1
|
Song Y, Wang L, Zheng Y, Jia L, Li C, Chao K, Li L, Sun S, Wei Y, Ge Y, Yang Y, Zhu L, Zhang Y, Zhao J. Deubiquitinating enzyme USP28 inhibitor AZ1 alone and in combination with cisplatin for the treatment of non-small cell lung cancer. Apoptosis 2024; 29:1793-1809. [PMID: 39222275 PMCID: PMC11416398 DOI: 10.1007/s10495-024-02008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Lung cancer is one of the most common malignant tumors. Despite decades of research, the treatment of lung cancer remains challenging. Non-small cell lung cancer (NSCLC) is the primary type of lung cancer and is a significant focus of research in lung cancer treatment. The deubiquitinase ubiquitin-specific protease 28 (USP28) plays a role in the progression of various tumors and serves as a potential therapeutic target. This study aims to determine the role of USP28 in the progression of NSCLC. We examined the impact of the USP28 inhibitor AZ1 on the cell cycle, apoptosis, DNA damage response, and cellular immunogenicity in non-small cell lung cancer. We observed that AZ1 and siUSP28 induce DNA damage, leading to the activation of Noxa-mediated mitochondrial apoptosis. The dsDNA and mtDNA released from DNA damage and mitochondrial apoptosis activate tumor cell immunogenicity through the cGAS-STING signaling pathway. Simultaneously, targeting USP28 promotes the degradation of c-MYC, resulting in cell cycle arrest and inhibition of DNA repair. This further promotes DNA damage-induced cell apoptosis mediated by the Noxa protein, thereby enhancing tumor cell immunogenicity mediated by dsDNA and mtDNA. Moreover, we found that the combination of AZ1 and cisplatin (DDP) can enhance therapeutic efficacy, thereby providing a new strategy to overcome cisplatin resistance in NSCLC. These findings suggest that targeting USP28 and combining it with cisplatin are feasible strategies for treating NSCLC.
Collapse
Affiliation(s)
- Yiqiong Song
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Longhao Wang
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Oncology, Henan Provincial People's Hospital and Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yuanyuan Zheng
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lanqi Jia
- Department of Pharmacy, The First Affiliated Hospital of Henan University of CM, Zhengzhou, 477150, Henan, China
| | - Chunwei Li
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ke Chao
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shilong Sun
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yujie Wei
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yahao Ge
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yaqi Yang
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lili Zhu
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yixing Zhang
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jie Zhao
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
2
|
Patzke JV, Sauer F, Nair RK, Endres E, Proschak E, Hernandez-Olmos V, Sotriffer C, Kisker C. Structural basis for the bi-specificity of USP25 and USP28 inhibitors. EMBO Rep 2024; 25:2950-2973. [PMID: 38816515 PMCID: PMC11239673 DOI: 10.1038/s44319-024-00167-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024] Open
Abstract
The development of cancer therapeutics is often hindered by the fact that specific oncogenes cannot be directly pharmaceutically addressed. Targeting deubiquitylases that stabilize these oncogenes provides a promising alternative. USP28 and USP25 have been identified as such target deubiquitylases, and several small-molecule inhibitors indiscriminately inhibiting both enzymes have been developed. To obtain insights into their mode of inhibition, we structurally and functionally characterized USP28 in the presence of the three different inhibitors AZ1, Vismodegib and FT206. The compounds bind into a common pocket acting as a molecular sink. Our analysis provides an explanation why the two enzymes are inhibited with similar potency while other deubiquitylases are not affected. Furthermore, a key glutamate residue at position 366/373 in USP28/USP25 plays a central structural role for pocket stability and thereby for inhibition and activity. Obstructing the inhibitor-binding pocket by mutation of this glutamate may provide a tool to accelerate future drug development efforts for selective inhibitors of either USP28 or USP25 targeting distinct binding pockets.
Collapse
Affiliation(s)
- Jonathan Vincent Patzke
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Florian Sauer
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Radhika Karal Nair
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Erik Endres
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe-University, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Victor Hernandez-Olmos
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Caroline Kisker
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany.
| |
Collapse
|
3
|
Zhou W, Chen J, Wang J. Comprehensive prognostic and immunological analysis of Ubiquitin Specific Peptidase 28 in pan-cancers and identification of its role in hepatocellular carcinoma cell lines. Aging (Albany NY) 2023; 15:6545-6576. [PMID: 37450415 PMCID: PMC10373984 DOI: 10.18632/aging.204869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Ubiquitin Specific Peptidase 28 (USP28), as a member of the DUBs family, has been reported to regulate the occurrence and development of some tumors, but its oncogenic role in tumor immunity is still unknown. METHODS The comprehensive view of USP28 expression in tumor and normal samples was obtained from public databases, including The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Cancer Cell Line Encyclopedia (CCLE). We analyzed the genomic alterations of USP28 in various cancers using the cBioPortal dataset. Besides, gene set enrichment analysis was used to analyze the associated cancer hallmarks with USP28 expression, and TIMER2.0 was taken to investigate the immune cell infiltrations related to the USP28 level. RESULTS USP28 is highly expressed in most tumors and has prognostic value across various cancer types. Moreover, a significant correlation exists between USP28 and immune regulators, clinical staging, checkpoint inhibitor response, MSI, TMB, CNV, MMR defects, and DNA methylation. Additionally, USP28 expression is strongly associated with the infiltration levels of neutrophils and NK cells in most tumor types. One of the most significant findings of our study was that USP28 could serve as a significant predictor of anti-CTLA4 therapy response in melanoma patients. Additionally, our molecular biology experiments validated that the knockdown of USP28 substantially reduced the proliferative and invasive abilities of the HCC cell lines. CONCLUSIONS Our study suggests that USP28 could potentially serve as a biomarker for cancer immunologic infiltration and poor prognosis, with potential applications in developing novel cancer treatment strategies.
