1
|
Tsamouri LP, Hsiao JC, Wang Q, Geeson MB, Huang HC, Nambiar DR, Zou M, Ball DP, Chui AJ, Bachovchin DA. The hydrophobicity of the CARD8 N-terminus tunes inflammasome activation. Cell Chem Biol 2024; 31:1699-1713.e8. [PMID: 38991619 PMCID: PMC11416329 DOI: 10.1016/j.chembiol.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/13/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024]
Abstract
Mounting evidence indicates that proteotoxic stress is a primary activator of the CARD8 inflammasome, but the complete array of signals that control this inflammasome have not yet been established. Notably, we recently discovered that several hydrophobic radical-trapping antioxidants (RTAs), including JSH-23, potentiate CARD8 inflammasome activation through an unknown mechanism. Here, we report that these RTAs directly alkylate several cysteine residues in the N-terminal disordered region of CARD8. These hydrophobic modifications destabilize the repressive CARD8 N-terminal fragment and accelerate its proteasome-mediated degradation, thereby releasing the inflammatory CARD8 C-terminal fragment from autoinhibition. Consistently, we also found that unrelated (non-RTA) hydrophobic electrophiles as well as genetic mutation of the CARD8 cysteine residues to isoleucines similarly potentiate inflammasome activation. Overall, our results not only provide further evidence that protein folding stress is a key CARD8 inflammasome-activating signal, but also indicate that the N-terminal cysteines can play key roles in tuning the response to this stress.
Collapse
Affiliation(s)
- Lydia P Tsamouri
- Pharmacology Program of the Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jeffrey C Hsiao
- Pharmacology Program of the Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Qinghui Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael B Geeson
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hsin-Che Huang
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Deepika R Nambiar
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mengyang Zou
- Biochemistry, Structural, Cell, Developmental and Molecular Biology Allied Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Daniel P Ball
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ashley J Chui
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daniel A Bachovchin
- Pharmacology Program of the Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
2
|
Parameswaran P, Payne L, Powers J, Rashighi M, Orzalli MH. A viral E3 ubiquitin ligase produced by herpes simplex virus 1 inhibits the NLRP1 inflammasome. J Exp Med 2024; 221:e20231518. [PMID: 38861480 PMCID: PMC11167375 DOI: 10.1084/jem.20231518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/01/2024] [Accepted: 05/15/2024] [Indexed: 06/13/2024] Open
Abstract
Guard proteins initiate defense mechanisms upon sensing pathogen-encoded virulence factors. Successful viral pathogens likely inhibit guard protein activity, but these interactions have been largely undefined. Here, we demonstrate that the human pathogen herpes simplex virus 1 (HSV-1) stimulates and inhibits an antiviral pathway initiated by NLRP1, a guard protein that induces inflammasome formation and pyroptotic cell death when activated. Notably, HSV-1 infection of human keratinocytes promotes posttranslational modifications to NLRP1, consistent with MAPK-dependent NLRP1 activation, but does not result in downstream inflammasome formation. We identify infected cell protein 0 (ICP0) as the critical HSV-1 protein that is necessary and sufficient for inhibition of the NLRP1 pathway. Mechanistically, ICP0's cytoplasmic localization and function as an E3 ubiquitin ligase prevents proteasomal degradation of the auto-inhibitory NT-NLRP1 fragment, thereby preventing inflammasome formation. Further, we demonstrate that inhibiting this inflammasome is important for promoting HSV-1 replication. Thus, we have established a mechanism by which HSV-1 overcomes a guard-mediated antiviral defense strategy in humans.
