen gel compaction compared to control. Consistent with the functional measurements, qv4J CCM contained higher levels of pro-inflammatory and pro-fibrotic cytokines and increased concentration of small extracellular vesicles (30-150 nm diameter, exosomes). Treatment of WT CFs with exosomes isolated from qv4J CCM induced a similar phenotypic change as that observed with complete CCM. Treatment of qv4J CFs with an inhibitor of the βIV-spectrin-associated transcription factor, STAT3, decreased the levels of both cytokines and exosomes in conditioned media. This study expands the role of the βIV-spectrin/STAT3 complex in stress-induced regulation of CF paracrine signaling.
Collapse
Affiliation(s)
- Drew M. Nassal
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Rebecca Shaheen
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Nehal J. Patel
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jane Yu
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Nick Leahy
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Dimitra Bibidakis
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Narasimham L. Parinandi
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Thomas J. Hund
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Liver Proteome Alterations in Red Deer ( Cervus elaphus) Infected by the Giant Liver Fluke Fascioloides magna. Pathogens 2022; 11:pathogens11121503. [PMID: 36558836 PMCID: PMC9786150 DOI: 10.3390/pathogens11121503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Liver fluke infections are recognised as diseases with worldwide distribution and considerable veterinary and public health importance. The giant liver fluke, Fascioloides magna, is an important non-native parasite which has been introduced to Europe, posing a threat to the survival of local wildlife populations such as red deer (Cervus elaphus). The aim of the study was to analyse differences in liver proteomes between F. magna-infected and control red deer groups using a label-based high-throughput quantitative proteomics approach. The proteomics analysis identified 234 proteins with differential abundance between the control and infected groups. Our findings showed that F. magna infection in this definitive host is associated with changes in the metabolism of proteins and fatty acids, oxidative stress, fibrosis, and signaling pathways. The identified proteins and associated biological pathways represent a valuable contribution to the understanding of host-parasite interactions and the pathogenesis of liver fluke infection.
Collapse
|
5
|
Winkle AJ, Nassal DM, Shaheen R, Thomas E, Mohta S, Gratz D, Weinberg SH, Hund TJ. Emerging therapeutic targets for cardiac hypertrophy. Expert Opin Ther Targets 2022; 26:29-40. [PMID: 35076342 PMCID: PMC8885901 DOI: 10.1080/14728222.2022.2031974] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Cardiac hypertrophy is associated with adverse outcomes across cardiovascular disease states. Despite strides over the last three decades in identifying molecular and cellular mechanisms driving hypertrophy, the link between pathophysiological stress stimuli and specific myocyte/heart growth profiles remains unclear. Moreover, the optimal strategy for preventing pathology in the setting of hypertrophy remains controversial. AREAS COVERED This review discusses molecular mechanisms underlying cardiac hypertrophy with a focus on factors driving the orientation of myocyte growth and the impact on heart function. We highlight recent work showing a novel role for the spectrin-based cytoskeleton, emphasizing regulation of myocyte dimensions but not hypertrophy per se. Finally, we consider opportunities for directing the orientation of myocyte growth in response to hypertrophic stimuli as an alternative therapeutic approach. Relevant publications on the topic were identified through Pubmed with open-ended search dates. EXPERT OPINION To define new therapeutic avenues, more precision is required when describing changes in myocyte and heart structure/function in response to hypertrophic stimuli. Recent developments in computational modeling of hypertrophic networks, in concert with more refined experimental approaches will catalyze translational discovery to advance the field and further our understanding of cardiac hypertrophy and its relationship with heart disease.
Collapse
Affiliation(s)
- Alexander J Winkle
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University, Columbus, OH, USA
| | - Drew M Nassal
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University, Columbus, OH, USA
| | - Rebecca Shaheen
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University, Columbus, OH, USA
| | - Evelyn Thomas
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University, Columbus, OH, USA
| | - Shivangi Mohta
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University, Columbus, OH, USA
| | - Daniel Gratz
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University, Columbus, OH, USA
| | - Seth H Weinberg
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University, Columbus, OH, USA
| | - Thomas J Hund
- The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University, Columbus, OH, USA.,Department of Internal Medicine, College of Medicine, the Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
6
|
Morrow JS, Stankewich MC. The Spread of Spectrin in Ataxia and Neurodegenerative Disease. JOURNAL OF EXPERIMENTAL NEUROLOGY 2021; 2:131-139. [PMID: 34528024 PMCID: PMC8439443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Experimental and hereditary defects in the ubiquitous scaffolding proteins of the spectrin gene family cause an array of neuropathologies. Most recognized are ataxias caused by missense, deletions, or truncations in the SPTBN2 gene that encodes beta III spectrin. Such mutations disrupt the organization of post-synaptic receptors, their active transport through the secretory pathway, and the organization and dynamics of the actin-based neuronal skeleton. Similar mutations in SPTAN1 that encodes alpha II spectrin cause severe and usually lethal neurodevelopmental defects including one form of early infantile epileptic encephalopathy type 5 (West syndrome). Defects in these and other spectrins are implicated in degenerative and psychiatric conditions. In recent published work, we describe in mice a novel variant of alpha II spectrin that results in a progressive ataxia with widespread neurodegenerative change. The action of this variant is distinct, in that rather than disrupting a constitutive ligand-binding function of spectrin, the mutation alters its response to calcium and calmodulin-regulated signaling pathways including its response to calpain activation. As such, it represents a novel spectrinopathy that targets a key regulatory pathway where calcium and tyrosine kinase signals converge. Here we briefly discuss the various roles of spectrin in neuronal processes and calcium activated regulatory inputs that control its participation in neuronal growth, organization, and remodeling. We hypothesize that damage to the neuronal spectrin scaffold may be a common final pathway in many neurodegenerative disorders. Targeting the pathways that regulate spectrin function may thus offer novel avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Jon S. Morrow
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA,Molecular & Cellular Developmental Biology, Yale University, New Haven, CT 06520, USA,Correspondence should be addressed to Jon S. Morrow; , Michael Stankewich;
| | - Michael C. Stankewich
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA,Correspondence should be addressed to Jon S. Morrow; , Michael Stankewich;
| |
Collapse
|