1
|
Wang YJ, Zhou X, Zhang MM, Liu MH, Ding N, Wu QF, Lei CR, Dong ZY, Ren JL, Zhao JR, Jia CL, Liu J, Zhou B, Lu D. Physiological and biochemical characteristics of the carbon ion beam irradiation-generated mutant strain Clostridium butyricum FZM 240 in vitro and in vivo. Enzyme Microb Technol 2024; 178:110447. [PMID: 38626534 DOI: 10.1016/j.enzmictec.2024.110447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/08/2024] [Accepted: 04/12/2024] [Indexed: 04/18/2024]
Abstract
Clostridium butyricum (C. butyricum) represents a new generation of probiotics, which is beneficial because of its good tolerance and ability to produce beneficial metabolites, such as short-chain fatty acids and enzymes; however, its low enzyme activity limits its probiotic efficacy. In this study, a mutant strain, C. butyricum FZM 240 was obtained using carbon ion beam irradiation, which exhibited greatly improved enzyme production and tolerance. The highest filter paper, endoglucanase, and amylase activities produced by C. butyricum FZM 240 were 125.69 U/mL, 225.82 U/ mL, and 252.28 U/mL, which were 2.58, 1.95, and 2.21-fold higher, respectively, than those of the original strain. The survival rate of the strain increased by 11.40 % and 5.60 % after incubation at 90 °C for 5 min and with simulated gastric fluid at pH 2.5 for 2 h, respectively, compared with that of the original strain. Whole-genome resequencing and quantitative real-time PCR(qRT-PCR) analysis showed that the expression of genes related to enzyme synthesis (GE000348, GE001963 and GE003123) and tolerance (GE001114) was significantly up-regulated, while that of genes related to acid metabolism (GE003450) was significantly down-regulated. On this basis, homology modeling and functional prediction of the proteins encoded by the mutated genes were performed. According to the results, the properties related to the efficacy of C. butyricum as a probiotic were significantly enhanced by carbon ion beam irradiation, which is a novel strategy for the application of Clostridium spp. as feed additives.
Collapse
Affiliation(s)
- Ya-Juan Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China; Kejin Innovation Institute of Heavy Ion Beam Biological Industry, Baiyin 730900, China.
| | - Miao-Miao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China; Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou 730070, China
| | - Mei-Han Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410000, China
| | - Nan Ding
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Qing-Feng Wu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Cai-Rong Lei
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Zi-Yi Dong
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Jun-Le Ren
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Jing-Ru Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Cheng-Lin Jia
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Jun Liu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410000, China
| | - Bo Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410000, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China; Kejin Innovation Institute of Heavy Ion Beam Biological Industry, Baiyin 730900, China; Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou 730070, China.
| |
Collapse
|
2
|
Kammel M, Erdmann C, Sawers RG. The formate-hydrogen axis and its impact on the physiology of enterobacterial fermentation. Adv Microb Physiol 2024; 84:51-82. [PMID: 38821634 DOI: 10.1016/bs.ampbs.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Formic acid (HCOOH) and dihydrogen (H2) are characteristic products of enterobacterial mixed-acid fermentation, with H2 generation increasing in conjunction with a decrease in extracellular pH. Formate and acetyl-CoA are generated by radical-based and coenzyme A-dependent cleavage of pyruvate catalysed by pyruvate formate-lyase (PflB). Formate is also the source of H2, which is generated along with carbon dioxide through the action of the membrane-associated, cytoplasmically-oriented formate hydrogenlyase (FHL-1) complex. Synthesis of the FHL-1 complex is completely dependent on the cytoplasmic accumulation of formate. Consequently, formate determines its own disproportionation into H2 and CO2 by the FHL-1 complex. Cytoplasmic formate levels are controlled by FocA, a pentameric channel that translocates formic acid/formate bidirectionally between the cytoplasm and periplasm. Each protomer of FocA has a narrow hydrophobic pore through which neutral formic acid can pass. Two conserved amino acid residues, a histidine and a threonine, at the center of the pore control directionality of translocation. The histidine residue is essential for pH-dependent influx of formic acid. Studies with the formate analogue hypophosphite and amino acid variants of FocA suggest that the mechanisms of formic acid efflux and influx differ. Indeed, current data suggest, depending on extracellular formate levels, two separate uptake mechanisms exist, both likely contributing to maintain pH homeostasis. Bidirectional formate/formic acid translocation is dependent on PflB and influx requires an active FHL-1 complex. This review describes the coupling of formate and H2 production in enterobacteria.
