1
|
Zemskov EA, Zemskova MA, Wu X, Moreno Caceres S, Caraballo Delgado D, Yegambaram M, Lu Q, Fu P, Wang T, Black SM. Novel mechanism of cyclic nucleotide crosstalk mediated by PKG-dependent proteasomal degradation of the Hsp90 client protein phosphodiesterase 3A. J Biol Chem 2024; 300:107723. [PMID: 39214301 PMCID: PMC11497409 DOI: 10.1016/j.jbc.2024.107723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Endothelial cAMP-specific phosphodiesterase PDE3A is one of the major negative regulators of the endothelial barrier function in acute lung injury models. However, the mechanisms underlying its regulation still need to be fully resolved. We show here that the PDE3A is a newly described client of the molecular chaperone heat shock protein 90 (hsp90). In endothelial cells (ECs), hsp90 inhibition by geldanamycin (GA) led to a disruption of the hsp90/PDE3A complex, followed by a significant decrease in PDE3A protein levels. The decrease in PDE3A protein levels was ubiquitin-proteasome-dependent and required the activity of the E3 ubiquitin ligase C terminus of Hsc70-interacting protein. GA treatment also enhanced the association of PDE3A with hsp70, which partially prevented PDE3A degradation. GA-induced decreases in PDE3A protein levels correlated with decreased PDE3 activity and increased cAMP levels in EC. We also demonstrated that protein kinase G-dependent phosphorylation of PDE3A at Ser654 can signal the dissociation of PDE3A from hsp90 and PDE3A degradation. This was confirmed by endogenous PDE3A phosphorylation and degradation in 8-Br-cGMP- or 8-CPT-cGMP- and Bay 41-8543-stimulated EC and comparisons of WT- and phospho-mimic S654D mutant PDE3A protein stability in transiently transfected HEK293 cells. In conclusion, we have identified a new mechanism of PDE3A regulation mediated by the ubiquitin-proteasome system. Further, the degradation of PDE3A is controlled by the phosphorylation of S654 and the interaction with hsp90. We speculate that targeting the PDE3A/hsp90 complex could be a therapeutic approach for acute lung injury.
Collapse
Affiliation(s)
- Evgeny A Zemskov
- Center for Translational Science, Florida International University, Port St Lucie, Florida, USA; Cellular & Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Marina A Zemskova
- Center for Translational Science, Florida International University, Port St Lucie, Florida, USA
| | - Xiaomin Wu
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Santiago Moreno Caceres
- Center for Translational Science, Florida International University, Port St Lucie, Florida, USA
| | - David Caraballo Delgado
- Center for Translational Science, Florida International University, Port St Lucie, Florida, USA
| | - Manivannan Yegambaram
- Center for Translational Science, Florida International University, Port St Lucie, Florida, USA
| | - Qing Lu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Miami, Florida, USA
| | - Panfeng Fu
- Center for Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Miami, Florida, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Miami, Florida, USA
| | - Stephen M Black
- Center for Translational Science, Florida International University, Port St Lucie, Florida, USA; Cellular & Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Miami, Florida, USA.
| |
Collapse
|
2
|
Li C, Zhu M, Liu S, Zhang J, Ye H, Zhang C, Ji D, Tang H, Zhang Y, Wu J, Huang Z. Development of Nitric Oxide-Donating Netarsudil Derivatives as a Synergistic Therapy for Glaucoma with Reduced Ocular Irritation. J Med Chem 2024; 67:16311-16327. [PMID: 39163586 DOI: 10.1021/acs.jmedchem.4c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Based on the synergistic therapeutic effect of nitric oxide (NO) and Rho-associated protein kinase (ROCK) inhibitors on glaucoma, a series of NO-donating Netarsudil derivatives were designed, synthesized, and their activities in vitro and in vivo were evaluated. Among them, (S)-10e released an appropriate amount of NO in aqueous humor in vitro and displayed potent ROCK inhibition. Topical administration of (S)-10e significantly lowered intraocular pressure in an acute ocular hypertension rabbit model and protected retinal ganglion cells in a magnetic microbead occlusion mouse model. A metabolism investigation revealed that (S)-10e released 7a, a metabolite after NO releasing, and 13, an active metabolite of (S)-Netarsudil, in rabbit eyes. Notably, introducing an NO donor moiety attenuated ROCK inhibition-induced ocular irritation in an sGC-independent manner, suggesting that the attenuated conjunctival hyperemia effect of (S)-10e is related to the NO-induced protein S-nitrosation of phosphodiesterase 3A (PDE3A). Overall, (S)-10e is a promising candidate for glaucoma treatment.
