1
|
Szymczak-Kulus K, Czerwinski M, Kaczmarek R. Human Gb3/CD77 synthase: a glycosyltransferase at the crossroads of immunohematology, toxicology, and cancer research. Cell Mol Biol Lett 2024; 29:137. [PMID: 39511480 PMCID: PMC11546571 DOI: 10.1186/s11658-024-00658-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
Human Gb3/CD77 synthase (α1,4-galactosyltransferase, P1/Pk synthase, UDP-galactose: β-D-galactosyl-β1-R 4-α-D-galactosyltransferase, EC 2.4.1.228) forms Galα1 → 4Gal structures on glycosphingolipids and glycoproteins. These glycans are recognized by bacterial adhesins and toxins. Globotriaosylceramide (Gb3), the major product of Gb3/CD77 synthase, is a glycosphingolipid located predominantly in plasma membrane lipid rafts, where it serves as a main receptor for Shiga toxins released by enterohemorrhagic Escherichia coli and Shigella dysenteriae of serotype 1. On the other hand, accumulation of glycans formed by Gb3/CD77 synthase contributes to the symptoms of Anderson-Fabry disease caused by α-galactosidase A deficiency. Moreover, variation in Gb3/CD77 synthase expression and activity underlies the P1PK histo-blood group system. Glycosphingolipids synthesized by the enzyme are overproduced in colorectal, gastric, pancreatic, and ovarian cancer, and elevated Gb3 biosynthesis is associated with cancer cell chemo- and radioresistance. Furthermore, Gb3/CD77 synthase acts as a key glycosyltransferase modulating ovarian cancer cell plasticity. Here, we describe the role of human Gb3/CD77 synthase and its products in the P1PK histo-blood group system, Anderson-Fabry disease, and bacterial infections. Additionally, we provide an overview of emerging evidence that Gb3/CD77 synthase and its glycosphingolipid products are involved in cancer metastasis and chemoresistance.
Collapse
Affiliation(s)
- Katarzyna Szymczak-Kulus
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland.
| | - Marcin Czerwinski
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Radoslaw Kaczmarek
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| |
Collapse
|
2
|
Ideo H, Tsuchida A, Takada Y. Lectin-Based Approaches to Analyze the Role of Glycans and Their Clinical Application in Disease. Int J Mol Sci 2024; 25:10231. [PMID: 39337716 PMCID: PMC11432504 DOI: 10.3390/ijms251810231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Lectin-based approaches remain a valuable tool for analyzing glycosylation, especially when detecting cancer-related changes. Certain glycans function as platforms for cell communication, signal transduction, and adhesion. Therefore, the functions of glycans are important considerations for clinical aspects, such as cancer, infection, and immunity. Considering that the three-dimensional structure and multivalency of glycans are important factors for their function, their binding characteristics toward lectins provide vital information. Glycans and lectins are inextricably linked, and studies on lectins have also led to research on the roles of glycans. The applications of lectins are not limited to analysis but can also be used as drug delivery tools. Moreover, mammalian lectins are potential therapeutic targets because certain lectins change their expression in cancer, and lectin regulation subsequently regulates several molecules with glycans. Herein, we review lectin-based approaches for analyzing the role of glycans and their clinical applications in diseases, as well as our recent results.
Collapse
Affiliation(s)
- Hiroko Ideo
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan; (A.T.); (Y.T.)
