1
|
Steinz MM, Beard N, Shorter E, Lanner JT. Stable oxidative posttranslational modifications alter the gating properties of RyR1. J Gen Physiol 2024; 156:e202313515. [PMID: 39499505 PMCID: PMC11540854 DOI: 10.1085/jgp.202313515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/03/2024] [Accepted: 10/03/2024] [Indexed: 11/07/2024] Open
Abstract
The ryanodine receptor type 1 (RyR1) is a Ca2+ release channel that regulates skeletal muscle contraction by controlling Ca2+ release from the sarcoplasmic reticulum (SR). Posttranslational modifications (PTMs) of RyR1, such as phosphorylation, S-nitrosylation, and carbonylation are known to increase RyR1 open probability (Po), contributing to SR Ca2+ leak and skeletal muscle dysfunction. PTMs on RyR1 have been linked to muscle dysfunction in diseases like breast cancer, rheumatoid arthritis, Duchenne muscle dystrophy, and aging. While reactive oxygen species (ROS) and oxidative stress induce PTMs, the impact of stable oxidative modifications like 3-nitrotyrosine (3-NT) and malondialdehyde adducts (MDA) on RyR1 gating remains unclear. Mass spectrometry and single-channel recordings were used to study how 3-NT and MDA modify RyR1 and affect Po. Both modifications increased Po in a dose-dependent manner, with mass spectrometry identifying 30 modified residues out of 5035 amino acids per RyR1 monomer. Key modifications were found in domains critical for protein interaction and channel activation, including Y808/3NT in SPRY1, Y1081/3NT and H1254/MDA in SPRY2&3, and Q2107/MDA and Y2128/3NT in JSol, near the binding site of FKBP12. Though these modifications did not directly overlap with FKBP12 binding residues, they promoted FKBP12 dissociation from RyR1. These findings provide detailed insights into how stable oxidative PTMs on RyR1 residues alter channel gating, advancing our understanding of RyR1-mediated Ca2+ release in conditions associated with oxidative stress and muscle weakness.
Collapse
Affiliation(s)
- Maarten M. Steinz
- Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology lab, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Beard
- Faculty or Science and Technology, University of Canberra, Canberra, Australia
| | - Emily Shorter
- Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology lab, Karolinska Institutet, Stockholm, Sweden
| | - Johanna T. Lanner
- Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology lab, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Yang X, Bu X, Li Y, Shen R, Duan Y, Liu M, Ma X, Guo Z, Chen C, He L, Shi H, Kong X, Zhang L. Effects of oxidative stress and protein S-nitrosylation interactions on mitochondrial pathway apoptosis and tenderness of yak meat during postmortem aging. Food Res Int 2024; 191:114717. [PMID: 39059914 DOI: 10.1016/j.foodres.2024.114717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
To reveal the interaction of oxidative stress and protein S-nitrosylation on mitochondrial pathway apoptosis and tenderness development in postmortem yak meat. Herein, we selected yak longissimus dorsi muscle as the research object and treated hydrogen peroxide (H2O2) with S-nitrosoglutathione agent (GSNO) as well as Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME) in mixed injections with 0.9 % saline as a control group, followed by incubation at 4 °C for 12, 24, 72, 120 and 168 h. Results showed that this interaction significantly increased mitochondrial ROS and NO content (P < 0.05) while weakening the antioxidant capacity of GSH and TRX redox response systems or accelerating the Ca2+ release process, leading to mitochondrial functional impairment and increased apoptosis rate. Notably, the H2O2 + L-NAME group showed more pronounced apoptosis. Hence, we suggest that the interaction between oxidative stress and protein S-nitrosylation could positively regulate yak meat tenderization.