Collapse
Affiliation(s)
- Pooja Parameswaran
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Immunology and Microbiology Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Laurellee Payne
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jennifer Powers
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Mehdi Rashighi
- Immunology and Microbiology Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Megan H. Orzalli
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Immunology and Microbiology Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
3
|
Muccini C, Castagna A. HIV Pol: does it offer therapeutic targets for HIV? Expert Opin Ther Targets 2024; 28:341-343. [PMID: 38696265 DOI: 10.1080/14728222.2024.2351510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/01/2024] [Indexed: 05/04/2024]
Affiliation(s)
- Camilla Muccini
- Department of Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonella Castagna
- Department of Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
4
|
Fransén K, Hiyoshi A, Paramel GV, Hurtig-Wennlöf A. Association between C10X polymorphism in the CARD8 gene and inflammatory markers in young healthy individuals in the LBA study. BMC Cardiovasc Disord 2024; 24:103. [PMID: 38350853 PMCID: PMC10863129 DOI: 10.1186/s12872-024-03765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/03/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND The Caspase activation and recruitment domain 8 (CARD8) protein is a component of innate immunity as a negative regulator of NF- ĸB, and has been associated with regulation of proteins involved in inflammation. Expression of CARD8 mRNA and protein has been identified in human atherosclerotic lesions, and the truncated T30A variant (rs2043211) of CARD8 has been associated with lower C-reactive (CRP) and MCP-1 levels in myocardial infarction patients. The present study examines the role of a genetic variation in the CARD8 gene in relation to a selection of markers of inflammation. METHODS In a cross-sectional study of young healthy individuals (18.0-25.9 yrs, n = 744) the association between the rs2043211 variant in the CARD8 gene and protein markers of inflammation was assessed. Genotyping of the CARD8 C10X (rs2043211) polymorphism was performed with TaqMan real time PCR on DNA from blood samples. Protein levels were studied via Olink inflammation panel ( https://olink.com/ ). Using linear models, we analyzed men and two groups of women with and without estrogen containing contraceptives separately, due to previous findings indicating differences between estrogen users and non-estrogen using women. Genotypes were analyzed by additive, recessive and dominant models. RESULTS The minor (A) allele of the rs2043211 polymorphism in the CARD8 gene was associated with lower levels of CCL20 and IL-6 in men (CCL20, Additive model: p = 0.023; Dominant model: p = 0.016. IL-6, Additive model: p = 0.042; Dominant model: p = 0.039). The associations remained significant also after adjustment for age and potential intermediate variables. CONCLUSIONS Our data indicate that CARD8 may be involved in the regulation of CCL20 and IL-6 in men. No such association was observed in women. These findings strengthen and support previous in vitro data on IL-6 and CCL20 and highlight the importance of CARD8 as a factor in the regulation of inflammatory proteins. The reason to the difference between sexes is however not clear, and the influence of estrogen as a possible factor important for the inflammatory response needs to be further explored.
Collapse
Affiliation(s)
- Karin Fransén
- Cardiovascular Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Ayako Hiyoshi
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Geena V Paramel
- Cardiovascular Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Anita Hurtig-Wennlöf
- Department of Clinical Diagnostics, School of Health and Welfare, Jönköping University, Jönköping, Sweden
| |
Collapse
|
5
|
Kulsuptrakul J, Turcotte EA, Emerman M, Mitchell PS. A human-specific motif facilitates CARD8 inflammasome activation after HIV-1 infection. eLife 2023; 12:e84108. [PMID: 37417868 PMCID: PMC10359095 DOI: 10.7554/elife.84108] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/06/2023] [Indexed: 07/08/2023] Open
Abstract
Inflammasomes are cytosolic innate immune complexes that assemble upon detection of diverse pathogen-associated cues and play a critical role in host defense and inflammatory pathogenesis. Here, we find that the human inflammasome-forming sensor CARD8 senses HIV-1 infection via site-specific cleavage of the CARD8 N-terminus by the HIV protease (HIV-1PR). HIV-1PR cleavage of CARD8 induces pyroptotic cell death and the release of pro-inflammatory cytokines from infected cells, processes regulated by Toll-like receptor stimulation prior to viral infection. In acutely infected cells, CARD8 senses the activity of both de novo translated HIV-1PR and packaged HIV-1PR that is released from the incoming virion. Moreover, our evolutionary analyses reveal that the HIV-1PR cleavage site in human CARD8 arose after the divergence of chimpanzees and humans. Although chimpanzee CARD8 does not recognize proteases from HIV or simian immunodeficiency viruses from chimpanzees (SIVcpz), SIVcpz does cleave human CARD8, suggesting that SIVcpz was poised to activate the human CARD8 inflammasome prior to its cross-species transmission into humans. Our findings suggest a unique role for CARD8 inflammasome activation in response to lentiviral infection of humans.
