1
|
Wang Y, Liu J, Yi Y, Zhu L, Liu M, Zhang Z, Xie Q, Jiang L. Insights into the synthesis, engineering, and functions of microbial pigments in Deinococcus bacteria. Front Microbiol 2024; 15:1447785. [PMID: 39119139 PMCID: PMC11306087 DOI: 10.3389/fmicb.2024.1447785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
The ability of Deinococcus bacteria to survive in harsh environments, such as high radiation, extreme temperature, and dryness, is mainly attributed to the generation of unique pigments, especially carotenoids. Although the limited number of natural pigments produced by these bacteria restricts their industrial potential, metabolic engineering and synthetic biology can significantly increase pigment yield and expand their application prospects. In this study, we review the properties, biosynthetic pathways, and functions of key enzymes and genes related to these pigments and explore strategies for improving pigment production through gene editing and optimization of culture conditions. Additionally, studies have highlighted the unique role of these pigments in antioxidant activity and radiation resistance, particularly emphasizing the critical functions of deinoxanthin in D. radiodurans. In the future, Deinococcus bacterial pigments will have broad application prospects in the food industry, drug production, and space exploration, where they can serve as radiation indicators and natural antioxidants to protect astronauts' health during long-term space flights.
Collapse
Affiliation(s)
- Yuxian Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Jiayu Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Yuanyang Yi
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/ Xinjiang Key Laboratory of Special Environmental Microbiology, Urumqi, China
- College of Life Sciences, Xinjiang Normal University, Urumqi, China
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - Minghui Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Zhidong Zhang
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/ Xinjiang Key Laboratory of Special Environmental Microbiology, Urumqi, China
| | - Qiong Xie
- China Astronaut Research and Training Center, Beijing, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
2
|
Farci D, Piano D. Spatial arrangement and density variations in the cell envelope of Deinococcus radiodurans. Can J Microbiol 2024; 70:190-198. [PMID: 38525892 DOI: 10.1139/cjm-2023-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The cell envelope of the poly-extremophile bacterium Deinococcus radiodurans is renowned for its highly organized structure and unique functional characteristics. In this bacterium, a precise regularity characterizes not just the S-layer, but it also extends to the underlying cell envelope layers, resulting in a dense and tightly arranged configuration. This regularity is attributed to a minimum of three protein complexes located at the outer membrane level. Together, they constitute a recurring structural unit that extends across the cell envelope, effectively tiling the entirety of the cell body. Nevertheless, a comprehensive grasp of the vacant spaces within each layer and their functional roles remains limited. In this study, we delve into these aspects by integrating the state of the art with structural calculations. This approach provides crucial evidence supporting an evolutive pressure intricately linked to surface phenomena depending on the environmental conditions.
Collapse
Affiliation(s)
- Domenica Farci
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
- Department of Life and Environmental Sciences, Università degli Studi di Cagliari, Cagliari, Italy
| | - Dario Piano
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
- Department of Life and Environmental Sciences, Università degli Studi di Cagliari, Cagliari, Italy
| |
Collapse
|
3
|
Farci D, Milenkovic S, Iesu L, Tanas M, Ceccarelli M, Piano D. Structural characterization and functional insights into the type II secretion system of the poly-extremophile Deinococcus radiodurans. J Biol Chem 2024; 300:105537. [PMID: 38072042 PMCID: PMC10828601 DOI: 10.1016/j.jbc.2023.105537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 01/21/2024] Open
Abstract
The extremophile bacterium D. radiodurans boasts a distinctive cell envelope characterized by the regular arrangement of three protein complexes. Among these, the Type II Secretion System (T2SS) stands out as a pivotal structural component. We used cryo-electron microscopy to reveal unique features, such as an unconventional protein belt (DR_1364) around the main secretin (GspD), and a cap (DR_0940) found to be a separated subunit rather than integrated with GspD. Furthermore, a novel region at the N-terminus of the GspD constitutes an additional second gate, supplementing the one typically found in the outer membrane region. This T2SS was found to contribute to envelope integrity, while also playing a role in nucleic acid and nutrient trafficking. Studies on intact cell envelopes show a consistent T2SS structure repetition, highlighting its significance within the cellular framework.