Collapse
Affiliation(s)
- Xue Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xinrong Bu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yiheng Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Ruheng Shen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yufeng Duan
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Mengying Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaotong Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhaobin Guo
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Cheng Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Long He
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Hongmei Shi
- Gansu Gannan Animal Husbandry and Veterinary Workstation, Gannan 747000, China
| | - Xiangying Kong
- Qinghai Haibei Animal Husbandry and Veterinary Science Research Institute, Haibei 812200, China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
3
|
Taweechat P, Boonamnaj P, Samsó M, Sompornpisut P. Significance of Zn 2+ in RyR1 for Structural Integrity and Ligand Binding: Insight from Molecular Dynamics. J Phys Chem B 2024; 128:4670-4684. [PMID: 38717304 PMCID: PMC11103704 DOI: 10.1021/acs.jpcb.4c01189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024]
Abstract
Ryanodine receptor type 1 (RyR1) is a Ca2+-release channel central to skeletal muscle excitation-contraction (EC) coupling. RyR1's cryo-EM structures reveal a zinc-finger motif positioned within the cytoplasmic C-terminal domain (CTD). Yet, owing to limitations in cryo-EM resolution, RyR1 structures lack precision in detailing the metal coordination structure, prompting the need for an accurate model. In this study, we employed molecular dynamics (MD) simulations and the density functional theory (DFT) method to refine the binding characteristics of Zn2+ in the zinc-finger site of the RyR1 channel. Our findings also highlight substantial conformational changes in simulations conducted in the absence of Zn2+. Notably, we observed a loss of contact at the interface between protein domains proximal to the zinc-finger site, indicating a crucial role of Zn2+ in maintaining structural integrity and interdomain interactions within RyR1. Furthermore, this study provides valuable insights into the modulation of ATP, Ca2+, and caffeine binding, shedding light on the intricate relationship between Zn2+ coordination and the dynamic behavior of RyR1. Our integrative approach combining MD simulations and DFT calculations enhances our understanding of the molecular mechanisms governing ligand binding in RyR1.
Collapse
Affiliation(s)
- Panyakorn Taweechat
- Center
of Excellence in Computational Chemistry, Department of Chemistry,
Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panisak Boonamnaj
- Center
of Excellence in Computational Chemistry, Department of Chemistry,
Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Montserrat Samsó
- Department
of Physiology and Biophysics, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
| | - Pornthep Sompornpisut
- Center
of Excellence in Computational Chemistry, Department of Chemistry,
Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Chirasani VR, Elferdink M, Kral M, Carter JS, Heitmann S, Meissner G, Yamaguchi N. Structural and functional interactions between the EF hand domain and S2-S3 loop in the type-1 ryanodine receptor ion channel. J Biol Chem 2024; 300:105606. [PMID: 38159862 PMCID: PMC10832476 DOI: 10.1016/j.jbc.2023.105606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024] Open
Abstract
Previous cryo-electron micrographs suggested that the skeletal muscle Ca2+ release channel, ryanodine receptor (RyR)1, is regulated by intricate interactions between the EF hand Ca2+ binding domain and the cytosolic loop (S2-S3 loop). However, the precise molecular details of these interactions and functional consequences of the interactions remain elusive. Here, we used molecular dynamics simulations to explore the specific amino acid pairs involved in hydrogen bond interactions within the EF hand-S2-S3 loop interface. Our simulations unveiled two key interactions: (1) K4101 (EF hand) with D4730 (S2-S3 loop) and (2) E4075, Q4078, and D4079 (EF hand) with R4736 (S2-S3 loop). To probe the functional significance of these interactions, we constructed mutant RyR1 complementary DNAs and expressed them in HEK293 cells for [3H]ryanodine binding assays. Our results demonstrated that mutations in the EF hand, specifically K4101E and K4101M, resulted in reduced affinities for Ca2+/Mg2+-dependent inhibitions. Interestingly, the K4101E mutation increased the affinity for Ca2+-dependent activation. Conversely, mutations in the S2-S3 loop, D4730K and D4730N, did not significantly change the affinities for Ca2+/Mg2+-dependent inhibitions. Our previous finding that skeletal disease-associated RyR1 mutations, R4736Q and R4736W, impaired Ca2+-dependent inhibition, is consistent with the current results. In silico mutagenesis analysis aligned with our functional data, indicating altered hydrogen bonding patterns upon mutations. Taken together, our findings emphasize the critical role of the EF hand-S2-S3 loop interaction in Ca2+/Mg2+-dependent inhibition of RyR1 and provide insights into potential therapeutic strategies targeting this domain interaction for the treatment of skeletal myopathies.
