1
|
Perkins A, Mounange-Badimi MS, Margolin W. Role of the antiparallel double-stranded filament form of FtsA in activating the Escherichia coli divisome. mBio 2024; 15:e0168724. [PMID: 39041810 PMCID: PMC11323482 DOI: 10.1128/mbio.01687-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/24/2024] Open
Abstract
The actin-like FtsA protein is essential for function of the cell division machinery, or divisome, in many bacteria including Escherichia coli. Previous in vitro studies demonstrated that purified wild-type FtsA assembles into closed mini-rings on lipid membranes, but oligomeric variants of FtsA such as FtsAR286W and FtsAG50E can bypass certain divisome defects and form arc and double-stranded (DS) oligomeric states, respectively, which may reflect conversion of an inactive to an active form of FtsA. However, it remains unproven which oligomeric forms of FtsA are responsible for assembling and activating the divisome. Here, we used an in vivo crosslinking assay for FtsA DS filaments to show that they largely depend on proper divisome assembly and are prevalent at later stages of cell division. We also used a previously reported variant that fails to assemble DS filaments, FtsAM96E R153D, to investigate the roles of FtsA oligomeric states in divisome assembly and activation. We show that FtsAM96E R153D cannot form DS filaments in vivo, fails to replace native FtsA, and confers a dominant negative phenotype, underscoring the importance of the DS filament stage for FtsA function. Surprisingly, however, activation of the divisome through the ftsL* or ftsW* superfission alleles suppressed the dominant negative phenotype and rescued the functionality of FtsAM96E R153D. Our results suggest that FtsA DS filaments are needed for divisome activation once it is assembled, but they are not essential for divisome assembly or guiding septum synthesis.IMPORTANCECell division is fundamental for cellular duplication. In simple cells like Escherichia coli bacteria, the actin homolog FtsA is essential for cell division and assembles into a variety of protein filaments at the cytoplasmic membrane. These filaments not only help tether polymers of the tubulin-like FtsZ to the membrane at early stages of cell division but also play crucial roles in recruiting other cell division proteins to a complex called the divisome. Once assembled, the E. coli divisome subsequently activates synthesis of the division septum that splits the cell in two. One recently discovered oligomeric conformation of FtsA is an antiparallel double-stranded filament. Using a combination of in vivo crosslinking and genetics, we provide evidence suggesting that these FtsA double filaments have a crucial role in activating the septum synthesis enzymes.
Collapse
Affiliation(s)
- Abbigale Perkins
- Department of Microbiology and Molecular Genetics, UTHealth Houston McGovern Medical School, Houston, Texas, USA
| | - Mwidy Sava Mounange-Badimi
- Department of Microbiology and Molecular Genetics, UTHealth Houston McGovern Medical School, Houston, Texas, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, UTHealth Houston McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
2
|
Perkins A, Mounange-Badimi MS, Margolin W. Role of the antiparallel double-stranded filament form of FtsA in activating the Escherichia coli divisome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600433. [PMID: 38979378 PMCID: PMC11230281 DOI: 10.1101/2024.06.24.600433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The actin-like FtsA protein is essential for function of the cell division machinery, or divisome, in many bacteria including Escherichia coli. Previous in vitro studies demonstrated that purified wild-type FtsA assembles into closed mini-rings on lipid membranes, but oligomeric variants of FtsA such as FtsAR286W and FtsAG50E can bypass certain divisome defects and form arc and double-stranded (DS) oligomeric states, respectively, which may reflect conversion of an inactive to an active form of FtsA. Yet, it remains unproven which oligomeric forms of FtsA are responsible for assembling and activating the divisome. Here we used an in vivo crosslinking assay for FtsA DS filaments to show that they largely depend on proper divisome assembly and are prevalent at later stages of cell division. We also used a previously reported variant that fails to assemble DS filaments, FtsAM96E R153D, to investigate the roles of FtsA oligomeric states in divisome assembly and activation. We show that FtsAM96E R153D cannot form DS filaments in vivo, fails to replace native FtsA, and confers a dominant negative phenotype, underscoring the importance of the DS filament stage for FtsA function. Surprisingly, however, activation of the divisome through the ftsL* or ftsW* superfission alleles suppressed the dominant negative phenotype and rescued the functionallity of FtsAM96E R153D. Our results suggest that FtsA DS filaments are needed for divisome activation once it is assembled, but they are not essential for divisome assembly or guiding septum synthesis.