Collapse
Affiliation(s)
- Domenica Farci
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland; Department of Life and Environmental Sciences, Università degli Studi di Cagliari, Cagliari, Italy; R&D Department, ReGenFix Laboratories, Sardara, Italy.
| | - Stefan Milenkovic
- Department of Physics and IOM/CNR, Università degli Studi di Cagliari, Monserrato, Italy
| | - Luca Iesu
- Department of Life and Environmental Sciences, Università degli Studi di Cagliari, Cagliari, Italy
| | - Marta Tanas
- Department of Life and Environmental Sciences, Università degli Studi di Cagliari, Cagliari, Italy
| | - Matteo Ceccarelli
- Department of Physics and IOM/CNR, Università degli Studi di Cagliari, Monserrato, Italy
| | - Dario Piano
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland; Department of Life and Environmental Sciences, Università degli Studi di Cagliari, Cagliari, Italy; R&D Department, ReGenFix Laboratories, Sardara, Italy.
| |
Collapse
|
4
|
Silale A, Zhu Y, Witwinowski J, Smith RE, Newman KE, Bhamidimarri SP, Baslé A, Khalid S, Beloin C, Gribaldo S, van den Berg B. Dual function of OmpM as outer membrane tether and nutrient uptake channel in diderm Firmicutes. Nat Commun 2023; 14:7152. [PMID: 37932269 PMCID: PMC10628300 DOI: 10.1038/s41467-023-42601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023] Open
Abstract
The outer membrane (OM) in diderm, or Gram-negative, bacteria must be tethered to peptidoglycan for mechanical stability and to maintain cell morphology. Most diderm phyla from the Terrabacteria group have recently been shown to lack well-characterised OM attachment systems, but instead have OmpM, which could represent an ancestral tethering system in bacteria. Here, we have determined the structure of the most abundant OmpM protein from Veillonella parvula (diderm Firmicutes) by single particle cryogenic electron microscopy. We also characterised the channel properties of the transmembrane β-barrel of OmpM and investigated the structure and PG-binding properties of its periplasmic stalk region. Our results show that OM tethering and nutrient acquisition are genetically linked in V. parvula, and probably other diderm Terrabacteria. This dual function of OmpM may have played a role in the loss of the OM in ancestral bacteria and the emergence of monoderm bacterial lineages.
Collapse
Affiliation(s)
- Augustinas Silale
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, NE2 4HH, Newcastle upon Tyne, UK
| | - Yiling Zhu
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, NE2 4HH, Newcastle upon Tyne, UK
| | - Jerzy Witwinowski
- Institut Pasteur, Université de Paris Cité, Unit Evolutionary Biology of the Microbial Cell, Paris, France
| | - Robert E Smith
- Institut Pasteur, Université de Paris Cité, Unit Evolutionary Biology of the Microbial Cell, Paris, France
| | - Kahlan E Newman
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Satya P Bhamidimarri
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, NE2 4HH, Newcastle upon Tyne, UK
| | - Arnaud Baslé
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, NE2 4HH, Newcastle upon Tyne, UK
| | - Syma Khalid
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Christophe Beloin
- Institut Pasteur, Université de Paris Cité, Genetics of Biofilms Laboratory, Paris, France.
| | - Simonetta Gribaldo
- Institut Pasteur, Université de Paris Cité, Unit Evolutionary Biology of the Microbial Cell, Paris, France.
| | - Bert van den Berg
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, NE2 4HH, Newcastle upon Tyne, UK.