Collapse
Affiliation(s)
- Venkat R Chirasani
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; R.L. Juliano Structural Bioinformatics Core, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Millar Elferdink
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA; Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina and Clemson University, Charleston, South Carolina, USA; College of Charleston Honors College, Charleston, South Carolina, USA
| | - MacKenzie Kral
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA; Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina and Clemson University, Charleston, South Carolina, USA; College of Charleston Honors College, Charleston, South Carolina, USA
| | - Jordan S Carter
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA; Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina and Clemson University, Charleston, South Carolina, USA
| | - Savannah Heitmann
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA; Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina and Clemson University, Charleston, South Carolina, USA
| | - Gerhard Meissner
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Naohiro Yamaguchi
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA; Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina and Clemson University, Charleston, South Carolina, USA.
| |
Collapse
|
5
|
Toth N, Zhang XH, Zamaro A, Morad M. Calcium Signaling Consequences of RyR2-S4938F Mutation Expressed in Human iPSC-Derived Cardiomyocytes. Int J Mol Sci 2023; 24:15307. [PMID: 37894987 PMCID: PMC10607246 DOI: 10.3390/ijms242015307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/02/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Type-2 ryanodine receptor (RyR2) is the major Ca2+ release channel of the cardiac sarcoplasmic reticulum (SR) that controls the rhythm and strength of the heartbeat, but its malfunction may generate severe arrhythmia leading to sudden cardiac death or heart failure. S4938F-RyR2 mutation in the carboxyl-terminal was expressed in human induced pluripotent stem cells derived cardiomyocytes (hiPSC-CMs) using CRISPR/Cas9 gene-editing technique. Ca2+ signaling and electrophysiological properties of beating cardiomyocytes carrying the mutation were studied using total internal reflection fluorescence microscopy (TIRF) and patch clamp technique. In mutant cells, L-type Ca2+ currents (ICa), measured either by depolarizations to zero mV or repolarizations from +100 mV to -50 mV, and their activated Ca2+ transients were significantly smaller, despite their larger caffeine-triggered Ca2+ release signals compared to wild type (WT) cells, suggesting ICa-induced Ca2+ release (CICR) was compromised. The larger SR Ca2+ content of S4938F-RyR2 cells may underlie the higher frequency of spontaneously occurring Ca2+ sparks and Ca2+ transients and their arrhythmogenic phenotype.
Collapse
Affiliation(s)
- Noemi Toth
- Cardiac Signaling Center, University of South Carolina, Medical University of South Carolina and Clemson University, Charleston, SC 29425, USA; (N.T.); (X.-H.Z.)
| | - Xiao-Hua Zhang
- Cardiac Signaling Center, University of South Carolina, Medical University of South Carolina and Clemson University, Charleston, SC 29425, USA; (N.T.); (X.-H.Z.)
| | - Alexandra Zamaro
- Cardiac Signaling Center, University of South Carolina, Medical University of South Carolina and Clemson University, Charleston, SC 29425, USA; (N.T.); (X.-H.Z.)
| | - Martin Morad
- Cardiac Signaling Center, University of South Carolina, Medical University of South Carolina and Clemson University, Charleston, SC 29425, USA; (N.T.); (X.-H.Z.)
