1
|
Yang KF, Zhang JY, Feng M, Yao K, Liu YY, Zhou MS, Jia H. Secretase promotes AD progression: simultaneously cleave Notch and APP. Front Aging Neurosci 2024; 16:1445470. [PMID: 39634655 PMCID: PMC11615878 DOI: 10.3389/fnagi.2024.1445470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Alzheimer's disease (AD) involves complex pathological mechanisms. Secretases include membrane protein extracellular structural domain proteases and intramembrane proteases that cleave the topology to type I or type II. Secretases can effectively regulate the activation of Notch and amyloid precursor protein (APP), key factors in the progression of AD and cancer. This article systematically summarizes the intracellular localization, cleavage sites and products, and biological functions of six subtypes of secretases (α-secretase, β-secretase, γ-secretase, δ-secretase, ε-secretase, and η-secretase), and for the first time, elucidates the commonalities and differences between these subtypes of secretases. We found that each subtype of secretase primarily cleaves APP and Notch as substrates, regulating Aβ levels through APP cleavage to impact the progression of AD, while also cleaving Notch receptors to affect cancer progression. Finally, we review the chemical structures, indications, and research stages of various secretase inhibitors, emphasizing the promising development of secretase inhibitors in the fields of cancer and AD.
Collapse
Affiliation(s)
- Ke-Fan Yang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - Jing-Yi Zhang
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Mei Feng
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - Kuo Yao
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - Yue-Yang Liu
- Science and Experimental Research Center of Shenyang Medical College, Shenyang, Liaoning, China
| | - Ming-Sheng Zhou
- Science and Experimental Research Center of Shenyang Medical College, Shenyang, Liaoning, China
| | - Hui Jia
- Science and Experimental Research Center of Shenyang Medical College, Shenyang, Liaoning, China
- School of Traditional Chinese Medicine, Shenyang Medical College, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Cortada E, Brugada R, Verges M. Role of protein domains in trafficking and localization of the voltage-gated sodium channel β2 subunit. J Biol Chem 2024; 300:107833. [PMID: 39343005 PMCID: PMC11532958 DOI: 10.1016/j.jbc.2024.107833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 08/25/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
The voltage-gated sodium (NaV) channel is critical for cardiomyocyte function since it is responsible for action potential initiation and its propagation throughout the cell. It consists of a protein complex made of a pore forming α subunit and associated β subunits, which regulate α subunit function and subcellular localization. We previously showed the implication of N-linked glycosylation and S-acylation of β2 in its polarized trafficking. Here, we present evidence of β2 dimerization. Moreover, we demonstrate the implication of the cytoplasmic tail, extracellular loop, and transmembrane domain on proper β2 folding and export to the cell surface of polarized Madin-Darby canine kidney cells. Substantial alteration, or lack of any of these domains, leads to accumulation of β2 in the endoplasmic reticulum, along with impaired complex N-glycosylation, which is needed for its efficient surface delivery. We also show that these alterations to β2 affected to a certain extent NaV1.5 surface localization. Conversely, however, NaV1.5 had little or no influence on β2 trafficking, its localization to the surface, or homodimer formation. Altogether, our data link the architecture of the β2 domains to the establishment of its proper subcellular localization. These findings could provide valuable insights to gain a deeper comprehension of the elusive biology of β subunits in excitable cells, such as neurons and cardiomyocytes.
Collapse
Affiliation(s)
- Eric Cortada
- Cardiovascular Genetics Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Edifici IDIBGI, Salt, Province of Girona, Spain; Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), Salt, Province of Girona, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Edifici IDIBGI, Salt, Province of Girona, Spain; Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), Salt, Province of Girona, Spain; Department of Medical Sciences, University of Girona Medical School, Girona, Spain; Department of Cardiology, Hospital Josep Trueta, University of Girona, Girona, Spain
| | - Marcel Verges
- Cardiovascular Genetics Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Edifici IDIBGI, Salt, Province of Girona, Spain; Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), Salt, Province of Girona, Spain; Department of Medical Sciences, University of Girona Medical School, Girona, Spain.