Collapse
Affiliation(s)
- Wuhan Zhou
- Department of Hepatobiliary Surgery, The First Hospital of Putian City, Putian 351100, Fujian, China
| | - Jiafei Chen
- Department of Hepatobiliary Surgery, The First Hospital of Putian City, Putian 351100, Fujian, China
| | - Jingui Wang
- Department of Hepatobiliary Surgery, The First Hospital of Putian City, Putian 351100, Fujian, China
- Department of Clinical Medicine, Fujian Medical University, Fuzhou 350108, Fujian, China
| |
Collapse
|
4
|
Zhou X, Fu C, Chen X. The role of ubiquitin pathway-mediated regulation of immune checkpoints in cancer immunotherapy. Cancer 2023; 129:1649-1661. [PMID: 36857206 DOI: 10.1002/cncr.34729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 03/02/2023]
Abstract
With the continuous cognition of the relationship between tumor cells and tumor immune microenvironment, immunotherapy based on the immune checkpoint blockade has achieved great breakthroughs, led to improved clinical outcomes, and prolonged survival for cancer patients in recent years. Nevertheless, the de novo or acquired resistance to immunotherapy has greatly counteracted the efficacy, leading to a 20%-40% overall response rate. Thus, further in-depth understanding of the regulation of the tumor microenvironment and antitumor immunity is urgently warranted. Ubiquitination-mediated protein degradation plays vital roles in protein stabilization, activation, and dynamics as well as in cellular homeostasis modulation. The dysregulated ubiquitination and deubiquitination are closely related to the changes in physiological and pathological processes, which subsequently result in a variety of diseases including cancer. In this review, the authors first summarize the current knowledge about the involvement of the ubiquitin-proteasome system in tumor development with the ubiquitin conjugation-regulated stability of p53, phosphatase and tensin homolog, and Myc protein as examples, then dissect the potential implications of ubiquitination-mediated immune checkpoints degradation in tumor microenvironment and immune responses, and finally discuss the effects of therapeutically targeting the ubiquitin-proteasome pathway on immunotherapy, with the goal of providing deep insights into the exploitation of more precise and effective combinational therapy against cancer.
Collapse
Affiliation(s)
- Xiaoming Zhou
- Cancer Research Institute, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Chengxiao Fu
- Cancer Research Institute, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Department of Pharmacy, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xisha Chen
- Cancer Research Institute, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
The deubiquitinating enzyme STAMBP is a newly discovered driver of triple-negative breast cancer progression that maintains RAI14 protein stability. Exp Mol Med 2022; 54:2047-2059. [PMID: 36434041 PMCID: PMC9723177 DOI: 10.1038/s12276-022-00890-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/27/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous malignancy in women. It is associated with poor prognosis, aggressive malignant behavior, and limited treatment options. In the ubiquitin‒proteasome system (UPS), deubiquitinases (DUBs) are potential therapeutic targets for various tumors. In this study, by performing unbiased siRNA screening, we identified STAMBP, a JAMM metalloprotease in the DUB family, as a driver of human TNBC tumor growth. Functionally, the knockdown of STAMBP inhibited the proliferation, migration, and invasion of multiple TNBC cell lines. Immunoprecipitation-mass spectrometry combined with functional and morphological analysis verified the interaction between STAMBP and the actin-binding protein RAI14. Mechanistically, STAMBP stabilized the RAI14 protein by suppressing the K48-linked ubiquitination of RAI14 and thus prevented its proteasomal degradation. Therefore, knocking down STAMBP resulted in the reduction in RAI14 protein levels and suppression of tumor growth in vitro and in vivo. Importantly, high levels of STAMBP were correlated with poor prognosis in TNBC patients. In summary, we reveal a previously unrecognized DUB pathway that promotes TNBC progression and provides a rationale for potential therapeutic interventions for the treatment of TNBC.
Collapse
|
7
|
Cdh1 Deficiency Sensitizes TNBC Cells to PARP Inhibitors. Genes (Basel) 2022; 13:genes13050803. [PMID: 35627188 PMCID: PMC9141497 DOI: 10.3390/genes13050803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a type of breast tumor that currently lacks options for targeted therapy. Tremendous effort has been made to identify treatment targets for TNBC. Here, we report that the expression level of anaphase promoting complex (APC) coactivator Cdh1 in TNBC is elevated compared to that in the adjacent healthy tissues, and high levels of Cdh1 expression are correlated with poor prognoses, suggesting that Cdh1 contributes to the progression of TNBC. Interfering with the function of Cdh1 can potentiate the cytotoxic effects of PARP inhibitors against BRCA-deficient and BRCA-proficient TNBC cells through inducing DNA damage, checkpoint activation, cell cycle arrest, and apoptosis. Further investigation reveals that Cdh1 promotes BRCA1 foci formation and prevents untangled DNA entering mitosis in response to PARP inhibition (PARPi) in TNBC cells. Collectively, these results suggest that APC/Cdh1 is a potential molecular target for PARPi-based therapies against TNBCs.
Collapse
|