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
6
|
Kim ES, Casey JG, Tao BS, Mansur A, Mathiyalagan N, Wallace ED, Ehrmann BM, Gupta VA. Intrinsic and extrinsic regulation of rhabdomyolysis susceptibility by Tango2. Dis Model Mech 2023; 16:dmm050092. [PMID: 37577943 PMCID: PMC10499024 DOI: 10.1242/dmm.050092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023] Open
Abstract
Rhabdomyolysis is a clinical emergency characterized by severe muscle damage, resulting in the release of intracellular muscle components, which leads to myoglobinuria and, in severe cases, acute kidney failure. Rhabdomyolysis is caused by genetic factors linked to increased disease susceptibility in response to extrinsic triggers. Recessive mutations in TANGO2 result in episodic rhabdomyolysis, metabolic crises, encephalopathy and cardiac arrhythmia. The underlying mechanism contributing to disease onset in response to specific triggers remains unclear. To address these challenges, we created a zebrafish model of Tango2 deficiency. Here, we demonstrate that the loss of Tango2 in zebrafish results in growth defects, early lethality and increased susceptibility of skeletal muscle defects in response to extrinsic triggers, similar to TANGO2-deficient patients. Using lipidomics, we identified alterations in the glycerolipid pathway in tango2 mutants, which is critical for membrane stability and energy balance. Therefore, these studies provide insight into key disease processes in Tango2 deficiency and have increased our understanding of the impacts of specific defects on predisposition to environmental triggers in TANGO2-related disorders.
Collapse
Affiliation(s)
- Euri S. Kim
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer G. Casey
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA 02115, USA
| | - Brian S. Tao
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA 02115, USA
| | - Arian Mansur
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA 02115, USA
| | - Nishanthi Mathiyalagan
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA 02115, USA
| | - E. Diane Wallace
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brandie M. Ehrmann
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Vandana A. Gupta
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Figueroa L, Kraeva N, Manno C, Ibarra-Moreno CA, Tammineni ER, Riazi S, Rios E. Distinct pathophysiological characteristics in developing muscle from patients susceptible to malignant hyperthermia. Br J Anaesth 2023; 131:47-55. [PMID: 36792386 PMCID: PMC10308439 DOI: 10.1016/j.bja.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 12/19/2022] [Accepted: 01/02/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Most patients with malignant hyperthermia susceptibility diagnosed by the in vitro caffeine-halothane contracture test (CHCT) develop excessive force in response to halothane but not caffeine (halothane-hypersensitive). Hallmarks of halothane-hypersensitive patients include high incidence of musculoskeletal symptoms at rest and abnormal calcium events in muscle. By measuring sensitivity to halothane of myotubes and extending clinical observations and cell-level studies to a large group of patients, we reach new insights into the pathological mechanism of malignant hyperthermia susceptibility. METHODS Patients with malignant hyperthermia susceptibility were classified into subgroups HH and HS (positive to halothane only and positive to both caffeine and halothane). The effects on [Ca2+]cyto of halothane concentrations between 0.5 and 3 % were measured in myotubes and compared with CHCT responses of muscle. A clinical index that summarises patient symptoms was determined for 67 patients, together with a calcium index summarising resting [Ca2+]cyto and spontaneous and electrically evoked Ca2+ events in their primary myotubes. RESULTS Halothane-hypersensitive myotubes showed a higher response to halothane 0.5% than the caffeine-halothane hypersensitive myotubes (P<0.001), but a lower response to higher concentrations, comparable with that used in the CHCT (P=0.055). The HH group had a higher calcium index (P<0.001), but their clinical index was not significantly elevated vs the HS. Principal component analysis identified electrically evoked Ca2+ spikes and resting [Ca2+]cyto as the strongest variables for separation of subgroups. CONCLUSIONS Enhanced sensitivity to depolarisation and to halothane appear to be the primary, mutually reinforcing and phenotype-defining defects of halothane-hypersensitive patients with malignant hyperthermia susceptibility.