Collapse
Affiliation(s)
- Jessie Kulsuptrakul
- Molecular and Cellular Biology Graduate Program, University of WashingtonSeattleUnited States
| | - Elizabeth A Turcotte
- Division of Immunology and Pathogenesis, University of California, BerkeleyBerkeleyUnited States
| | - Michael Emerman
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Patrick S Mitchell
- Department of Microbiology, University of WashingtonSeattleUnited States
| |
Collapse
|
6
|
Clark KM, Kim JG, Wang Q, Gao H, Presti RM, Shan L. Chemical inhibition of DPP9 sensitizes the CARD8 inflammasome in HIV-1-infected cells. Nat Chem Biol 2023; 19:431-439. [PMID: 36357533 PMCID: PMC10065922 DOI: 10.1038/s41589-022-01182-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 09/27/2022] [Indexed: 11/12/2022]
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) induce pyroptosis of HIV-1-infected CD4+ T cells through induction of intracellular HIV-1 protease activity, which activates the CARD8 inflammasome. Because high concentrations of NNRTIs are required for efficient elimination of HIV-1-infected cells, it is important to elucidate ways to sensitize the CARD8 inflammasome to NNRTI-induced activation. We show that this sensitization can be achieved through chemical inhibition of the CARD8 negative regulator DPP9. The DPP9 inhibitor Val-boroPro (VbP) can kill HIV-1-infected cells without the presence of NNRTIs and act synergistically with NNRTIs to promote clearance of HIV-1-infected cells in vitro and in humanized mice. More importantly, VbP is able to enhance clearance of residual HIV-1 in CD4+ T cells isolated from people living with HIV (PLWH). We also show that VbP can partially overcome NNRTI resistance. This offers a promising strategy for enhancing NNRTI efficacy in the elimination of HIV-1 reservoirs in PLWH.
Collapse
Affiliation(s)
- Kolin M Clark
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Josh G Kim
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Qiankun Wang
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Hongbo Gao
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Rachel M Presti
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Liang Shan
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
7
|
Protein folding stress potentiates NLRP1 and CARD8 inflammasome activation. Cell Rep 2023; 42:111965. [PMID: 36649711 PMCID: PMC10042216 DOI: 10.1016/j.celrep.2022.111965] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/25/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
NLRP1 and CARD8 are related pattern-recognition receptors (PRRs) that detect intracellular danger signals and form inflammasomes. Both undergo autoproteolysis, generating N-terminal (NT) and C-terminal (CT) fragments. The proteasome-mediated degradation of the NT releases the CT from autoinhibition, but the stimuli that trigger NT degradation have not been fully elucidated. Here, we show that several distinct agents that interfere with protein folding, including aminopeptidase inhibitors, chaperone inhibitors, and inducers of the unfolded protein response, accelerate NT degradation. However, these agents alone do not trigger inflammasome formation because the released CT fragments are physically sequestered by the serine dipeptidase DPP9. We show that DPP9-binding ligands must also be present to disrupt these complexes and allow the CT fragments to oligomerize into inflammasomes. Overall, these results indicate that NLRP1 and CARD8 detect a specific perturbation that induces both protein folding stress and DPP9 ligand accumulation.