Collapse
Affiliation(s)
- Michelle Kammel
- Institute of Microbiology, Martin Luther University Halle-Wittenberg, Halle, Saale, Germany
| | - Christopher Erdmann
- Institute of Microbiology, Martin Luther University Halle-Wittenberg, Halle, Saale, Germany
| | - R Gary Sawers
- Institute of Microbiology, Martin Luther University Halle-Wittenberg, Halle, Saale, Germany.
| |
Collapse
|
3
|
Lundahl MN, Yang H, Broderick WE, Hoffman BM, Broderick JB. Pyruvate formate-lyase activating enzyme: The catalytically active 5'-deoxyadenosyl radical caught in the act of H-atom abstraction. Proc Natl Acad Sci U S A 2023; 120:e2314696120. [PMID: 37956301 PMCID: PMC10665898 DOI: 10.1073/pnas.2314696120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/03/2023] [Indexed: 11/15/2023] Open
Abstract
Enzymes of the radical S-adenosyl-l-methionine (radical SAM, RS) superfamily, the largest in nature, catalyze remarkably diverse reactions initiated by H-atom abstraction. Glycyl radical enzyme activating enzymes (GRE-AEs) are a growing class of RS enzymes that generate the catalytically essential glycyl radical of GREs, which in turn catalyze essential reactions in anaerobic metabolism. Here, we probe the reaction of the GRE-AE pyruvate formate-lyase activating enzyme (PFL-AE) with the peptide substrate RVSG734YAV, which mimics the site of glycyl radical formation on the native substrate, pyruvate formate-lyase. Time-resolved freeze-quench electron paramagnetic resonance spectroscopy shows that at short mixing times reduced PFL-AE + SAM reacts with RVSG734YAV to form the central organometallic intermediate, Ω, in which the adenosyl 5'C is covalently bound to the unique iron of the [4Fe-4S] cluster. Freeze-trapping the reaction at longer times reveals the formation of the peptide G734• glycyl radical product. Of central importance, freeze-quenching at intermediate times reveals that the conversion of Ω to peptide glycyl radical is not concerted. Instead, homolysis of the Ω Fe-C5' bond generates the nominally "free" 5'-dAdo• radical, which is captured here by freeze-trapping. During cryoannealing at 77 K, the 5'-dAdo• directly abstracts an H-atom from the peptide to generate the G734• peptide radical trapped in the PFL-AE active site. These observations reveal the 5'-dAdo• radical to be a well-defined intermediate, caught in the act of substrate H-atom abstraction, providing new insights into the mechanistic steps of radical initiation by RS enzymes.
Collapse
Affiliation(s)
- Maike N. Lundahl
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT59717
| | - Hao Yang
- Department of Chemistry, Northwestern University, Evanston, IL60208
| | - William E. Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT59717
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL60208
| | - Joan B. Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT59717
| |
Collapse
|
4
|
Dinglasan JLN, Doktycz MJ. Rewiring cell-free metabolic flux in E. coli lysates using a block-push-pull approach. Synth Biol (Oxf) 2023; 8:ysad007. [PMID: 37908558 PMCID: PMC10615139 DOI: 10.1093/synbio/ysad007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/27/2023] [Accepted: 04/12/2023] [Indexed: 11/02/2023] Open
Abstract
Cell-free systems can expedite the design and implementation of biomanufacturing processes by bypassing troublesome requirements associated with the use of live cells. In particular, the lack of survival objectives and the open nature of cell-free reactions afford engineering approaches that allow purposeful direction of metabolic flux. The use of lysate-based systems to produce desired small molecules can result in competitive titers and productivities when compared to their cell-based counterparts. However, pathway crosstalk within endogenous lysate metabolism can compromise conversion yields by diverting carbon flow away from desired products. Here, the 'block-push-pull' concept of conventional cell-based metabolic engineering was adapted to develop a cell-free approach that efficiently directs carbon flow in lysates from glucose and toward endogenous ethanol synthesis. The approach is readily adaptable, is relatively rapid and allows for the manipulation of central metabolism in cell extracts. In implementing this approach, a block strategy is first optimized, enabling selective enzyme removal from the lysate to the point of eliminating by-product-forming activity while channeling flux through the target pathway. This is complemented with cell-free metabolic engineering methods that manipulate the lysate proteome and reaction environment to push through bottlenecks and pull flux toward ethanol. The approach incorporating these block, push and pull strategies maximized the glucose-to-ethanol conversion in an Escherichia coli lysate that initially had low ethanologenic potential. A 10-fold improvement in the percent yield is demonstrated. To our knowledge, this is the first report of successfully rewiring lysate carbon flux without source strain optimization and completely transforming the consumed input substrate to a desired output product in a lysate-based, cell-free system.