Collapse
Affiliation(s)
- Lourdes Figueroa
- Department of Physiology and Biophysics, Rush University Medical Centre, Chicago, IL, USA.
| | - Natalia Kraeva
- Malignant Hyperthermia Unit, Department of Anaesthesiology and Pain Medicine, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Carlo Manno
- Department of Physiology and Biophysics, Rush University Medical Centre, Chicago, IL, USA
| | - Carlos A Ibarra-Moreno
- Malignant Hyperthermia Unit, Department of Anaesthesiology and Pain Medicine, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Eshwar R Tammineni
- Department of Physiology and Biophysics, Rush University Medical Centre, Chicago, IL, USA
| | - Sheila Riazi
- Malignant Hyperthermia Unit, Department of Anaesthesiology and Pain Medicine, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Eduardo Rios
- Department of Physiology and Biophysics, Rush University Medical Centre, Chicago, IL, USA
| |
Collapse
|
8
|
Tambeaux A, Aguilar-Sánchez Y, Santiago DJ, Mascitti M, DiNovo KM, Mejía-Alvarez R, Fill M, Wayne Chen SR, Ramos-Franco J. Ligand sensitivity of type-1 inositol 1,4,5-trisphosphate receptor is enhanced by the D2594K mutation. Pflugers Arch 2023; 475:569-581. [PMID: 36881190 PMCID: PMC10105685 DOI: 10.1007/s00424-023-02796-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/06/2023] [Accepted: 02/12/2023] [Indexed: 03/08/2023]
Abstract
Inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RyR) are homologous cation channels that mediate release of Ca2+ from the endoplasmic/sarcoplasmic reticulum (ER/SR) and thereby are involved in many physiological processes. In previous studies, we determined that when the D2594 residue, located at or near the gate of the IP3R type 1, was replaced by lysine (D2594K), a gain of function was obtained. This mutant phenotype was characterized by increased IP3 sensitivity. We hypothesized the IP3R1-D2594 determines the ligand sensitivity of the channel by electrostatically affecting the stability of the closed and open states. To test this possibility, the relationship between the D2594 site and IP3R1 regulation by IP3, cytosolic, and luminal Ca2+ was determined at the cellular, subcellular, and single-channel levels using fluorescence Ca2+ imaging and single-channel reconstitution. We found that in cells, D2594K mutation enhances the IP3 ligand sensitivity. Single-channel IP3R1 studies revealed that the conductance of IP3R1-WT and -D2594K channels is similar. However, IP3R1-D2594K channels exhibit higher IP3 sensitivity, with substantially greater efficacy. In addition, like its wild type (WT) counterpart, IP3R1-D2594K showed a bell-shape cytosolic Ca2+-dependency, but D2594K had greater activity at each tested cytosolic free Ca2+ concentration. The IP3R1-D2594K also had altered luminal Ca2+ sensitivity. Unlike IP3R1-WT, D2594K channel activity did not decrease at low luminal Ca2+ levels. Taken together, our functional studies indicate that the substitution of a negatively charged residue by a positive one at the channels' pore cytosolic exit affects the channel's gating behavior thereby explaining the enhanced ligand-channel's sensitivity.
Collapse
Affiliation(s)
- Allison Tambeaux
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA
| | - Yuriana Aguilar-Sánchez
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA.,Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Demetrio J Santiago
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA.,Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Karyn M DiNovo
- Department of Physiology, Midwestern University, Downers Grove, IL, USA
| | | | - Michael Fill
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA
| | - S R Wayne Chen
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA.,Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Josefina Ramos-Franco
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
9
|
Gong S, Yin Y, Han M, Guo L, Duan Y, Guo Q, Yin J, Li F. Dietary leucine and fish oil cooperatively regulate skeletal myofiber type transformation via the CaMKII signaling pathway of pigs. Food Funct 2023; 14:133-147. [PMID: 36524418 DOI: 10.1039/d2fo03338k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The study investigated the effects of dietary leucine (Leu) and fish oil (FO) on skeletal myofiber type transformations in pigs and their potential interactions. The results showed that Leu increased the content of Leu, upregulated myocyte enhancer factor-2C (MEF2C) and activated the CaMKII-AMPK/SIRT1-PGC-1α pathway in the longissimus dorsi (LD) muscle. FO increased adiponectin and fatty acid beta-oxidation of LD muscle. Activation of the adiponectin signaling pathway by FO further enhanced the CaMKII pathway and upregulated the expression of MEF2C. Moreover, we found that Leu increased cyclic AMP and caffeine, and FO increased linoleic acid and glutamine in muscle metabolites, which may be the cause of myofiber conversion. In conclusion, this study demonstrated that dietary Leu and FO co-regulated the transformation from glycolytic to oxidative skeletal myofiber type. It is hypothesized that there is an interaction between amino acids and polyunsaturated fatty acids, possibly via the CaMKII signaling pathway to upregulate MEF2 and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Saiming Gong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China. .,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China.
