1
|
Chatterjee O, Jana J, Panda S, Dutta A, Sharma A, Saurav S, Motiani RK, Weisz K, Chatterjee S. Remodeling Ca 2+ dynamics by targeting a promising E-box containing G-quadruplex at ORAI1 promoter in triple-negative breast cancer. Cell Calcium 2024; 123:102944. [PMID: 39191092 PMCID: PMC7616398 DOI: 10.1016/j.ceca.2024.102944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/19/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024]
Abstract
ORAI1 is an intrinsic component of store-operated calcium entry (SOCE) that strictly regulates Ca2+ influx in most non-excitable cells. ORAI1 is overexpressed in a wide variety of cancers, and its signal transduction has been associated with chemotherapy resistance. There is extensive proteomic interaction of ORAI1 with other channels and effectors, resulting in various altered phenotypes. However, the transcription regulation of ORAI1 is not well understood. We have found a putative G-quadruplex (G4) motif, ORAI1-Pu, in the upstream promoter region of the gene, having regulatory functions. High-resolution 3-D NMR structure elucidation suggests that ORAI1-Pu is a stable parallel-stranded G4, having a long 8-nt loop imparting dynamics without affecting the structural stability. The protruded loop further houses an E-box motif that provides a docking site for transcription factors like Zeb1. The G4 structure was also endogenously observed using Chromatin Immunoprecipitation (ChIP) with anti-G4 antibody (BG4) in the MDA-MB-231 cell line overexpressing ORAI1. Ligand-mediated stabilization suggested that the stabilized G4 represses transcription in cancer cell line MDA-MB-231. Downregulation of transcription further led to decreased Ca2+ entry by the SOCE pathway, as observed by live-cell Fura-2 Ca2+ imaging.
Collapse
Affiliation(s)
- Oishika Chatterjee
- Department of Biological Sciences, Bose Institute, EN-80 Sector V, Salt Lake, Unified Campus, Kolkata 700091, India
| | - Jagannath Jana
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Str. 4, D-17489 Greifswald, Germany
| | - Suman Panda
- Department of Biological Sciences, Bose Institute, EN-80 Sector V, Salt Lake, Unified Campus, Kolkata 700091, India
| | - Anindya Dutta
- Department of Biological Sciences, Bose Institute, EN-80 Sector V, Salt Lake, Unified Campus, Kolkata 700091, India
| | - Akshay Sharma
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad 121001, Delhi NCR, India
| | - Suman Saurav
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad 121001, Delhi NCR, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad 121001, Delhi NCR, India
| | - Klaus Weisz
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Str. 4, D-17489 Greifswald, Germany
| | - Subhrangsu Chatterjee
- Department of Biological Sciences, Bose Institute, EN-80 Sector V, Salt Lake, Unified Campus, Kolkata 700091, India.
| |
Collapse
|
2
|
Kumari M, Bisht KS, Ahuja K, Motiani RK, Maiti TK. Glycation Produces Topologically Different α-Synuclein Oligomeric Strains and Modulates Microglia Response via the NLRP3-Inflammasome Pathway. ACS Chem Neurosci 2024. [PMID: 39320935 DOI: 10.1021/acschemneuro.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
α-Synuclein, a key player in Parkinson's disease and other synucleinopathies, possesses an inherently disordered structure that allows for versatile structural changes during aggregation. Microglia, the brain immune cells, respond differently to various α-synuclein strains, influencing their activation and release of harmful molecules, leading to neuronal death. Post-translational modifications, such as glycation in α-synuclein, add a layer of complexity to microglial activation. This study aimed to explore the impact of glycation on α-synuclein aggregation and microglial responses, which have not been studied before. Biophysical analyses revealed that glycated α-synuclein oligomers had distinct morphologies with a more negative and hydrophobic surface, preventing fibril formation and interfering with membrane interactions. Notably, there was increased cytosolic Ca2+ dysregulation, redox stress, and mitochondrial instability compared to cells exposed to unmodified α-synuclein oligomers. Additionally, glycated α-synuclein oligomers exhibited impaired binding to Toll-like receptor 2, compromising downstream signaling. Surprisingly, these oligomers promoted TLR4 endocytosis and degradation. In our experiments with oligomers, glycated α-synuclein oligomers preferred NLRP3 inflammasome-mediated neuroinflammation, contributing differently from unmodified α-synuclein oligomers. In summary, this study unveils the mechanism underlying the effect of glycation on α-synuclein oligomers and highlights the conformation-specific microglial responses toward extracellular α-synuclein.