| | | | | |
Collapse
|
3
|
Tsuchida A, Hachisu K, Mizuno M, Takada Y, Ideo H. High expression of B3GALT5 suppresses the galectin-4-mediated peritoneal dissemination of poorly differentiated gastric cancer cells. Glycobiology 2024; 34:cwae064. [PMID: 39163480 DOI: 10.1093/glycob/cwae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
Peritoneal metastasis frequently accompanies metastatic and/or recurrent gastric cancer, leading to a poor prognosis owing to a lack of effective treatment. Hence, there is a pressing need to enhance our understanding of the mechanisms and molecules driving peritoneal metastasis. In a previous study, galectin-4 inhibition impeded peritoneal metastasis in a murine model. This study examined the glycan profiles of cell surface proteins and glycosphingolipids (GSLs) in cells with varying tumorigenic potentials to understand the intricate mechanisms underlying galectin-4-mediated regulation, particularly glycosylation. Detailed mass spectrometry analysis showed that galectin-4 knockout cells exhibit increased expression of lacto-series GSLs with β1,3-linked galactose while showing no significant alterations in neolacto-series GSLs. We conducted real-time polymerase chain reaction (PCR) analysis to identify candidate glycosyltransferases that synthesize increased levels of GSLs. Subsequently, we introduced the candidate B3GALT5 gene and selected the clones with high expression levels. B3GALT5 gene-expressing clones showed GSL glycan profiles like those of knockout cells and significantly reduced tumorigenic ability in mouse models. These clones exhibited diminished proliferative capacity and showed reduced expression of galectin-4 and activated AKT. Moreover, co-localization of galectin-4 with flotillin-2 (a raft marker) decreased in B3GALT5-expressing cells, implicating GSLs in galectin-4 localization to lipid rafts. D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (a GSL synthase inhibitor) also affected galectin-4 localization in rafts, suggesting the involvement of GSL microdomains. We discovered that B3GALT5 plays a crucial role in regulating peritoneal metastasis of malignant gastric cancer cells by suppressing cell proliferation and modulating lipid rafts and galectin-4 via mechanisms that are yet to be elucidated.
Collapse
Affiliation(s)
- Akiko Tsuchida
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Kazuko Hachisu
- Laboratory of Glyco-organic Chemistry, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Mamoru Mizuno
- Laboratory of Glyco-organic Chemistry, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Yoshio Takada
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Hiroko Ideo
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan
| |
Collapse
|
4
|
Hachisu K, Tsuchida A, Takada Y, Mizuno M, Ideo H. Galectin-4 Is Involved in the Structural Changes of Glycosphingolipid Glycans in Poorly Differentiated Gastric Cancer Cells with High Metastatic Potential. Int J Mol Sci 2023; 24:12305. [PMID: 37569679 PMCID: PMC10418866 DOI: 10.3390/ijms241512305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Gastric cancer with peritoneal dissemination is difficult to treat surgically, and frequently recurs and metastasizes. Currently, there is no effective treatment for this disease, and there is an urgent need to elucidate the molecular mechanisms underlying peritoneal dissemination and metastasis. Our previous study demonstrated that galectin-4 participates in the peritoneal dissemination of poorly differentiated gastric cancer cells. In this study, the glycan profiles of cell surface proteins and glycosphingolipids (GSLs) of the original (wild), galectin-4 knockout (KO), and rescue cells were investigated to understand the precise mechanisms involved in the galectin-4-mediated regulation of associated molecules, especially with respect to glycosylation. Glycan analysis of the NUGC4 wild type and galectin-4 KO clones with and without peritoneal metastasis revealed a marked structural change in the glycans of neutral GSLs, but not in N-glycan. Furthermore, mass spectrometry (MS) combined with glycosidase digestion revealed that this structural change was due to the presence of the lacto-type (β1-3Galactosyl) glycan of GSL, in addition to the neolacto-type (β1-4Galactosyl) glycan of GSL. Our results demonstrate that galectin-4 is an important regulator of glycosylation in cancer cells and galectin-4 expression affects the glycan profile of GSLs in malignant cancer cells with a high potential for peritoneal dissemination.
Collapse
Affiliation(s)
- Kazuko Hachisu
- Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan; (K.H.); (M.M.)
| | - Akiko Tsuchida
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan; (A.T.); (Y.T.)
| | - Yoshio Takada
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan; (A.T.); (Y.T.)
| | - Mamoru Mizuno
- Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan; (K.H.); (M.M.)
| | - Hiroko Ideo
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan; (A.T.); (Y.T.)
