1
|
Akhtar MN, Singh A, Manjunath LE, Dey D, Kumar SD, Vasu K, Das A, Eswarappa SM. Hominini-specific regulation of the cell cycle by stop codon readthrough of FEM1B. J Cell Sci 2024; 137:jcs261921. [PMID: 39140134 PMCID: PMC11385324 DOI: 10.1242/jcs.261921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
FEM1B is a substrate-recognition component of the CRL2 E3 ubiquitin-protein ligase. This multi-protein complex targets specific proteins for ubiquitylation, which leads to their degradation. Here, we demonstrate the regulation of FEM1B expression by stop codon readthrough (SCR). In this process, translating ribosomes readthrough the stop codon of FEM1B to generate a C-terminally extended isoform that is highly unstable. A total of 81 nucleotides in the proximal 3'UTR of FEM1B constitute the necessary and sufficient cis-signal for SCR. Also, they encode the amino acid sequence responsible for the degradation of the SCR product. CRISPR-edited cells lacking this region, and therefore SCR of FEM1B, showed increased FEM1B expression. This in turn resulted in reduced expression of SLBP (a target of FEM1B-mediated degradation) and replication-dependent histones (target of SLBP for mRNA stability), causing cell cycle delay. Evolutionary analysis revealed that this phenomenon is specific to the genus Pan and Homo (Hominini). Overall, we show a relatively recently evolved SCR process that relieves the cell cycle from the negative regulation by FEM1B.
Collapse
Affiliation(s)
- Md Noor Akhtar
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Anumeha Singh
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Lekha E. Manjunath
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Dhruba Dey
- Undergraduate Program, Indian Institute of Science, Bengaluru 560012, India
| | - Sangeetha Devi Kumar
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Kirtana Vasu
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Arpan Das
- Undergraduate Program, Indian Institute of Science, Bengaluru 560012, India
| | - Sandeep M. Eswarappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
2
|
Wu HYL, Jen J, Hsu PY. What, where, and how: Regulation of translation and the translational landscape in plants. THE PLANT CELL 2024; 36:1540-1564. [PMID: 37437121 PMCID: PMC11062462 DOI: 10.1093/plcell/koad197] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/14/2023]
Abstract
Translation is a crucial step in gene expression and plays a vital role in regulating various aspects of plant development and environmental responses. It is a dynamic and complex program that involves interactions between mRNAs, transfer RNAs, and the ribosome machinery through both cis- and trans-regulation while integrating internal and external signals. Translational control can act in a global (transcriptome-wide) or mRNA-specific manner. Recent advances in genome-wide techniques, particularly ribosome profiling and proteomics, have led to numerous exciting discoveries in both global and mRNA-specific translation. In this review, we aim to provide a "primer" that introduces readers to this fascinating yet complex cellular process and provide a big picture of how essential components connect within the network. We begin with an overview of mRNA translation, followed by a discussion of the experimental approaches and recent findings in the field, focusing on unannotated translation events and translational control through cis-regulatory elements on mRNAs and trans-acting factors, as well as signaling networks through 3 conserved translational regulators TOR, SnRK1, and GCN2. Finally, we briefly touch on the spatial regulation of mRNAs in translational control. Here, we focus on cytosolic mRNAs; translation in organelles and viruses is not covered in this review.
Collapse
Affiliation(s)
- Hsin-Yen Larry Wu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Joey Jen
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Polly Yingshan Hsu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Zhang S, Xu N, Fu L, Yang X, Li Y, Yang Z, Feng Y, Ma K, Jiang X, Han J, Hu R, Zhang L, de Gennaro L, Ryabov F, Meng D, He Y, Wu D, Yang C, Paparella A, Mao Y, Bian X, Lu Y, Antonacci F, Ventura M, Shepelev VA, Miga KH, Alexandrov IA, Logsdon GA, Phillippy AM, Su B, Zhang G, Eichler EE, Lu Q, Shi Y, Sun Q, Mao Y. Comparative genomics of macaques and integrated insights into genetic variation and population history. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.07.588379. [PMID: 38645259 PMCID: PMC11030432 DOI: 10.1101/2024.04.07.588379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The crab-eating macaques ( Macaca fascicularis ) and rhesus macaques ( M. mulatta ) are widely studied nonhuman primates in biomedical and evolutionary research. Despite their significance, the current understanding of the complex genomic structure in macaques and the differences between species requires substantial improvement. Here, we present a complete genome assembly of a crab-eating macaque and 20 haplotype-resolved macaque assemblies to investigate the complex regions and major genomic differences between species. Segmental duplication in macaques is ∼42% lower, while centromeres are ∼3.7 times longer than those in humans. The characterization of ∼2 Mbp fixed genetic variants and ∼240 Mbp complex loci highlights potential associations with metabolic differences between the two macaque species (e.g., CYP2C76 and EHBP1L1 ). Additionally, hundreds of alternative splicing differences show post-transcriptional regulation divergence between these two species (e.g., PNPO ). We also characterize 91 large-scale genomic differences between macaques and humans at a single-base-pair resolution and highlight their impact on gene regulation in primate evolution (e.g., FOLH1 and PIEZO2 ). Finally, population genetics recapitulates macaque speciation and selective sweeps, highlighting potential genetic basis of reproduction and tail phenotype differences (e.g., STAB1 , SEMA3F , and HOXD13 ). In summary, the integrated analysis of genetic variation and population genetics in macaques greatly enhances our comprehension of lineage-specific phenotypes, adaptation, and primate evolution, thereby improving their biomedical applications in human diseases.