| |
Collapse
|
3
|
Williams ZJ, Payne LB, Wu X, Gourdie RG. New focus on cardiac voltage-gated sodium channel β1 and β1B: Novel targets for treating and understanding arrhythmias? Heart Rhythm 2024:S1547-5271(24)02742-5. [PMID: 38908461 DOI: 10.1016/j.hrthm.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Voltage-gated sodium channels (VGSCs) are transmembrane protein complexes that are vital to the generation and propagation of action potentials in nerve and muscle fibers. The canonical VGSC is generally conceived as a heterotrimeric complex formed by 2 classes of membrane-spanning subunit: an α-subunit (pore forming) and 2 β-subunits (non-pore forming). NaV1.5 is the main sodium channel α-subunit of mammalian ventricle, with lower amounts of other α-subunits, including NaV1.6, being present. There are 4 β-subunits (β1-β4) encoded by 4 genes (SCN1B-SCN4B), each of which is expressed in cardiac tissues. Recent studies suggest that in addition to assignments in channel gating and trafficking, products of Scn1b may have novel roles in conduction of action potential in the heart and intracellular signaling. This includes evidence that the β-subunit extracellular amino-terminal domain facilitates adhesive interactions in intercalated discs and that its carboxyl-terminal region is a substrate for a regulated intramembrane proteolysis (RIP) signaling pathway, with a carboxyl-terminal peptide generated by β1 RIP trafficked to the nucleus and altering transcription of various genes, including NaV1.5. In addition to β1, the Scn1b gene encodes for an alternative splice variant, β1B, which contains an identical extracellular adhesion domain to β1 but has a unique carboxyl-terminus. Although β1B is generally understood to be a secreted variant, evidence indicates that when co-expressed with NaV1.5, it is maintained at the cell membrane, suggesting potential unique roles for this understudied protein. In this review, we focus on what is known of the 2 β-subunit variants encoded by Scn1b in heart, with particular focus on recent findings and the questions raised by this new information. We also explore data that indicate β1 and β1B may be attractive targets for novel antiarrhythmic therapeutics.
Collapse
Affiliation(s)
- Zachary J Williams
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia
| | - Laura Beth Payne
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia
| | - Xiaobo Wu
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia
| | - Robert G Gourdie
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia; School of Medicine, Virgina Polytechnic University, Roanoke, Virginia; Department of Biomedical Engineering and Mechanics, Virginia Polytechnic University, Blacksburg, Virginia.
| |
Collapse
|
4
|
Chancey JH, Ahmed AA, Guillén FI, Ghatpande V, Howard MA. Complex Synaptic and Intrinsic Interactions Disrupt Input/Output Functions in the Hippocampus of Scn1b Knock-Out Mice. J Neurosci 2023; 43:8562-8577. [PMID: 37845033 PMCID: PMC10711733 DOI: 10.1523/jneurosci.0786-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
Pathogenic variants in SCN1B have been linked to severe developmental epileptic encephalopathies including Dravet syndrome. Scn1b knock-out (KO) mice model SCN1B loss-of-function (LOF) disorders, demonstrating seizures, developmental delays, and early death. SCN1B encodes the protein β1, an ion channel auxiliary subunit that also has roles in cell adhesion, neurite outgrowth, and gene expression. The goal of this project is to better understand of how loss of Scn1b alters information processing in the brain, resulting in seizures and associated cognitive dysfunction. Using slice electrophysiology in the CA1 region of the hippocampus from male and female Scn1b KO mice and wild-type (WT) littermates, we found that processing of physiologically relevant patterned Schaffer collateral (SC) stimulation produces larger, prolonged depolarizations and increased spiking in KO neurons compared with WTs. KO neurons exhibit enhanced intrinsic excitability, firing more action potentials with current injection. Interestingly, SC stimulation produces smaller, more facilitating excitatory and IPSCs in KO pyramidal neurons, but larger postsynaptic potentials (PSPs) with the same stimulation. We also found reduced intrinsic firing of parvalbumin (PV)-expressing interneurons and disrupted recruitment of both parvalbumin-expressing and somatostatin (SST)-expressing interneurons in response to patterned synaptic stimulation. Neuronal information processing relies on the interplay between synaptic properties, intrinsic properties that amplify or suppress incoming synaptic signals, and firing properties that produce cellular output. We found changes at each of these levels in Scn1b KO pyramidal neurons, resulting in fundamentally altered cellular information processing in the hippocampus that likely contributes to the complex phenotypes of SCN1B-linked epileptic encephalopathies.SIGNIFICANCE STATEMENT Genetic developmental epileptic encephalopathies have limited treatment options, in part because of our lack of understanding of how genetic changes result in dysfunction at the cellular and circuit levels. SCN1B is a gene linked to Dravet syndrome and other developmental epileptic encephalopathies, and Scn1b knock-out (KO) mice phenocopy the human disease, allowing us to study underlying neurophysiological changes. Here, we found changes at all levels of neuronal information processing in brains lacking Scn1b, including intrinsic excitability, synaptic properties, and synaptic integration, resulting in greatly enhanced input/output functions of the hippocampus. Our study shows that loss of Scn1b results in a complex array of cellular and network changes that fundamentally alters information processing in the hippocampus.