Collapse
|
8
|
Wang Q, Hsiao JC, Yardeny N, Huang HC, O’Mara CM, Orth-He EL, Ball DP, Zhang Z, Bachovchin DA. The NLRP1 and CARD8 inflammasomes detect reductive stress. Cell Rep 2023; 42:111966. [PMID: 36649710 PMCID: PMC9942139 DOI: 10.1016/j.celrep.2022.111966] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/25/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
The danger signals that activate the related nucleotide-binding domain leucine-rich repeat pyrin domain-containing 1 (NLRP1) and caspase activation and recruitment domain-containing 8 (CARD8) inflammasomes have not been fully established. We recently reported that the oxidized form of TRX1 binds to NLRP1 and represses inflammasome activation. These findings suggested that intracellular reductive stress, which would reduce oxidized TRX1 and thereby abrogate the NLRP1-TRX1 interaction, is an NLRP1 inflammasome-activating danger signal. However, no agents that induce reductive stress were known to test this premise. Here, we identify and characterize several radical-trapping antioxidants, including JSH-23, that induce reductive stress. We show that these compounds accelerate the proteasome-mediated degradation of the repressive N-terminal fragments of both NLRP1 and CARD8, releasing the inflammasome-forming C-terminal fragments from autoinhibition. Overall, this work validates chemical probes that induce reductive stress and establishes reductive stress as a danger signal sensed by both the NLRP1 and CARD8 inflammasomes.
Collapse
Affiliation(s)
- Qinghui Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jeffrey C. Hsiao
- Pharmacology Program of the Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Noah Yardeny
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hsin-Che Huang
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Claire M. O’Mara
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elizabeth L. Orth-He
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daniel P. Ball
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ze Zhang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daniel A. Bachovchin
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA,Pharmacology Program of the Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA,Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA,Lead contact,Correspondence:
| |
Collapse
|
9
|
Abstract
The biggest challenge to immune control of HIV infection is the rapid within-host viral evolution, which allows selection of viral variants that escape from T cell and antibody recognition. Thus, it is impossible to clear HIV infection without targeting "immutable" components of the virus. Unlike the adaptive immune system that recognizes cognate epitopes, the CARD8 inflammasome senses the essential enzymatic activity of the HIV-1 protease, which is immutable for the virus. Hence, all subtypes of HIV clinical isolates can be recognized by CARD8. In HIV-infected cells, the viral protease is expressed as a subunit of the viral Gag-Pol polyprotein and remains functionally inactive prior to viral budding. A class of anti-HIV drugs, the non-nucleoside reverse transcriptase inhibitors (NNRTIs), can promote Gag-pol dimerization and subsequent premature intracellular activation of the viral protease. NNRTI treatment triggers CARD8 inflammasome activation, which leads to pyroptosis of HIV-infected CD4+ T cells and macrophages. Targeting the CARD8 inflammasome can be a potent and broadly effective strategy for HIV eradication.
Collapse
Affiliation(s)
- Kolin M Clark
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Priya Pal
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Josh G Kim
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Qiankun Wang
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Liang Shan
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States.
| |
Collapse
|
10
|
Ball DP, Tsamouri LP, Wang AE, Huang HC, Warren CD, Wang Q, Edmondson IH, Griswold AR, Rao SD, Johnson DC, Bachovchin DA. Oxidized thioredoxin-1 restrains the NLRP1 inflammasome. Sci Immunol 2022; 7:eabm7200. [PMID: 36332009 PMCID: PMC9850498 DOI: 10.1126/sciimmunol.abm7200] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The danger signals that activate the NLRP1 inflammasome have not been established. Here, we report that the oxidized, but not the reduced, form of thioredoxin-1 (TRX1) binds to NLRP1. We found that oxidized TRX1 associates with the NACHT-LRR region of NLRP1 in an ATP-dependent process, forming a stable complex that restrains inflammasome activation. Consistent with these findings, patient-derived and ATPase-inactivating mutations in the NACHT-LRR region that cause hyperactive inflammasome formation interfere with TRX1 binding. Overall, this work strongly suggests that reductive stress, the cellular perturbation that will eliminate oxidized TRX1 and abrogate the TRX1-NLRP1 interaction, is a danger signal that activates the NLRP1 inflammasome.
Collapse
Affiliation(s)
- Daniel P. Ball
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Lydia P. Tsamouri
- Pharmacology Program of the Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Alvin E. Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Hsin-Che Huang
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Charles D. Warren
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Qinghui Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Isabelle H. Edmondson
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Andrew R. Griswold
- Pharmacology Program of the Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, New York 10065, USA
| | - Sahana D. Rao
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Darren C. Johnson
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Daniel A. Bachovchin
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Pharmacology Program of the Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|