Collapse
|
4
|
Zhang Y, Li H, Shen Y, Wang S, Tian L, Yin H, Shi J, Xing A, Zhang J, Ali U, Sami A, Chen X, Gao C, Zhao Y, Lyu Y, Wang X, Chen Y, Tian Z, Wu SB, Wu L. Readthrough events in plants reveal plasticity of stop codons. Cell Rep 2024; 43:113723. [PMID: 38300801 DOI: 10.1016/j.celrep.2024.113723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/02/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Stop codon readthrough (SCR) has important biological implications but remains largely uncharacterized. Here, we identify 1,009 SCR events in plants using a proteogenomic strategy. Plant SCR candidates tend to have shorter transcript lengths and fewer exons and splice variants than non-SCR transcripts. Mass spectrometry evidence shows that stop codons involved in SCR events can be recoded as 20 standard amino acids, some of which are also supported by suppressor tRNA analysis. We also observe multiple functional signals in 34 maize extended proteins and characterize the structural and subcellular localization changes in the extended protein of basic transcription factor 3. Furthermore, the SCR events exhibit non-conserved signature, and the extensions likely undergo protein-coding selection. Overall, our study not only characterizes that SCR events are commonly present in plants but also identifies the recoding plasticity of stop codons, which provides important insights into the flexibility of genetic decoding.
Collapse
Affiliation(s)
- Yuqian Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China; School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Hehuan Li
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Yanting Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shunxi Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Lei Tian
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Haoqiang Yin
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Jiawei Shi
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Anqi Xing
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA
| | - Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Usman Ali
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Abdul Sami
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Xueyan Chen
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Chenxuan Gao
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Yangtao Zhao
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Yajing Lyu
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Xiaoxu Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Yanhui Chen
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shu-Biao Wu
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| | - Liuji Wu
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China; School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| |
Collapse
|
5
|
Wu HYL, Ai Q, Teixeira RT, Nguyen PHT, Song G, Montes C, Elmore JM, Walley JW, Hsu PY. Improved super-resolution ribosome profiling reveals prevalent translation of upstream ORFs and small ORFs in Arabidopsis. THE PLANT CELL 2024; 36:510-539. [PMID: 38000896 PMCID: PMC10896292 DOI: 10.1093/plcell/koad290] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023]
Abstract
A crucial step in functional genomics is identifying actively translated ORFs and linking them to biological functions. The challenge lies in identifying short ORFs, as their identification is greatly influenced by data quality and depth. Here, we improved the coverage of super-resolution Ribo-seq in Arabidopsis (Arabidopsis thaliana), revealing uncharacterized translation events for nuclear, chloroplastic, and mitochondrial genes. Assisted by a transcriptome assembly, we identified 7,751 unconventional translation events, comprising 6,996 upstream ORFs (uORFs) and 209 downstream ORFs on annotated protein-coding genes, as well as 546 ORFs in presumed noncoding RNAs. Proteomic data confirmed the production of stable proteins from some of these unannotated translation events. We present evidence of active translation from primary transcripts of trans-acting small interfering RNAs (TAS1-4) and microRNAs (pri-MIR163 and pri-MIR169) and periodic ribosome stalling supporting cotranslational decay. Additionally, we developed a method for identifying extremely short uORFs, including 370 minimum uORFs (AUG-stop), and 2,921 tiny uORFs (2 to 10 amino acids) and 681 uORFs that overlap with each other. Remarkably, these short uORFs exhibit strong translational repression as do longer uORFs. We also systematically discovered 594 uORFs regulated by alternative splicing, suggesting widespread isoform-specific translational control. Finally, these prevalent uORFs are associated with numerous important pathways. In summary, our improved Arabidopsis translational landscape provides valuable resources to study gene expression regulation.