Collapse
Affiliation(s)
- Jessica Hotard Chancey
- Departments of Neurology and Neuroscience, Center for Learning and Memory, Dell Medical School, University of Texas at Austin, Austin, Texas 78712
| | - Alisha A Ahmed
- Departments of Neurology and Neuroscience, Center for Learning and Memory, Dell Medical School, University of Texas at Austin, Austin, Texas 78712
| | - Fernando Isaac Guillén
- Departments of Neurology and Neuroscience, Center for Learning and Memory, Dell Medical School, University of Texas at Austin, Austin, Texas 78712
| | - Vighnesh Ghatpande
- Departments of Neurology and Neuroscience, Center for Learning and Memory, Dell Medical School, University of Texas at Austin, Austin, Texas 78712
| | - MacKenzie A Howard
- Departments of Neurology and Neuroscience, Center for Learning and Memory, Dell Medical School, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
5
|
Sanchez-Sandoval AL, Hernández-Plata E, Gomora JC. Voltage-gated sodium channels: from roles and mechanisms in the metastatic cell behavior to clinical potential as therapeutic targets. Front Pharmacol 2023; 14:1206136. [PMID: 37456756 PMCID: PMC10348687 DOI: 10.3389/fphar.2023.1206136] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
During the second half of the last century, the prevalent knowledge recognized the voltage-gated sodium channels (VGSCs) as the proteins responsible for the generation and propagation of action potentials in excitable cells. However, over the last 25 years, new non-canonical roles of VGSCs in cancer hallmarks have been uncovered. Their dysregulated expression and activity have been associated with aggressive features and cancer progression towards metastatic stages, suggesting the potential use of VGSCs as cancer markers and prognostic factors. Recent work has elicited essential information about the signalling pathways modulated by these channels: coupling membrane activity to transcriptional regulation pathways, intracellular and extracellular pH regulation, invadopodia maturation, and proteolytic activity. In a promising scenario, the inhibition of VGSCs with FDA-approved drugs as well as with new synthetic compounds, reduces cancer cell invasion in vitro and cancer progression in vivo. The purpose of this review is to present an update regarding recent advances and ongoing efforts to have a better understanding of molecular and cellular mechanisms on the involvement of both pore-forming α and auxiliary β subunits of VGSCs in the metastatic processes, with the aim at proposing VGSCs as new oncological markers and targets for anticancer treatments.
Collapse
Affiliation(s)
- Ana Laura Sanchez-Sandoval
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Medicina Genómica, Hospital General de México “Dr Eduardo Liceaga”, Mexico City, Mexico
| | - Everardo Hernández-Plata
- Consejo Nacional de Humanidades, Ciencias y Tecnologías and Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Juan Carlos Gomora
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
6
|
Chancey JH, Ahmed AA, Guillén FI, Howard MA. Complex synaptic and intrinsic interactions disrupt input/output functions in the hippocampus of Scn1b knockout mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.29.538823. [PMID: 37163033 PMCID: PMC10168369 DOI: 10.1101/2023.04.29.538823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Mutations in the SCN1B gene have been linked to severe developmental epileptic encephalopathies including Dravet syndrome. Scn1b k nock o ut (KO) mice model SCN1B loss of function disorders, demonstrating seizures, developmental delays, and early death. SCN1B encodes the protein β1, an ion channel auxiliary subunit that also has roles in cell adhesion, neurite outgrowth, and gene expression. The goal of this project is to better understand of how loss of β1 alters information processing in the brain, resulting in seizures and associated cognitive dysfunction. Using slice electrophysiology in the CA1 region of the hippocampus from male and female Scn1b KO mice and w ild-type (WT) littermates, we found that processing of physiologically relevant patterned S chaffer c ollateral (SC) stimulation produces larger, prolonged depolarizations and increased spiking in KO neurons compared to WTs. KO neurons exhibit enhanced intrinsic excitability, firing more action potentials with current injection. Interestingly, SC stimulation produces smaller, more facilitating excitatory and inhibitory postsynaptic currents in KO pyramidal neurons, but larger postsynaptic potentials with the same stimulation. We also found reduced intrinsic firing of parvalbumin-expressing interneurons and disrupted recruitment of both parvalbumin- and somatostatin-expressing interneurons in response to patterned synaptic stimulation. Neuronal information processing relies on the interplay between synaptic properties, intrinsic properties that amplify or suppress incoming synaptic signals, and firing properties that produce cellular output. We found changes at each of these levels in Scn1b KO pyramidal neurons, resulting in fundamentally altered information processing in the hippocampus that likely contributes to the complex phenotypes of SCN1B -linked epileptic encephalopathies. Significance statement Genetic developmental epileptic encephalopathies have limited treatment options, in part due to our lack of understanding of how genetic changes result in dysfunction at the cellular and circuit levels. SCN1B is a gene linked to Dravet syndrome and other epileptic encephalopathies, and Scn1b knockout mice phenocopy the human disease, allowing us to study underlying neurophysiological changes. Here we found changes at all levels of neuronal information processing in brains lacking β1, including intrinsic excitability, synaptic properties, and synaptic integration, resulting in greatly enhanced input/output functions of the hippocampus. Our study shows that loss of β1 results in a complex array of cellular and network changes that fundamentally alters information processing in the hippocampus.
Collapse
|