| | - Yunju Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China. .,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China.
| | - Mengmeng Han
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liu Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China.
| | - Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China.
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China. .,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Wang ZW, Riaz S, Niu L. Roles and Sources of Calcium in Synaptic Exocytosis. ADVANCES IN NEUROBIOLOGY 2023; 33:139-170. [PMID: 37615866 DOI: 10.1007/978-3-031-34229-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Calcium ions (Ca2+) play a critical role in triggering neurotransmitter release. The rate of release is directly related to the concentration of Ca2+ at the presynaptic site, with a supralinear relationship. There are two main sources of Ca2+ that trigger synaptic vesicle fusion: influx through voltage-gated Ca2+ channels in the plasma membrane and release from the endoplasmic reticulum via ryanodine receptors. This chapter will cover the sources of Ca2+ at the presynaptic nerve terminal, the relationship between neurotransmitter release rate and Ca2+ concentration, and the mechanisms that achieve the necessary Ca2+ concentrations for triggering synaptic exocytosis at the presynaptic site.
Collapse
Affiliation(s)
- Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Sadaf Riaz
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Longgang Niu
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
11
|
Kennedy DO, Wightman EL. Mental Performance and Sport: Caffeine and Co-consumed Bioactive Ingredients. Sports Med 2022; 52:69-90. [PMID: 36447122 PMCID: PMC9734217 DOI: 10.1007/s40279-022-01796-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2022] [Indexed: 12/05/2022]
Abstract
The plant defence compound caffeine is widely consumed as a performance enhancer in a sporting context, with potential benefits expected in both physiological and psychological terms. However, although caffeine modestly but consistently improves alertness and fatigue, its effects on mental performance are largely restricted to improved attention or concentration. It has no consistent effect within other cognitive domains that are important to sporting performance, including working memory, executive function and long-term memory. Although caffeine's central nervous system effects are often attributed to blockade of the receptors for the inhibitory neuromodulator adenosine, it also inhibits a number of enzymes involved both in neurotransmission and in cellular homeostasis and signal propagation. Furthermore, it modulates the pharmacokinetics of other endogenous and exogenous bioactive molecules, in part via interactions with shared cytochrome P450 enzymes. Caffeine therefore enjoys interactive relationships with a wide range of bioactive medicinal and dietary compounds, potentially broadening, increasing, decreasing, or modulating the time course of their functional effects, or vice versa. This narrative review explores the mechanisms of action and efficacy of caffeine and the potential for combinations of caffeine and other dietary compounds to exert psychological effects in excess of those expected following caffeine alone. The review focusses on, and indeed restricted its untargeted search to, the most commonly consumed sources of caffeine: products derived from caffeine-synthesising plants that give us tea (Camellia sinensis), coffee (Coffea genus), cocoa (Theabroma cacao) and guaraná (Paullinia cupana), plus multi-component energy drinks and shots. This literature suggests relevant benefits to mental performance that exceed those associated with caffeine for multi-ingredient energy drinks/shots and several low-caffeine extracts, including high-flavanol cocoa and guarana. However, there is a general lack of research conducted in such a way as to disentangle the relative contributions of the component parts of these products.