Collapse
Affiliation(s)
- Manisha Kumari
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India
| | - Krishna Singh Bisht
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India
| | - Kriti Ahuja
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India
| | - Tushar Kanti Maiti
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India
| |
Collapse
|
3
|
Kajiho H, Sakisaka T. Degradation of STIM1 through FAM134B-mediated ER-phagy is potentially involved in cell proliferation. J Biol Chem 2024; 300:107674. [PMID: 39128711 PMCID: PMC11414581 DOI: 10.1016/j.jbc.2024.107674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024] Open
Abstract
Autophagy is classified as nonselective or selective depending on the types of degrading substrates. Endoplasmic reticulum (ER)-phagy is a form of selective autophagy for transporting the ER-resident proteins to autolysosomes. FAM134B, a member of the family with sequence similarity 134, is a well-known ER-phagy receptor. Dysfunction of FAM134B results in several diseases including viral infection, inflammation, neurodegenerative disorder, and cancer, indicating that FAM134B has crucial roles in various kinds of intracellular functions. However, how FAM134B-mediated ER-phagy regulates intracellular functions is not well understood. In this study, we found that FAM134B knockdown in mammalian cells accelerated cell proliferation. FAM134B knockdown increased the protein amount of stromal interaction molecule 1 (STIM1), an ER Ca2+ sensor protein mediating the store-operated Ca2+ entry involved in G1 to S phase transition. FAM134B bound to STIM1 through its C-terminal cytosolic region. FAM134B knockdown reduced transport of STIM1 from the ER to autolysosomes. Finally, FAM134B knockdown accelerated G1 to S phase transition. These results suggest that FAM134B is involved in cell proliferation possibly through degradation of STIM1 via ER-phagy.
Collapse
Affiliation(s)
- Hiroaki Kajiho
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Toshiaki Sakisaka
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
4
|
Luo Q, Zhang C, Deng X, Liu D, Pan X, Gong Y, Tang Q, Zhang K, Liao X. A CRISPR-Cas12a-based electrochemical biosensor for the detection of microphthalmia-associated transcription factor. Mikrochim Acta 2024; 191:73. [PMID: 38170285 DOI: 10.1007/s00604-023-06164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
A novel electrochemical biosensor that combines the CRISPR-Cas12a system with a gold electrode is reported for the rapid and sensitive detection of microphthalmia-associated transcription factor (MITF). The biosensor consists of a gold electrode modified with DNA1, which contains the target sequence of MITF and is labeled with ferrocene, an electroactive molecule. The biosensor also includes hairpin DNA, which has a binding site for MITF and can hybridize with helper DNA to form a double-stranded complex that activates CRISPR-Cas12a. When MITF is present, it binds to hairpin DNA and prevents its hybridization with helper DNA, thus inhibiting CRISPR-Cas12a activity and preserving the DPV signal of ferrocene. When MITF is absent, hairpin DNA hybridizes with helper DNA and activates CRISPR-Cas12a, which cleaves DNA1 and releases ferrocene, thus reducing the DPV signal. The biosensor can detect MITF with high sensitivity (with an LOD of 8.14 fM), specificity, and accuracy in various samples, such as cell nuclear extracts and human serum. The biosensor can also diagnose and monitor melanocyte-related diseases and melanin production. This work provides a simple, fast, sensitive, and cost-effective biosensor for MITF detection and a valuable tool for applications in genetic testing, disease diagnosis, and drug screening.
Collapse
Affiliation(s)
- Qisheng Luo
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Chunyuan Zhang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Xiandong Deng
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Dongyuan Liu
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Xingchen Pan
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Yuanxun Gong
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Qianli Tang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| | - Kai Zhang
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, People's Republic of China.
| | - Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, Guangxi, Baise, 533000, China.
| |
Collapse
|
5
|
Prajapat SK, Mishra L, Khera S, Owusu SD, Ahuja K, Sharma P, Choudhary E, Chhabra S, Kumar N, Singh R, Kaushal PS, Mahajan D, Banerjee A, Motiani RK, Vrati S, Kalia M. Methotrimeprazine is a neuroprotective antiviral in JEV infection via adaptive ER stress and autophagy. EMBO Mol Med 2024; 16:185-217. [PMID: 38177535 PMCID: PMC10897192 DOI: 10.1038/s44321-023-00014-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024] Open
Abstract
Japanese encephalitis virus (JEV) pathogenesis is driven by a combination of neuronal death and neuroinflammation. We tested 42 FDA-approved drugs that were shown to induce autophagy for antiviral effects. Four drugs were tested in the JE mouse model based on in vitro protective effects on neuronal cell death, inhibition of viral replication, and anti-inflammatory effects. The antipsychotic phenothiazines Methotrimeprazine (MTP) & Trifluoperazine showed a significant survival benefit with reduced virus titers in the brain, prevention of BBB breach, and inhibition of neuroinflammation. Both drugs were potent mTOR-independent autophagy flux inducers. MTP inhibited SERCA channel functioning, and induced an adaptive ER stress response in diverse cell types. Pharmacological rescue of ER stress blocked autophagy and antiviral effect. MTP did not alter translation of viral RNA, but exerted autophagy-dependent antiviral effect by inhibiting JEV replication complexes. Drug-induced autophagy resulted in reduced NLRP3 protein levels, and attenuation of inflammatory cytokine/chemokine release from infected microglial cells. Our study suggests that MTP exerts a combined antiviral and anti-inflammatory effect in JEV infection, and has therapeutic potential for JE treatment.