| |
Collapse
|
5
|
Kuzucu M. Extremophilic Solutions: The Role of Deinoxanthin in Counteracting UV-Induced Skin Harm. Curr Issues Mol Biol 2023; 45:8372-8394. [PMID: 37886971 PMCID: PMC10605247 DOI: 10.3390/cimb45100528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
This research delved into the protective capacities of deinoxanthin, a carotenoid present in Deinococcus radiodurans, against UVA- and UVB-mediated skin damage using human fibroblast foreskin cells (HFF-1). Using the MTT assay, HFF-1 cells treated with 10 µM DNX displayed 20% and 31.7% higher viability than the positive (Vitamin C-treated) and negative (DNX-untreated) control groups, respectively, upon 100 mJ/cm2 UVB exposure. At 24 J/cm2 UVA, 20 µM DNX-treated cells showed 80.6% viability, exceeding the positive and negative control groups by 28.6% and 33.6%, respectively. Flow cytometry analysis revealed that cells treated with DNX and exposed to 24 J/cm2 UVA exhibited a 69.32% reduction in apoptotic processes compared to untreated cells. Similarly, when exposed to 100 mJ/cm2 UVB, DNX-treated cells demonstrated a 72.35% decrease in apoptotic processes relative to their untreated counterparts. DNX also displayed dose-dependent inhibition on tyrosinase activity. The study emphasized DNX's antioxidative capacity, evident in its modulation of superoxide dismutase activity and measurements of Malondialdehyde and intracellular reactive oxygen species levels. DNX-treated cells exhibited higher hydroxyproline levels, suggesting healthier collagen production. Additionally, the wound-healing assay method confirmed an accelerated healing rate in DNX-treated cells. Conclusively, DNX offers significant protection against UV-induced skin damage, emphasizing its potential for skincare and therapeutics.
Collapse
Affiliation(s)
- Mehmet Kuzucu
- Department of Biology, Faculty of Arts and Sciences, Erzincan Binali Yildirim University, Erzincan 24100, Türkiye
| |
Collapse
|
6
|
Sadowska-Bartosz I, Bartosz G. Antioxidant defense of Deinococcus radiodurans: how does it contribute to extreme radiation resistance? Int J Radiat Biol 2023; 99:1803-1829. [PMID: 37498212 DOI: 10.1080/09553002.2023.2241895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/28/2023] [Accepted: 07/08/2023] [Indexed: 07/28/2023]
Abstract
PURPOSE Deinococcus radiodurans is an extremely radioresistant bacterium characterized by D10 of 10 kGy, and able to grow luxuriantly under chronic ionizing radiation of 60 Gy/h. The aim of this article is to review the antioxidant system of D. radiodurans and its possible role in the unusual resistance of this bacterium to ionizing radiation. CONCLUSIONS The unusual radiation resistance of D. radiodurans has apparently evolved as a side effect of the adaptation of this extremophile to other damaging environmental factors, especially desiccation. The antioxidant proteins and low-molecular antioxidants (especially low-molecular weight Mn2+ complexes and carotenoids, in particular, deinoxanthin), as well as protein and non-protein regulators, are important for the antioxidant defense of this species. Antioxidant protection of proteins from radiation inactivation enables the repair of DNA damage caused by ionizing radiation.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Grzegorz Bartosz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
7
|
von Kügelgen A, van Dorst S, Yamashita K, Sexton DL, Tocheva EI, Murshudov G, Alva V, Bharat TAM. Interdigitated immunoglobulin arrays form the hyperstable surface layer of the extremophilic bacterium Deinococcus radiodurans. Proc Natl Acad Sci U S A 2023; 120:e2215808120. [PMID: 37043530 PMCID: PMC10120038 DOI: 10.1073/pnas.2215808120] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/14/2023] [Indexed: 04/13/2023] Open
Abstract
Deinococcus radiodurans is an atypical diderm bacterium with a remarkable ability to tolerate various environmental stresses, due in part to its complex cell envelope encapsulated within a hyperstable surface layer (S-layer). Despite decades of research on this cell envelope, atomic structural details of the S-layer have remained obscure. In this study, we report the electron cryomicroscopy structure of the D. radiodurans S-layer, showing how it is formed by the Hexagonally Packed Intermediate-layer (HPI) protein arranged in a planar hexagonal lattice. The HPI protein forms an array of immunoglobulin-like folds within the S-layer, with each monomer extending into the adjacent hexamer, resulting in a highly interconnected, stable, sheet-like arrangement. Using electron cryotomography and subtomogram averaging from focused ion beam-milled D. radiodurans cells, we have obtained a structure of the cellular S-layer, showing how this HPI S-layer coats native membranes on the surface of cells. Our S-layer structure from the diderm bacterium D. radiodurans shows similarities to immunoglobulin-like domain-containing S-layers from monoderm bacteria and archaea, highlighting common features in cell surface organization across different domains of life, with connotations on the evolution of immunoglobulin-based molecular recognition systems in eukaryotes.