Collapse
Affiliation(s)
- Abbigale Perkins
- Microbiology and Molecular Genetics, UTHealth McGovern Medical School, 6431 Fannin Street, Houston, TX 77030
| | - Mwidy Sava Mounange-Badimi
- Microbiology and Molecular Genetics, UTHealth McGovern Medical School, 6431 Fannin Street, Houston, TX 77030
| | - William Margolin
- Microbiology and Molecular Genetics, UTHealth McGovern Medical School, 6431 Fannin Street, Houston, TX 77030
| |
Collapse
|
3
|
Britton BM, Yovanno RA, Costa SF, McCausland J, Lau AY, Xiao J, Hensel Z. Conformational changes in the essential E. coli septal cell wall synthesis complex suggest an activation mechanism. Nat Commun 2023; 14:4585. [PMID: 37524712 PMCID: PMC10390529 DOI: 10.1038/s41467-023-39921-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/04/2023] [Indexed: 08/02/2023] Open
Abstract
The bacterial divisome is a macromolecular machine composed of more than 30 proteins that controls cell wall constriction during division. Here, we present a model of the structure and dynamics of the core complex of the E. coli divisome, supported by a combination of structure prediction, molecular dynamics simulation, single-molecule imaging, and mutagenesis. We focus on the septal cell wall synthase complex formed by FtsW and FtsI, and its regulators FtsQ, FtsL, FtsB, and FtsN. The results indicate extensive interactions in four regions in the periplasmic domains of the complex. FtsQ, FtsL, and FtsB support FtsI in an extended conformation, with the FtsI transpeptidase domain lifted away from the membrane through interactions among the C-terminal domains. FtsN binds between FtsI and FtsL in a region rich in residues with superfission (activating) and dominant negative (inhibitory) mutations. Mutagenesis experiments and simulations suggest that the essential domain of FtsN links FtsI and FtsL together, potentially modulating interactions between the anchor-loop of FtsI and the putative catalytic cavity of FtsW, thus suggesting a mechanism of how FtsN activates the cell wall synthesis activities of FtsW and FtsI.
Collapse
Affiliation(s)
- Brooke M Britton
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe St, Baltimore, MD, 21205, USA
| | - Remy A Yovanno
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe St, Baltimore, MD, 21205, USA
| | - Sara F Costa
- ITQB NOVA, Universidade NOVA de Lisboa, Lisbon, Av. da República, 2780-157, Oeiras, Portugal
| | - Joshua McCausland
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe St, Baltimore, MD, 21205, USA
| | - Albert Y Lau
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe St, Baltimore, MD, 21205, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe St, Baltimore, MD, 21205, USA.
| | - Zach Hensel
- ITQB NOVA, Universidade NOVA de Lisboa, Lisbon, Av. da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
4
|
Nguyen HTV, Chen X, Parada C, Luo AC, Shih O, Jeng US, Huang CY, Shih YL, Ma C. Structure of the heterotrimeric membrane protein complex FtsB-FtsL-FtsQ of the bacterial divisome. Nat Commun 2023; 14:1903. [PMID: 37019934 PMCID: PMC10076392 DOI: 10.1038/s41467-023-37543-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
The synthesis of the cell-wall peptidoglycan during bacterial cell division is mediated by a multiprotein machine, called the divisome. The essential membrane protein complex of FtsB, FtsL and FtsQ (FtsBLQ) is at the heart of the divisome assembly cascade in Escherichia coli. This complex regulates the transglycosylation and transpeptidation activities of the FtsW-FtsI complex and PBP1b via coordination with FtsN, the trigger for the onset of constriction. Yet the underlying mechanism of FtsBLQ-mediated regulation is largely unknown. Here, we report the full-length structure of the heterotrimeric FtsBLQ complex, which reveals a V-shaped architecture in a tilted orientation. Such a conformation could be strengthened by the transmembrane and the coiled-coil domains of the FtsBL heterodimer, as well as an extended β-sheet of the C-terminal interaction site involving all three proteins. This trimeric structure may also facilitate interactions with other divisome proteins in an allosteric manner. These results lead us to propose a structure-based model that delineates the mechanism of the regulation of peptidoglycan synthases by the FtsBLQ complex.