Collapse
Affiliation(s)
- Cunrui Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Mingchao Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Songqi Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Jiaming Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Hui Ye
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Chen Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Duorui Ji
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Haoyang Tang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Jianbing Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
- School of Pharmacy, Key Laboratory of Active Components of Xinjiang Natural Medicine and Drug Release Technology, Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Xinjiang Medical University, Urumqi 830054, China
| |
Collapse
|
3
|
Pokharel MD, Fu P, Garcia-Flores A, Yegambaram M, Lu Q, Sun X, Unwalla H, Aggarwal S, Fineman JR, Wang T, Black SM. Inflammatory lung injury is associated with endothelial cell mitochondrial fission and requires the nitration of RhoA and cytoskeletal remodeling. Free Radic Biol Med 2024; 221:125-135. [PMID: 38734269 PMCID: PMC11179967 DOI: 10.1016/j.freeradbiomed.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/12/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
Higher levels of extracellular nicotinamide phosphoribosyltransferase (eNAMPT), a TLR4 agonist, are associated with poor clinical outcomes in sepsis-induced acute lung injury (ALI). Little is known regarding the mechanisms by which eNAMPT is involved in ALI. Our recent work has identified a crucial role for mitochondrial dysfunction in ALI. Thus, this study aimed to determine if eNAMPT-mediated inflammatory injury is associated with the loss of mitochondrial function. Our data show that eNAMPT disrupted mitochondrial bioenergetics. This was associated with cytoskeleton remodeling and the loss of endothelial barrier integrity. These changes were associated with enhanced mitochondrial fission and blocked when Rho-kinase (ROCK) was inhibited. The increases in mitochondrial fission were also associated with the nitration-mediated activation of the small GTPase activator of ROCK, RhoA. Blocking RhoA nitration decreased eNAMPT-mediated mitochondrial fission and endothelial barrier dysfunction. The increase in fission was linked to a RhoA-ROCK mediated increase in Drp1 (dynamin-related protein 1) at serine(S)616. Another TLR4 agonist, lipopolysaccharide (LPS), also increased mitochondrial fission in a Drp1 and RhoA-ROCK-dependent manner. To validate our findings in vivo, we challenged C57BL/6 mice with eNAMPT in the presence and absence of the Drp1 inhibitor, Mdivi-1. Mdivi-1 treatment protected against eNAMPT-induced lung inflammation, edema, and lung injury. These studies demonstrate that mitochondrial fission-dependent disruption of mitochondrial function is essential in TLR4-mediated inflammatory lung injury and identify a key role for RhoA-ROCK signaling. Reducing mitochondrial fission could be a potential therapeutic strategy to improve ARDS outcomes.
Collapse
Affiliation(s)
- Marissa D Pokharel
- Department of Cellular & Molecular Medicine, Herbert Wertheim College of Medicine, Miami, FL, USA; Center for Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Panfeng Fu
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, University Park, FL, USA
| | | | - Manivannan Yegambaram
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, University Park, FL, USA
| | - Qing Lu
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, University Park, FL, USA
| | - Xutong Sun
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, University Park, FL, USA
| | - Hoshang Unwalla
- Department of Immunology and Nano-Medicine, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Saurabh Aggarwal
- Department of Cellular & Molecular Medicine, Herbert Wertheim College of Medicine, Miami, FL, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA; Department of Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, University Park, FL, USA
| | - Stephen M Black
- Department of Cellular & Molecular Medicine, Herbert Wertheim College of Medicine, Miami, FL, USA; Center for Translational Science, Florida International University, Port St. Lucie, FL, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, University Park, FL, USA.
| |
Collapse
|
4
|
Vielmuth F, Radeva MY, Yeruva S, Sigmund AM, Waschke J. cAMP: A master regulator of cadherin-mediated binding in endothelium, epithelium and myocardium. Acta Physiol (Oxf) 2023; 238:e14006. [PMID: 37243909 DOI: 10.1111/apha.14006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Regulation of cadherin-mediated cell adhesion is crucial not only for maintaining tissue integrity and barrier function in the endothelium and epithelium but also for electromechanical coupling within the myocardium. Therefore, loss of cadherin-mediated adhesion causes various disorders, including vascular inflammation and desmosome-related diseases such as the autoimmune blistering skin dermatosis pemphigus and arrhythmogenic cardiomyopathy. Mechanisms regulating cadherin-mediated binding contribute to the pathogenesis of diseases and may also be used as therapeutic targets. Over the last 30 years, cyclic adenosine 3',5'-monophosphate (cAMP) has emerged as one of the master regulators of cell adhesion in endothelium and, more recently, also in epithelial cells as well as in cardiomyocytes. A broad spectrum of experimental models from vascular physiology and cell biology applied by different generations of researchers provided evidence that not only cadherins of endothelial adherens junctions (AJ) but also desmosomal contacts in keratinocytes and the cardiomyocyte intercalated discs are central targets in this scenario. The molecular mechanisms involve protein kinase A- and exchange protein directly activated by cAMP-mediated regulation of Rho family GTPases and S665 phosphorylation of the AJ and desmosome adaptor protein plakoglobin. In line with this, phosphodiesterase 4 inhibitors such as apremilast have been proposed as a therapeutic strategy to stabilize cadherin-mediated adhesion in pemphigus and may also be effective to treat other disorders where cadherin-mediated binding is compromised.
Collapse
Affiliation(s)
- Franziska Vielmuth
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Mariya Y Radeva
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sunil Yeruva
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Anna M Sigmund
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
5
|
Piacenza L, Zeida A, Trujillo M, Radi R. The superoxide radical switch in the biology of nitric oxide and peroxynitrite. Physiol Rev 2022; 102:1881-1906. [PMID: 35605280 DOI: 10.1152/physrev.00005.2022] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Lucìa Piacenza
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Uruguay
| | - Ari Zeida
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| |
Collapse
|