Collapse
Affiliation(s)
- Surendra K Prajapat
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Laxmi Mishra
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Sakshi Khera
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Shadrack D Owusu
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
- Institut de Biologie Moléculaire et Cellulaire (IBMC), Université de Strasbourg, 67000, Strasbourg, France
| | - Kriti Ahuja
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Puja Sharma
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Eira Choudhary
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Simran Chhabra
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Niraj Kumar
- Structural Biology & Translation Regulation Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Rajan Singh
- Advanced Technology Platform Centre, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
- Department of Life Sciences, Shiv Nadar University, Greater Noida, 201314, India
| | - Prem S Kaushal
- Structural Biology & Translation Regulation Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Dinesh Mahajan
- Chemistry and Pharmacology Lab, Centre for Drug Design and Discovery, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Arup Banerjee
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Sudhanshu Vrati
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Manjula Kalia
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India.
| |
Collapse
|
6
|
Bian WP, Xie SL, Wang C, Martinovich GG, Ma YB, Jia PP, Pei DS. mitfa deficiency promotes immune vigor and potentiates antitumor effects in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109130. [PMID: 37777099 DOI: 10.1016/j.fsi.2023.109130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/15/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
The mitfa gene is a well-known transcription factor associated with microphthalmia and is essential for early melanophore development. However, little is known about how mitfa affects the immune system. Here, we generated a novel mitfa knock-out zebrafish line using the CRISPR/Cas9 system. The mitfa-/- zebrafish exhibited reduced melanin levels compared to the nacre mutant. We investigated the impact on the immune system after exposure to Edwardsiella tarda and bifenazate in zebrafish larvae, and observed that the macrophage numbers were reduced in both treated groups. Remarkably, the expression levels of immune-related genes exhibited significant increases after bacterial challenge or bifenazate exposure in the mitfa-/- zebrafish, except for tlr4 and rela. Furthermore, we conducted xenograft experiments using mouse B16 melanoma cells. Notably, the cancer cells didn't show a high cell migration ratio, implying that the immune system was highly activated after the loss of mifta. Taken together, our findings suggest that mitfa-/- zebrafish serve as a valuable model for investigating the relationship between the immune system and melanocytes, providing new insights into the role of mitfa in immune responses.
Collapse
Affiliation(s)
- Wan-Ping Bian
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Shao-Lin Xie
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Chao Wang
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | | | - Yan-Bo Ma
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
7
|
Feng Z, Qin Y, Jiang G. Reversing Gray Hair: Inspiring the Development of New Therapies Through Research on Hair Pigmentation and Repigmentation Progress. Int J Biol Sci 2023; 19:4588-4607. [PMID: 37781032 PMCID: PMC10535703 DOI: 10.7150/ijbs.86911] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/19/2023] [Indexed: 10/03/2023] Open
Abstract
Hair graying is a common and visible sign of aging resulting from decreased or absence of melanogenesis. Although it has been established that gray hair greatly impacts people's mental health and social life, there is no effective countermeasure other than hair dyes. It has long been thought that reversal of gray hair on a large scale is rare. However, a recent study reported that individual gray hair darkening is a common phenomenon, suggesting the possibility of large-scale reversal of gray hair. In this article, we summarize the regulation mechanism of melanogenesis and review existing cases of hair repigmentation caused by several factors, including monoclonal antibodies drugs, tyrosine kinase inhibitors (TKIs), immunomodulators, other drugs, micro-injury, and tumors, and speculate on the mechanisms behind them. This review offers some insights for further research into the modulation of melanogenesis and presents a novel perspective on the development of clinical therapies, with emphasis on topical treatments.