Collapse
Affiliation(s)
- Hong Thuy Vy Nguyen
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
- Chemical Biology and Molecular Biophysics program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Xiaorui Chen
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Claudia Parada
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - An-Chi Luo
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Orion Shih
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30044, Taiwan
| | - Chia-Ying Huang
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen-PSI, 5232, Switzerland
| | - Yu-Ling Shih
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan.
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan.
| | - Che Ma
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
5
|
Chen YW, Kong WP, Wong KY. The structural integrity of the membrane-embedded bacterial division complex FtsQBL studied with molecular dynamics simulations. Comput Struct Biotechnol J 2023; 21:2602-2612. [PMID: 37114213 PMCID: PMC10126914 DOI: 10.1016/j.csbj.2023.03.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
The FtsQBL is an essential molecular complex sitting midway through bacterial divisome assembly. To visualize and understand its structure, and the consequences of its membrane anchorage, we produced a model of the E. coli complex using the deep-learning prediction utility, AlphaFold 2. The heterotrimeric model was inserted into a 3-lipid model membrane and subjected to a 500-ns atomistic molecular dynamics simulation. The model is superb in quality and captures most experimentally derived structural features, at both the secondary structure and the side-chain levels. The model consists of a uniquely interlocking module contributed by the C-terminal regions of all three proteins. The functionally important constriction control domain residues of FtsB and FtsL are located at a fixed vertical position of ∼43-49 Å from the membrane surface. While the periplasmic domains of all three proteins are well-defined and rigid, the single transmembrane helices of each are flexible and their collective twisting and bending contribute to most structural variations, according to principal component analysis. Considering FtsQ only, the protein is more flexible in its free state relative to its complexed state-with the biggest structural changes located at the elbow between the transmembrane helix and the α-domain. The disordered N-terminal domains of FtsQ and FtsL associate with the cytoplasmic surface of the inner membrane instead of freely venturing into the solvent. Contact network analysis highlighted the formation of the interlocking trimeric module in FtsQBL as playing a central role in mediating the overall structure of the complex.
Collapse
Affiliation(s)
- Yu Wai Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Wai-Po Kong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Kwok-Yin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| |
Collapse
|
6
|
Paulussen FM, Schouten GK, Moertl C, Verheul J, Hoekstra I, Koningstein GM, Hutchins GH, Alkir A, Luirink RA, Geerke DP, van Ulsen P, den Blaauwen T, Luirink J, Grossmann TN. Covalent Proteomimetic Inhibitor of the Bacterial FtsQB Divisome Complex. J Am Chem Soc 2022; 144:15303-15313. [PMID: 35945166 PMCID: PMC9413201 DOI: 10.1021/jacs.2c06304] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The use of antibiotics is threatened by the emergence
and spread
of multidrug-resistant strains of bacteria. Thus, there is a need
to develop antibiotics that address new targets. In this respect,
the bacterial divisome, a multi-protein complex central to cell division,
represents a potentially attractive target. Of particular interest
is the FtsQB subcomplex that plays a decisive role in divisome assembly
and peptidoglycan biogenesis in E. coli. Here, we report the structure-based design of
a macrocyclic covalent inhibitor derived from a periplasmic region
of FtsB that mediates its binding to FtsQ. The bioactive conformation
of this motif was stabilized by a customized cross-link resulting
in a tertiary structure mimetic with increased affinity for FtsQ.
To increase activity, a covalent handle was incorporated, providing
an inhibitor that impedes the interaction between FtsQ and FtsB irreversibly. The covalent inhibitor reduced the growth of an outer
membrane-permeable E. coli strain,
concurrent with the expected loss of FtsB localization, and also affected
the infection of zebrafish larvae by a clinical E.
coli strain. This first-in-class inhibitor of a divisome
protein–protein interaction highlights the potential of proteomimetic
molecules as inhibitors of challenging targets. In particular, the
covalent mode-of-action can serve as an inspiration for future antibiotics
that target protein–protein interactions.