Collapse
Affiliation(s)
- Andriko von Kügelgen
- Structural Studies Division, MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Sofie van Dorst
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Keitaro Yamashita
- Structural Studies Division, MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Danielle L. Sexton
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
| | - Elitza I. Tocheva
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
| | - Garib Murshudov
- Structural Studies Division, MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen72076, Germany
| | - Tanmay A. M. Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| |
Collapse
|
8
|
The radioresistant and survival mechanisms of Deinococcus radiodurans. RADIATION MEDICINE AND PROTECTION 2023. [DOI: 10.1016/j.radmp.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
|
9
|
Nam K, Wolf-Watz M. Protein dynamics: The future is bright and complicated! STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:014301. [PMID: 36865927 PMCID: PMC9974214 DOI: 10.1063/4.0000179] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Biological life depends on motion, and this manifests itself in proteins that display motion over a formidable range of time scales spanning from femtoseconds vibrations of atoms at enzymatic transition states, all the way to slow domain motions occurring on micro to milliseconds. An outstanding challenge in contemporary biophysics and structural biology is a quantitative understanding of the linkages among protein structure, dynamics, and function. These linkages are becoming increasingly explorable due to conceptual and methodological advances. In this Perspective article, we will point toward future directions of the field of protein dynamics with an emphasis on enzymes. Research questions in the field are becoming increasingly complex such as the mechanistic understanding of high-order interaction networks in allosteric signal propagation through a protein matrix, or the connection between local and collective motions. In analogy to the solution to the "protein folding problem," we argue that the way forward to understanding these and other important questions lies in the successful integration of experiment and computation, while utilizing the present rapid expansion of sequence and structure space. Looking forward, the future is bright, and we are in a period where we are on the doorstep to, at least in part, comprehend the importance of dynamics for biological function.
Collapse
Affiliation(s)
- Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, USA
| | | |
Collapse
|
10
|
Farci D, Graça AT, Iesu L, de Sanctis D, Piano D. The SDBC is active in quenching oxidative conditions and bridges the cell envelope layers in Deinococcus radiodurans. J Biol Chem 2022; 299:102784. [PMID: 36502921 PMCID: PMC9823218 DOI: 10.1016/j.jbc.2022.102784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
Deinococcus radiodurans is known for its remarkable ability to withstand harsh stressful conditions. The outermost layer of its cell envelope is a proteinaceous coat, the S-layer, essential for resistance to and interactions with the environment. The S-layer Deinoxanthin-binding complex (SDBC), one of the main units of the characteristic multilayered cell envelope of this bacterium, protects against environmental stressors and allows exchanges with the environment. So far, specific regions of this complex, the collar and the stalk, remained unassigned. Here, these regions are resolved by cryo-EM and locally refined. The resulting 3D map shows that the collar region of this multiprotein complex is a trimer of the protein DR_0644, a Cu-only superoxide dismutase (SOD) identified here to be efficient in quenching reactive oxygen species. The same data also showed that the stalk region consists of a coiled coil that extends into the cell envelope for ∼280 Å, reaching the inner membrane. Finally, the orientation and localization of the complex are defined by in situ cryo-electron crystallography. The structural organization of the SDBC couples fundamental UV antenna properties with the presence of a Cu-only SOD, showing here coexisting photoprotective and chemoprotective functions. These features suggests how the SDBC and similar protein complexes, might have played a primary role as evolutive templates for the origin of photoautotrophic processes by combining primary protective needs with more independent energetic strategies.