Collapse
Affiliation(s)
- Jaime Lorenzo N Dinglasan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Graduate School of Genome Science and Technology, University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Mitchel J Doktycz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
5
|
The Autonomous Glycyl Radical Protein GrcA Restores Activity to Inactive Full-Length Pyruvate Formate-Lyase In Vivo. J Bacteriol 2022; 204:e0007022. [PMID: 35377165 DOI: 10.1128/jb.00070-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During glucose fermentation, Escherichia coli and many other microorganisms employ the glycyl radical enzyme (GRE) pyruvate formate-lyase (PflB) to catalyze the coenzyme A-dependent cleavage of pyruvate to formate and acetyl-coenzyme A (CoA). Due to its extreme reactivity, the radical in PflB must be controlled carefully and, once generated, is particularly susceptible to dioxygen. Exposure to oxygen of the radical on glycine residue 734 of PflB results in cleavage of the polypeptide chain and consequent inactivation of the enzyme. Two decades ago, a small 14-kDa protein called YfiD (now called autonomous glycyl radical cofactor [GrcA]) was shown to be capable of restoring activity to O2-inactivated PflB in vitro; however, GrcA has never been shown to have this function in vivo. By constructing a strain with a chromosomally encoded PflB enzyme variant with a G734A residue exchange, we could show that cells retained near-wild type fermentative growth, as well as formate and H2 production; H2 is derived by enzymatic disproportionation of formate. Introducing a grcA deletion mutation into this strain completely prevented formate and H2 generation and reduced anaerobic growth. We could show that the conserved glycine at position 102 on GrcA was necessary for GrcA to restore PflB activity and that this recovered activity depended on the essential cysteine residues 418 and 419 in the active site of PflB. Together, our findings demonstrate that GrcA is capable of restoring in vivo activity to inactive full-length PflB and support a model whereby GrcA displaces the C-terminal glycyl radical domain to rescue the catalytic function of PflB. IMPORTANCE Many facultative anaerobic microorganisms use glycyl radical enzymes (GREs) to catalyze chemically challenging reactions under anaerobic conditions. Pyruvate formate-lyase (PflB) is a GRE that catalyzes cleavage of the carbon-carbon bond of pyruvate during glucose fermentation. The problem is that glycyl radicals are destroyed readily, especially by oxygen. To protect and restore activity to inactivated PflB, bacteria like Escherichia coli have a small autonomous glycyl radical cofactor protein called GrcA, which functions to rescue inactivated PflB. To date, this proposed function of GrcA has only been demonstrated in vitro. Our data reveal that GrcA rescues and restores enzyme activity to an inactive full-length form of PflB in vivo. These results have important implications for the evolution of radical-based enzyme mechanisms.
Collapse
|
6
|
Toward a glycyl radical enzyme containing synthetic bacterial microcompartment to produce pyruvate from formate and acetate. Proc Natl Acad Sci U S A 2022; 119:2116871119. [PMID: 35193962 PMCID: PMC8872734 DOI: 10.1073/pnas.2116871119] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
The enormous complexity of metabolic pathways, in both their regulation and propensity for metabolite cross-talk, represents a major obstacle for metabolic engineering. Self-assembling, catalytically programmable and genetically transferable bacterial microcompartments (BMCs) offer solutions to decrease this complexity through compartmentalization of enzymes within a selectively permeable protein shell. Synthetic BMCs can operate as autonomous metabolic modules decoupled from the cell’s regulatory network, only interfacing with the cell’s metabolism via the highly engineerable proteinaceous shell. Here, we build a synthetic, modular, multienzyme BMC. It functions not only as a proof-of-concept for next-generation metabolic engineering, but also provides the foundation for subsequent tuning, with the goal to create a microanaerobic environment protecting an oxygen-sensitive reaction in aerobic growth conditions that could be deployed. Formate has great potential to function as a feedstock for biorefineries because it can be sustainably produced by a variety of processes that don’t compete with agricultural production. However, naturally formatotrophic organisms are unsuitable for large-scale cultivation, difficult to engineer, or have inefficient native formate assimilation pathways. Thus, metabolic engineering needs to be developed for model industrial organisms to enable efficient formatotrophic growth. Here, we build a prototype synthetic formate utilizing bacterial microcompartment (sFUT) encapsulating the oxygen-sensitive glycyl radical enzyme pyruvate formate lyase and a phosphate acyltransferase to convert formate and acetyl-phosphate into the central biosynthetic intermediate pyruvate. This metabolic module offers a defined environment with a private cofactor coenzyme A that can cycle efficiently between the encapsulated enzymes. To facilitate initial design-build-test-refine cycles to construct an active metabolic core, we used a “wiffleball” architecture, defined as an icosahedral bacterial microcompartment (BMC) shell with unoccupied pentameric vertices to freely permit substrate and product exchange. The resulting sFUT prototype wiffleball is an active multi enzyme synthetic BMC functioning as platform technology.
Collapse
|