| |
Collapse
|
5
|
Hořejší K, Jin C, Vaňková Z, Jirásko R, Strouhal O, Melichar B, Teneberg S, Holčapek M. Comprehensive characterization of complex glycosphingolipids in human pancreatic cancer tissues. J Biol Chem 2023; 299:102923. [PMID: 36681125 PMCID: PMC9976472 DOI: 10.1016/j.jbc.2023.102923] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most common causes of cancer-related deaths worldwide, accounting for 90% of primary pancreatic tumors with an average 5-year survival rate of less than 10%. PDAC exhibits aggressive biology, which, together with late detection, results in most PDAC patients presenting with unresectable, locally advanced, or metastatic disease. In-depth lipid profiling and screening of potential biomarkers currently appear to be a promising approach for early detection of PDAC or other cancers. Here, we isolated and characterized complex glycosphingolipids (GSL) from normal and tumor pancreatic tissues of patients with PDAC using a combination of TLC, chemical staining, carbohydrate-recognized ligand-binding assay, and LC/ESI-MS2. The major neutral GSL identified were GSL with the terminal blood groups A, B, H, Lea, Leb, Lex, Ley, P1, and PX2 determinants together with globo- (Gb3 and Gb4) and neolacto-series GSL (nLc4 and nLc6). We also revealed that the neutral GSL profiles and their relative amounts differ between normal and tumor tissues. Additionally, the normal and tumor pancreatic tissues differ in type 1/2 core chains. Sulfatides and GM3 gangliosides were the predominant acidic GSL along with the minor sialyl-nLc4/nLc6 and sialyl-Lea/Lex. The comprehensive analysis of GSL in human PDAC tissues extends the GSL coverage and provides an important platform for further studies of GSL alterations; therefore, it could contribute to the development of new biomarkers and therapeutic approaches.
Collapse
Affiliation(s)
- Karel Hořejší
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, , Pardubice, Czech Republic; University of South Bohemia in České Budějovice, Faculty of Science, Department of Chemistry, České Budějovice, Czech Republic
| | - Chunsheng Jin
- University of Gothenburg, Sahlgrenska Academy, Proteomics Core Facility, Göteborg, Sweden
| | - Zuzana Vaňková
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, , Pardubice, Czech Republic
| | - Robert Jirásko
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, , Pardubice, Czech Republic
| | - Ondřej Strouhal
- Palacký University Olomouc, Faculty of Medicine and Dentistryand University Hospital, Department of Oncology, Olomouc, Czech Republic
| | - Bohuslav Melichar
- Palacký University Olomouc, Faculty of Medicine and Dentistryand University Hospital, Department of Oncology, Olomouc, Czech Republic
| | - Susann Teneberg
- University of Gothenburg, Sahlgrenska Academy, Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, Göteborg, Sweden.
| | - Michal Holčapek
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, , Pardubice, Czech Republic.
| |
Collapse
|
6
|
Nagasawa H, Miyazaki S, Kyogashima M. Simple separation of glycosphingolipids in the lower phase of a Folch's partition from crude lipid fractions using zirconium dioxide. Glycoconj J 2022; 39:789-795. [PMID: 36103104 DOI: 10.1007/s10719-022-10080-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022]
Abstract
A simple method was developed for the separation of glycosphingolipids (GSLs) from lipid mixtures, including phospholipids and cholesterol, using zirconium dioxide (zirconia, ZrO2). Although this procedure does not incorporate a mild alkali treatment, which is commonly used for eliminating glycerophospholipids, it can be used to remove both alkali-resistant sphingomyelin and glycerophospholipids possessing ether bonds. Importantly, when GSLs were dissolved in organic solvent together with cholesterol (Chol) and phospholipids, and loaded onto ZrO2, Chol did not bind to the ZrO2 but both the GSLs and phospholipids did. When eluted with 5 mg/mL of 2,5-dihydroxybenzoic acid in methanol, GSLs but not phospholipids were recovered, leaving the phospholipids bound to the ZrO2 particles. This method is particularly applicable for GSLs such as triglycosylceramides, tetraglycosylceramides and some pentaglycosylceramides, sulfatide and GM3 located in the lower phase of a Folch's partition, where significant amounts of phospholipids, Chol and neutral lipids reside along with GSLs. This method was successfully used to easily isolate GSLs from biological materials for their subsequent analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry with high resolution.
Collapse
Affiliation(s)
- Hideharu Nagasawa
- Division of Microbiology and Molecular Cell Biology, Nihon Pharmaceutical University, 10281 Komuro, Inamachi, Saitama, 362-0806, Japan
| | - Shota Miyazaki
- GL Sciences Inc., 237-2 Sayamagahara, Saitama, 358-0032, Japan
| | - Mamoru Kyogashima
- Division of Microbiology and Molecular Cell Biology, Nihon Pharmaceutical University, 10281 Komuro, Inamachi, Saitama, 362-0806, Japan.
| |
Collapse
|