Collapse
Affiliation(s)
- Domenica Farci
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland,Department of Chemistry, Umeå University, Umeå, Sweden,Department of Life and Environmental Sciences, Laboratory of Plant Physiology and Photobiology, University of Cagliari, Cagliari, Italy,For correspondence: Dario Piano; Domenica Farci
| | | | - Luca Iesu
- Department of Life and Environmental Sciences, Laboratory of Plant Physiology and Photobiology, University of Cagliari, Cagliari, Italy
| | - Daniele de Sanctis
- Structural Biology group, ESRF, The European Synchrotron Radiation Facility, Grenoble, France
| | - Dario Piano
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland,Department of Life and Environmental Sciences, Laboratory of Plant Physiology and Photobiology, University of Cagliari, Cagliari, Italy,For correspondence: Dario Piano; Domenica Farci
| |
Collapse
|
11
|
Farci D, Cocco E, Tanas M, Kirkpatrick J, Maxia A, Tamburini E, Schröder WP, Piano D. Isolation and characterization of a main porin from the outer membrane of Salinibacter ruber. J Bioenerg Biomembr 2022; 54:273-281. [PMID: 36229623 DOI: 10.1007/s10863-022-09950-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022]
Abstract
Salinibacter ruber is an extremophilic bacterium able to grow in high-salts environments, such as saltern crystallizer ponds. This halophilic bacterium is red-pigmented due to the production of several carotenoids and their derivatives. Two of these pigment molecules, salinixanthin and retinal, are reported to be essential cofactors of the xanthorhodopsin, a light-driven proton pump unique to this bacterium. Here, we isolate and characterize an outer membrane porin-like protein that retains salinixanthin. The characterization by mass spectrometry identified an unknown protein whose structure, predicted by AlphaFold, consists of a 8 strands beta-barrel transmembrane organization typical of porins. The protein is found to be part of a functional network clearly involved in the outer membrane trafficking. Cryo-EM micrographs showed the shape and dimensions of a particle comparable with the ones of the predicted structure. Functional implications, with respect to the high representativity of this protein in the outer membrane fraction, are discussed considering its possible role in primary functions such as the nutrients uptake and the homeostatic balance. Finally, also a possible involvement in balancing the charge perturbation associated with the xanthorhodopsin and ATP synthase activities is considered.
Collapse
Affiliation(s)
- Domenica Farci
- Department of Chemistry, Umeå University, Linnaeus väg 6, 90736, Umeå, Sweden. .,Laboratory of Plant Physiology and Photobiology, Department of Life and Environmental Sciences, Università degli Studi di Cagliari, V.le S. Ignazio da Laconi 13, 09123, Cagliari, Italy.
| | - Emma Cocco
- Laboratory of Plant Physiology and Photobiology, Department of Life and Environmental Sciences, Università degli Studi di Cagliari, V.le S. Ignazio da Laconi 13, 09123, Cagliari, Italy
| | - Marta Tanas
- Laboratory of Plant Physiology and Photobiology, Department of Life and Environmental Sciences, Università degli Studi di Cagliari, V.le S. Ignazio da Laconi 13, 09123, Cagliari, Italy
| | | | - Andrea Maxia
- Laboratory of Economic and Pharmaceutical Botany, Department of Life and Environmental Sciences, Università degli Studi di Cagliari, V.le S. Ignazio da Laconi 13, 09123, Cagliari, Italy
| | - Elena Tamburini
- Department of Biomedical Sciences, Università degli Studi di Cagliari, Cittadella Universitaria sp. 8, 09042, Monserrato, CA, Italy
| | - Wolfgang P Schröder
- Department of Chemistry, Umeå University, Linnaeus väg 6, 90736, Umeå, Sweden
| | - Dario Piano
- Laboratory of Plant Physiology and Photobiology, Department of Life and Environmental Sciences, Università degli Studi di Cagliari, V.le S. Ignazio da Laconi 13, 09123, Cagliari, Italy.