Collapse
Affiliation(s)
- Hsin-Yen Larry Wu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Qiaoyun Ai
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Rita Teresa Teixeira
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Phong H T Nguyen
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Gaoyuan Song
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Christian Montes
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - J Mitch Elmore
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Justin W Walley
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Polly Yingshan Hsu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Bukhnikashvili L. Overlaps Between CDS Regions of Protein-Coding Genes in the Human Genome: A Case Study on the NR1D1-THRA Gene Pair. J Mol Evol 2023; 91:963-975. [PMID: 38006429 DOI: 10.1007/s00239-023-10147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/12/2023] [Indexed: 11/27/2023]
Abstract
For several decades, it has been known that a substantial number of genes within human DNA exhibit overlap; however, the biological and evolutionary significance of these overlaps remain poorly understood. This study focused on investigating specific instances of overlap where the overlapping DNA region encompasses the coding DNA sequences (CDSs) of protein-coding genes. The results revealed that proteins encoded by overlapping CDSs exhibit greater disorder than those from nonoverlapping CDSs. Additionally, these DNA regions were identified as GC-rich. This could be partially attributed to the absence of stop codons from two distinct reading frames rather than one. Furthermore, these regions were found to harbour fewer single-nucleotide polymorphism (SNP) sites, possibly due to constraints arising from the overlapping state where mutations could affect two genes simultaneously.While elucidating these properties, the NR1D1-THRA gene pair emerged as an exceptional case with highly structured proteins and a distinctly conserved sequence across eutherian mammals. Both NR1D1 and THRA are nuclear receptors lacking a ligand-binding domain at their C-terminus, which is the region where these gene pairs overlap. The NR1D1 gene is involved in the regulation of circadian rhythm, while the THRA gene encodes a thyroid hormone receptor, and both play crucial roles in various physiological processes. This study suggests that, in addition to their well-established functions, the specifically overlapping CDS regions of these genes may encode protein segments with additional, yet undiscovered, biological roles.
Collapse
|
7
|
Kar D, Manna D, Manjunath LE, Singh A, Som S, Vasu K, Eswarappa SM. Kinetics of Translating Ribosomes Determine the Efficiency of Programmed Stop Codon Readthrough. J Mol Biol 2023; 435:168274. [PMID: 37714299 DOI: 10.1016/j.jmb.2023.168274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/15/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
During translation, a stop codon on the mRNA signals the ribosomes to terminate the process. In certain mRNAs, the termination fails due to the recoding of the canonical stop codon, and ribosomes continue translation to generate C-terminally extended protein. This process, termed stop codon readthrough (SCR), regulates several cellular functions. SCR is driven by elements/factors that act immediately downstream of the stop codon. Here, we have analysed the process of SCR using a simple mathematical model to investigate how the kinetics of translating ribosomes influences the efficiency of SCR. Surprisingly, the analysis revealed that the rate of translation inversely regulates the efficiency of SCR. We tested this prediction experimentally in mammalian AGO1 and MTCH2 mRNAs. Reduction in translation either globally by harringtonine or locally by rare codons caused an increase in the efficiency of SCR. Thus, our study has revealed a hitherto unknown mode of regulation of SCR.
Collapse
Affiliation(s)
- Debaleena Kar
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India. https://twitter.com/debaleenak8
| | - Debraj Manna
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India. https://twitter.com/DebrajManna27
| | - Lekha E Manjunath
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India. https://twitter.com/emlekha
| | - Anumeha Singh
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India. https://twitter.com/Anumehasingh25
| | - Saubhik Som
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India. https://twitter.com/SaubhikSom
| | - Kirtana Vasu
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sandeep M Eswarappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India.