Collapse
Affiliation(s)
- David O. Kennedy
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne, NE1 8ST UK
| | - Emma L. Wightman
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne, NE1 8ST UK
| |
Collapse
|
12
|
Mao T, Ye W, Dai M, Bian D, Zhu Q, Feng P, Ren Y, Li F, Li B. Mechanism of autophagy induced by low concentrations of chlorantraniliprole in silk gland, Bombyx mori. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105223. [PMID: 36464330 DOI: 10.1016/j.pestbp.2022.105223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/19/2022] [Accepted: 09/01/2022] [Indexed: 06/17/2023]
Abstract
Chlorantraniliprole (CAP) is widely used in the control of agricultural pests, and its residues can affect the formation of silkworm (Bombyx. mori) cocoon easily. To accurately evaluate the toxicity of CAP to silkworms and clarify the mechanism of its effect on silk gland function, we proposed a novel toxicity evaluation method based on the body weight changes after CAP exposure. We also analyzed the Ca2+-related ATPase activity, characterized energy metabolism and transcriptional changes about the autophagy key genes on the downstream signaling pathways. The results showed that after a low concentration of CAP exposed for 96 h, there were CAP residues in the silk glands of B. mori, the activities of Ca2+-ATPase and Ca2+-Mg2+-ATPase decreased significantly (P ≤ 0.01), and the activation of AMPK-related genes AMPK-α and AMPK-β were up-regulated by 6.39 ± 0.02-fold and 12.33 ± 1.06-fold, respectively, reaching a significant level (P ≤ 0.01)). In addition, the autophagy-related genes Atg1, Atg6, Atg5, Atg7, and Atg8 downstream AMPK were significantly up-regulated at 96 h (P ≤ 0.05). The results of immunohistochemistry and protein expression assay for autophagy marker Atg8 further confirmed the occurrence of autophagy. Overall, our results indicate that CAP exposure leads to autophagy in the silk gland of B. mori and affects their physiological functions, which provides guidance for the evaluation of toxicity of low concentration environmental CAP residues to insects.
Collapse
Affiliation(s)
- Tingting Mao
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Wentao Ye
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Minli Dai
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Dandan Bian
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Qingyu Zhu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Piao Feng
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yuying Ren
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China.
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
13
|
Ősz BE, Jîtcă G, Ștefănescu RE, Pușcaș A, Tero-Vescan A, Vari CE. Caffeine and Its Antioxidant Properties-It Is All about Dose and Source. Int J Mol Sci 2022; 23:13074. [PMID: 36361861 PMCID: PMC9654796 DOI: 10.3390/ijms232113074] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 08/16/2023] Open
Abstract
Caffeine is the most frequently used substance with a central nervous system stimulant effect, but its consumption is most often due to the intake of foods and drinks that contain it (coffee, tea, chocolate, food supplements with plant extracts of Guarana, Mate herba, Cola nuts). Due to its innocuity, caffeine is a safe xanthine alkaloid for human consumption in a wide range of doses, being used for its central nervous stimulating effect, lipolytic and diuresis-enhancing properties, but also as a permitted ergogenic compound in athletes. In addition to the mechanisms that explain the effects of caffeine on the targeted organ, there are many proposed mechanisms by which this substance would have antioxidant effects. As such, its consumption prevents the occurrence/progression of certain neurodegenerative diseases as well as other medical conditions associated with increased levels of reactive oxygen or nitrogen species. However, most studies that have assessed the beneficial effects of caffeine have used pure caffeine. The question, therefore, arises whether the daily intake of caffeine from food or drink has similar benefits, considering that in foods or drinks with a high caffeine content, there are other substances that could interfere with this action, either by potentiating or decreasing its antioxidant capacity. Natural sources of caffeine often combine plant polyphenols (phenol-carboxylic acids, catechins) with known antioxidant effects; however, stimulant drinks and dietary supplements often contain sugars or artificial sweeteners that can significantly reduce the effects of caffeine on oxidative stress. The objective of this review is to clarify the effects of caffeine in modulating oxidative stress and assess these benefits, considering the source and the dose administered.