| |
Collapse
|
12
|
Bernhofer M, Rost B. TMbed: transmembrane proteins predicted through language model embeddings. BMC Bioinformatics 2022; 23:326. [PMID: 35941534 PMCID: PMC9358067 DOI: 10.1186/s12859-022-04873-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/03/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Despite the immense importance of transmembrane proteins (TMP) for molecular biology and medicine, experimental 3D structures for TMPs remain about 4-5 times underrepresented compared to non-TMPs. Today's top methods such as AlphaFold2 accurately predict 3D structures for many TMPs, but annotating transmembrane regions remains a limiting step for proteome-wide predictions. RESULTS Here, we present TMbed, a novel method inputting embeddings from protein Language Models (pLMs, here ProtT5), to predict for each residue one of four classes: transmembrane helix (TMH), transmembrane strand (TMB), signal peptide, or other. TMbed completes predictions for entire proteomes within hours on a single consumer-grade desktop machine at performance levels similar or better than methods, which are using evolutionary information from multiple sequence alignments (MSAs) of protein families. On the per-protein level, TMbed correctly identified 94 ± 8% of the beta barrel TMPs (53 of 57) and 98 ± 1% of the alpha helical TMPs (557 of 571) in a non-redundant data set, at false positive rates well below 1% (erred on 30 of 5654 non-membrane proteins). On the per-segment level, TMbed correctly placed, on average, 9 of 10 transmembrane segments within five residues of the experimental observation. Our method can handle sequences of up to 4200 residues on standard graphics cards used in desktop PCs (e.g., NVIDIA GeForce RTX 3060). CONCLUSIONS Based on embeddings from pLMs and two novel filters (Gaussian and Viterbi), TMbed predicts alpha helical and beta barrel TMPs at least as accurately as any other method but at lower false positive rates. Given the few false positives and its outstanding speed, TMbed might be ideal to sieve through millions of 3D structures soon to be predicted, e.g., by AlphaFold2.
Collapse
Affiliation(s)
- Michael Bernhofer
- Department of Informatics, Bioinformatics and Computational Biology ‑ i12, Technical University of Munich (TUM), Boltzmannstr. 3, 85748, Garching, Germany.
- TUM Graduate School, Center of Doctoral Studies in Informatics and its Applications (CeDoSIA), Boltzmannstr. 11, 85748, Garching, Germany.
| | - Burkhard Rost
- Department of Informatics, Bioinformatics and Computational Biology ‑ i12, Technical University of Munich (TUM), Boltzmannstr. 3, 85748, Garching, Germany
- Institute for Advanced Study (TUM-IAS), Lichtenbergstr. 2a, 85748, Garching, Germany
- TUM School of Life Sciences Weihenstephan (TUM-WZW), Alte Akademie 8, Freising, Germany
| |
Collapse
|
13
|
Pfeifer K, Ehmoser EK, Rittmann SKMR, Schleper C, Pum D, Sleytr UB, Schuster B. Isolation and Characterization of Cell Envelope Fragments Comprising Archaeal S-Layer Proteins. NANOMATERIALS 2022; 12:nano12142502. [PMID: 35889727 PMCID: PMC9320373 DOI: 10.3390/nano12142502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022]
Abstract
The outermost component of cell envelopes of most bacteria and almost all archaea comprise a protein lattice, which is termed Surface (S-)layer. The S-layer lattice constitutes a highly porous structure with regularly arranged pores in the nm-range. Some archaea thrive in extreme milieus, thus producing highly stable S-layer protein lattices that aid in protecting the organisms. In the present study, fragments of the cell envelope from the hyperthermophilic acidophilic archaeon Saccharolobus solfataricus P2 (SSO) have been isolated by two different methods and characterized. The organization of the fragments and the molecular sieving properties have been elucidated by transmission electron microscopy and by determining the retention efficiency of proteins varying in size, respectively. The porosity of the archaeal S-layer fragments was determined to be 45%. S-layer fragments of SSO showed a retention efficiency of up to 100% for proteins having a molecular mass of ≥ 66 kDa. Moreover, the extraction costs for SSO fragments have been reduced by more than 80% compared to conventional methods, which makes the use of these archaeal S-layer material economically attractive.
Collapse
Affiliation(s)
- Kevin Pfeifer
- Institute of Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (K.P.); (E.-K.E.); (U.B.S.)
| | - Eva-Kathrin Ehmoser
- Institute of Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (K.P.); (E.-K.E.); (U.B.S.)
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria;
- Arkeon GmbH, 3430 Tulln an der Donau, Austria
| | - Christa Schleper
- Archaea Biology and Ecogenomics Division, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria;
| | - Dietmar Pum
- Institute of Biophysics, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | - Uwe B. Sleytr
- Institute of Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (K.P.); (E.-K.E.); (U.B.S.)
| | - Bernhard Schuster
- Institute of Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (K.P.); (E.-K.E.); (U.B.S.)
- Correspondence: ; Tel.: +43-1-47654-80436
| |
Collapse
|