| |
Collapse
|
8
|
Pandit M, Akhtar MN, Sundaram S, Sahoo S, Manjunath LE, Eswarappa SM. Termination codon readthrough of NNAT mRNA regulates calcium-mediated neuronal differentiation. J Biol Chem 2023; 299:105184. [PMID: 37611826 PMCID: PMC10506107 DOI: 10.1016/j.jbc.2023.105184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Abstract
Termination codon readthrough (TCR) is a process in which ribosomes continue to translate an mRNA beyond a stop codon generating a C-terminally extended protein isoform. Here, we demonstrate TCR in mammalian NNAT mRNA, which encodes NNAT, a proteolipid important for neuronal differentiation. This is a programmed event driven by cis-acting RNA sequences present immediately upstream and downstream of the canonical stop codon and is negatively regulated by NONO, an RNA-binding protein known to promote neuronal differentiation. Unlike the canonical isoform NNAT, we determined that the TCR product (NNATx) does not show detectable interaction with the sarco/endoplasmic reticulum Ca2+-ATPase isoform 2 Ca2+ pump, cannot increase cytoplasmic Ca2+ levels, and therefore does not enhance neuronal differentiation in Neuro-2a cells. Additionally, an antisense oligonucleotide that targets a region downstream of the canonical stop codon reduced TCR of NNAT and enhanced the differentiation of Neuro-2a cells to cholinergic neurons. Furthermore, NNATx-deficient Neuro-2a cells, generated using CRISPR-Cas9, showed increased cytoplasmic Ca2+ levels and enhanced neuronal differentiation. Overall, these results demonstrate regulation of neuronal differentiation by TCR of NNAT. Importantly, this process can be modulated using a synthetic antisense oligonucleotide.
Collapse
Affiliation(s)
- Madhuparna Pandit
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Md Noor Akhtar
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Susinder Sundaram
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sarthak Sahoo
- Undergraduate Program, Indian Institute of Science, Bengaluru, India
| | - Lekha E Manjunath
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sandeep M Eswarappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India.
| |
Collapse
|
9
|
Uchida K, Kim JS, Sato M, Tabeta H, Mochida K, Hirai MY. A metabolome genome-wide association study implicates histidine N-pi-methyltransferase as a key enzyme in N-methylhistidine biosynthesis in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1201129. [PMID: 37360714 PMCID: PMC10285387 DOI: 10.3389/fpls.2023.1201129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
A genome-wide association study (GWAS), which uses information on single nucleotide polymorphisms (SNPs) from many accessions, has become a powerful approach to gene identification. A metabolome GWAS (mGWAS), which relies on phenotypic information based on metabolite accumulation, can identify genes that contribute to primary and secondary metabolite contents. In this study, we carried out a mGWAS using seed metabolomic data from Arabidopsis thaliana accessions obtained by liquid chromatography-mass spectrometry to identify SNPs highly associated with the contents of metabolites such as glucosinolates. These SNPs were present in genes known to be involved in glucosinolate biosynthesis, thus confirming the effectiveness of our analysis. We subsequently focused on SNPs detected in an unknown methyltransferase gene associated with N-methylhistidine content. Knockout and overexpression of A. thaliana lines of this gene had significantly decreased and increased N-methylhistidine contents, respectively. We confirmed that the overexpressing line exclusively accumulated histidine methylated at the pi position, not at the tau position. Our findings suggest that the identified methyltransferase gene encodes a key enzyme for N-methylhistidine biosynthesis in A. thaliana.
Collapse
Affiliation(s)
- Kai Uchida
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - June-Sik Kim
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Muneo Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Hiromitsu Tabeta
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Keiichi Mochida
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
- School of Information and Data Sciences, Nagasaki University, Nagasaki, Nagasaki, Japan
- RIKEN Baton Zone Program, Yokohama, Kanagawa, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Department of Applied Biosciences, Graduate School of Bioagricultural Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
10
|
Wagner RN, Wießner M, Friedrich A, Zandanell J, Breitenbach-Koller H, Bauer JW. Emerging Personalized Opportunities for Enhancing Translational Readthrough in Rare Genetic Diseases and Beyond. Int J Mol Sci 2023; 24:6101. [PMID: 37047074 PMCID: PMC10093890 DOI: 10.3390/ijms24076101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Nonsense mutations trigger premature translation termination and often give rise to prevalent and rare genetic diseases. Consequently, the pharmacological suppression of an unscheduled stop codon represents an attractive treatment option and is of high clinical relevance. At the molecular level, the ability of the ribosome to continue translation past a stop codon is designated stop codon readthrough (SCR). SCR of disease-causing premature termination codons (PTCs) is minimal but small molecule interventions, such as treatment with aminoglycoside antibiotics, can enhance its frequency. In this review, we summarize the current understanding of translation termination (both at PTCs and at cognate stop codons) and highlight recently discovered pathways that influence its fidelity. We describe the mechanisms involved in the recognition and readthrough of PTCs and report on SCR-inducing compounds currently explored in preclinical research and clinical trials. We conclude by reviewing the ongoing attempts of personalized nonsense suppression therapy in different disease contexts, including the genetic skin condition epidermolysis bullosa.
Collapse
Affiliation(s)
- Roland N. Wagner
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Michael Wießner
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Andreas Friedrich
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Johanna Zandanell
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | | | - Johann W. Bauer
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|