Collapse
Affiliation(s)
- Felix M Paulussen
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Department of Molecular Microbiology, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Gina K Schouten
- Medical Microbiology and Infection Control (MMI), Amsterdam UMC Location VUmc, De Boelelaan 1108, Amsterdam 1081 HZ, Netherlands
| | - Carolin Moertl
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Jolanda Verheul
- Department of Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Sciencepark 904, Amsterdam 1098 XH, Netherlands
| | - Irma Hoekstra
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Gregory M Koningstein
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Department of Molecular Microbiology, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - George H Hutchins
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Aslihan Alkir
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Rosa A Luirink
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Daan P Geerke
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Peter van Ulsen
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Department of Molecular Microbiology, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Tanneke den Blaauwen
- Department of Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Sciencepark 904, Amsterdam 1098 XH, Netherlands
| | - Joen Luirink
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Department of Molecular Microbiology, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| |
Collapse
|
7
|
Kong WP, Gong F, So PK, Chen YW, Chan PH, Leung YC, Wong KY. The structural dynamics of full-length divisome transmembrane proteins FtsQ, FtsB, and FtsL in FtsQBL complex formation. J Biol Chem 2022; 298:102235. [PMID: 35798142 PMCID: PMC9352969 DOI: 10.1016/j.jbc.2022.102235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/06/2022] Open
Abstract
FtsQBL is a transmembrane protein complex in the divisome of Escherichia coli that plays a critical role in regulating cell division. Although extensive efforts have been made to investigate the interactions between the three involved proteins, FtsQ, FtsB, and FtsL, the detailed interaction mechanism is still poorly understood. In this study, we used hydrogen-deuterium exchange mass spectrometry to investigate these full-length proteins and their complexes. We also dissected the structural dynamic changes and the related binding interfaces within the complexes. Our data revealed that FtsB and FtsL interact at both the periplasmic and transmembrane regions to form a stable complex. Furthermore, the periplasmic region of FtsB underwent significant conformational changes. With the help of computational modeling, our results suggest that FtsBL complexation may bring the respective constriction control domains (CCDs) in close proximity. We show that when FtsBL adopts a coiled-coil structure, the CCDs are fixed at a vertical position relative to the membrane surface; thus, this conformational change may be essential for FtsBL’s interaction with other divisome proteins. In the FtsQBL complex, intriguingly, we show only FtsB interacts with FtsQ at its C-terminal region, which stiffens a large area of the β-domain of FtsQ. Consistent with this, we found the connection between the α- and β-domains in FtsQ is also strengthened in the complex. Overall, the present study provides important experimental evidence detailing the local interactions between the full-length FtsB, FtsL, and FtsQ protein, as well as valuable insights into the roles of FtsQBL complexation in regulating divisome activity.
Collapse
|
8
|
Attaibi M, den Blaauwen T. An Updated Model of the Divisome: Regulation of the Septal Peptidoglycan Synthesis Machinery by the Divisome. Int J Mol Sci 2022; 23:3537. [PMID: 35408901 PMCID: PMC8998562 DOI: 10.3390/ijms23073537] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
The synthesis of a peptidoglycan septum is a fundamental part of bacterial fission and is driven by a multiprotein dynamic complex called the divisome. FtsW and FtsI are essential proteins that synthesize the peptidoglycan septum and are controlled by the regulatory FtsBLQ subcomplex and the activator FtsN. However, their mode of regulation has not yet been uncovered in detail. Understanding this process in detail may enable the development of new compounds to combat the rise in antibiotic resistance. In this review, recent data on the regulation of septal peptidoglycan synthesis is summarized and discussed. Based on structural models and the collected data, multiple putative interactions within FtsWI and with regulators are uncovered. This elaborates on and supports an earlier proposed model that describes active and inactive conformations of the septal peptidoglycan synthesis complex that are stabilized by these interactions. Furthermore, a new model on the spatial organization of the newly synthesized peptidoglycan and the synthesis complex is presented. Overall, the updated model proposes a balance between several allosteric interactions that determine the state of septal peptidoglycan synthesis.
Collapse
Affiliation(s)
| | - Tanneke den Blaauwen
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Science, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| |
Collapse
|