Collapse
Affiliation(s)
- Zhaorui Feng
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Dermatology, Xuzhou Medical University, Xuzhou, China
| | - Yi Qin
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Dermatology, Xuzhou Medical University, Xuzhou, China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Dermatology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
8
|
Tanwar J, Ahuja K, Sharma A, Sehgal P, Ranjan G, Sultan F, Priya A, Venkatesan M, Yenamandra VK, Singh A, Madesh M, Sivasubbu S, Motiani RK. Mitochondrial calcium signaling mediated transcriptional regulation of keratin filaments is a critical determinant of melanogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542250. [PMID: 37292659 PMCID: PMC10245956 DOI: 10.1101/2023.05.26.542250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mitochondria are versatile organelles that regulate several physiological functions. Many mitochondria-controlled processes are driven by mitochondrial Ca2+ signaling. However, role of mitochondrial Ca2+ signaling in melanosome biology remains unknown. Here, we show that pigmentation requires mitochondrial Ca2+ uptake. In vitro gain and loss of function studies demonstrated that Mitochondrial Ca2+ Uniporter (MCU) is crucial for melanogenesis while the MCU rheostats, MCUb and MICU1 negatively control melanogenesis. Zebrafish and mouse models showed that MCU plays a vital role in pigmentation in vivo. Mechanistically, MCU controls activation of transcription factor NFAT2 to induce expression of three keratins (keratin 5, 7 and 8), which we report as positive regulators of melanogenesis. Interestingly, keratin 5 in turn modulates mitochondrial Ca2+ uptake thereby this signaling module acts as a negative feedback loop that fine-tunes both mitochondrial Ca2+ signaling and melanogenesis. Mitoxantrone, an FDA approved drug that inhibits MCU, decreases physiological melanogenesis. Collectively, our data demonstrates a critical role for mitochondrial Ca2+ signaling in vertebrate pigmentation and reveal the therapeutic potential of targeting MCU for clinical management of pigmentary disorders. Given the centrality of mitochondrial Ca2+ signaling and keratin filaments in cellular physiology, this feedback loop may be functional in a variety of other pathophysiological conditions.
Collapse
Affiliation(s)
- Jyoti Tanwar
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Kriti Ahuja
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Akshay Sharma
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Paras Sehgal
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Gyan Ranjan
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Farina Sultan
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Anshu Priya
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Manigandan Venkatesan
- Department of Medicine, Center for Mitochondrial Medicine, Cardiology Division, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Vamsi K Yenamandra
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Archana Singh
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Muniswamy Madesh
- Department of Medicine, Center for Mitochondrial Medicine, Cardiology Division, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Sridhar Sivasubbu
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| |
Collapse
|
9
|
Guo Y, Ollé L, Proaño-Pérez E, Aparicio C, Guerrero M, Muñoz-Cano R, Martín M. MRGPRX2 signaling involves the Lysyl-tRNA synthetase and MITF pathway. Front Immunol 2023; 14:1154108. [PMID: 37234172 PMCID: PMC10206166 DOI: 10.3389/fimmu.2023.1154108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/03/2023] [Indexed: 05/27/2023] Open
Abstract
MRGPRX2, a G-protein-coupled-seven transmembrane domain receptor, is mainly expressed in mast cells and neurons and is involved in skin immunity and pain. It is implicated in the pathophysiology of non-IgE-mediated immediate hypersensitivity and has been related to adverse drug reactions. Moreover, a role has been proposed in asthma, atopic dermatitis, contact dermatitis, and chronic spontaneous urticaria. Although it has a prominent role in disease, its signaling transduction is poorly understood. This study shows that MRGPRX2 activation with substance P increased Lysyl t-RNA synthetase (LysRS) translocation to the nucleus. LysRS is a moonlighting protein with a dual role in protein translation and IgE signaling in mast cells. Upon allergen- IgE-FcεRI crosslinking, LysRS is translocated to the nucleus and activates microphthalmia-associated transcription factor (MITF) activity. In this study, we found that MRGPRX2 triggering led to MITF phosphorylation and increased MITF activity. Therefore, overexpression of LysRS increased MITF activity after MRGPRX2 activation. MITF silencing reduced MRGPRX2-dependent calcium influx and mast cell degranulation. Furthermore, a MITF pathway inhibitor, ML329, impaired MITF expression, calcium influx, and mast cell degranulation. Moreover, drugs such as atracurium, vancomycin, and morphine, reported to induce MRGPRX2-dependent degranulation, increased MITF activity. Altogether, our data show that MRGPRX2 signaling enhances MITF activity, and its abrogation by silencing or inhibition resulted in defective MRGPRX2 degranulation. We conclude that MRGPRX2 signaling involves the LysRS and MITF pathway. Thus, MITF and MITF-dependent targets may be considered therapeutic approaches to treat pathologies where MRGPRX2 is implicated.
Collapse
Affiliation(s)
- Yanru Guo
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laia Ollé
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elizabeth Proaño-Pérez
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Faculty of Health Sciences, Technical University of Ambato, Ambato, Ecuador
| | - Cristina Aparicio
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Mario Guerrero
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Rosa Muñoz-Cano
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Allergy Department, Hospital Clinic, University of Barcelona, Barcelona, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain
| | - Margarita Martín
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|