Collapse
Affiliation(s)
- Bianca-Eugenia Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - George Jîtcă
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Ruxandra-Emilia Ștefănescu
- Department of Pharmacognosy and Phytotherapy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Amalia Pușcaș
- Department of Biochemistry and Chemistry of Environmental Factors, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Amelia Tero-Vescan
- Department of Biochemistry, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Camil-Eugen Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| |
Collapse
|
14
|
Melville Z, Dridi H, Yuan Q, Reiken S, Wronska A, Liu Y, Clarke OB, Marks AR. A drug and ATP binding site in type 1 ryanodine receptor. Structure 2022; 30:1025-1034.e4. [PMID: 35580609 DOI: 10.1016/j.str.2022.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022]
Abstract
The ryanodine receptor (RyR)/calcium release channel on the sarcoplasmic reticulum (SR) is required for excitation-contraction coupling in skeletal and cardiac muscle. Inherited mutations and stress-induced post-translational modifications result in an SR Ca2+ leak that causes skeletal myopathies, heart failure, and exercise-induced sudden death. A class of therapeutics known as Rycals prevent the RyR-mediated leak, are effective in preventing disease progression and restoring function in animal models, and are in clinical trials for patients with muscle and heart disorders. Using cryogenic-electron microscopy, we present a model of RyR1 with a 2.45-Å resolution before local refinement, revealing a binding site in the RY1&2 domain (3.10 Å local resolution), where the Rycal ARM210 binds cooperatively with ATP and stabilizes the closed state of RyR1.
Collapse
Affiliation(s)
- Zephan Melville
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Haikel Dridi
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Anetta Wronska
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Yang Liu
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA; Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA; Clyde & Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA.
| |
Collapse
|
15
|
Gonçalves Bortolini D, Windson Isidoro Haminiuk C, Cristina Pedro A, de Andrade Arruda Fernandes I, Maria Maciel G. Processing, chemical signature and food industry applications of Camellia sinensis teas: An overview. Food Chem X 2021; 12:100160. [PMID: 34825170 PMCID: PMC8605308 DOI: 10.1016/j.fochx.2021.100160] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 01/06/2023] Open
Abstract
The plant Camellia sinensis is the source of different teas (white, green, yellow, oolong, black, and pu-ehr) consumed worldwide, which are classified by the oxidation degree of their bioactive compounds. The sensory (taste, aroma, and body of the drink) and functional properties of teas are affected by the amount of methylxanthines (caffeine and theobromine), amino acids (l-theanine) and reducing sugars in their composition. Additionally, flavan-3-ols, mainly characterized by epicatechins, catechins, and their derivatives, represent on average, 60% of the bioactive compounds in teas. These secondary metabolites from teas are widely recognized for their antioxidant, anti-cancer, and anti-inflammatory properties. Thus, Camellia sinensis extracts and their isolated compounds have been increasingly used by the food industry. However, bioactive compounds are very susceptible to the oxidation caused by processing and degradation under physiological conditions of gastrointestinal digestion. In this context, new approaches/technologies have been developed for the preservation of these compounds. This review presents the main stages involved in production of Camellia sinensis teas following a description of their main bioactive compounds, biological properties, stability and bioaccessibility. Besides, and updated view of Camellia sinensis teas in the field of food science and technology was provided by focusing on novel findings and innovations published in scientific literature over the last five years.
Collapse
Affiliation(s)
- Débora Gonçalves Bortolini
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980) Curitiba, Paraná, Brazil
| | | | - Alessandra Cristina Pedro
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980) Curitiba, Paraná, Brazil
| | - Isabela de Andrade Arruda Fernandes
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980) Curitiba, Paraná, Brazil
| | - Giselle Maria Maciel
- Laboratório de Biotecnologia, Universidade Tecnológica Federal do Paraná (UTFPR), CEP (81280-340) Curitiba, Paraná, Brazil
| |
Collapse
|