1
|
Signoretti C, Matsumura S, Fatehi S, D'Silva M, Mathew R, Cendali F, D'Alessandro A, Alam SMS, Garcia V, Miano JM, Gupte SA. G6pdN126D Variant Increases the Risk of Developing VEGFR (Vascular Endothelial Growth Factor Receptor) Blocker-Induced Pulmonary Vascular Disease. J Am Heart Assoc 2024; 13:e035174. [PMID: 39291493 DOI: 10.1161/jaha.123.035174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND G6PD (glucose-6-phosphate-dehydrogenase) is a key enzyme in the glycolytic pathway and has been implicated in the pathogenesis of cancer and pulmonary hypertension-associated vascular remodeling. Here, we investigated the role of an X-linked G6pd mutation (N126D polymorphism), which is known to increase the risk of cardiovascular disease in individuals from sub-Saharan Africa and many others with African ancestry, in the pathogenesis of pulmonary hypertension induced by a vascular endothelial cell growth factor receptor blocker used for treating cancer. METHODS AND RESULTS CRISPR-Cas9 genome editing was used to generate the G6pd variant (N126D; G6pdN126D) in rats. A single dose of the vascular endothelial cell growth factor receptor blocker sugen-5416 (SU; 20 mg/kg in DMSO), which is currently in a Phase 2/3 clinical trial for cancer treatment, was subcutaneously injected into G6pdN126D rats and their wild-type littermates. After 8 weeks of normoxic conditions, right ventricular pressure and hypertrophy, pulmonary artery remodeling, the metabolic profile, and cytokine expression were assessed. Right ventricular pressure and pulmonary arterial wall thickness were increased in G6PDN126D+SU/normoxic rats. Simultaneously, levels of oxidized glutathione, inositol triphosphate, and intracellular Ca2+ were increased in the lungs of G6PDN126D+SU/normoxic rats, whereas nitric oxide was decreased. Also increased in G6PDN126D+SU/normoxic rats were pulmonary levels of plasminogen activator inhibitor-1, thrombin-antithrombin complex, and expression of proinflammatory cytokines CCL3 (chemokine [C-C motif] ligand), CCL5, and CCL7. CONCLUSIONS Our results suggest G6PDN126D increases inositol triphosphate-Ca2+ signaling, inflammation, thrombosis, and hypertrophic pulmonary artery remodeling in SU-treated rats. This suggests an increased risk of vascular endothelial cell growth factor receptor blocker-induced pulmonary hypertension in those carrying this G6PD variant.
Collapse
MESH Headings
- Animals
- Glucosephosphate Dehydrogenase/genetics
- Glucosephosphate Dehydrogenase/metabolism
- Receptors, Vascular Endothelial Growth Factor/genetics
- Rats
- Male
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/physiopathology
- Disease Models, Animal
- Vascular Remodeling/drug effects
- Rats, Sprague-Dawley
- Indoles/pharmacology
- Hypertrophy, Right Ventricular/genetics
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/physiopathology
- Pyrroles
Collapse
Affiliation(s)
| | - Shun Matsumura
- Department of Pharmacology New York Medical College Valhalla NY USA
| | - Samuel Fatehi
- Department of Pharmacology New York Medical College Valhalla NY USA
| | - Melinee D'Silva
- Department of Pharmacology New York Medical College Valhalla NY USA
| | - Rajamma Mathew
- Department of Medicine, Division of Pediatric Cardiology, Physiology New York Medical College Valhalla NY USA
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics University of Colorado Anschutz Medical Campus Aurora CO USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics University of Colorado Anschutz Medical Campus Aurora CO USA
| | - S M Shafiqul Alam
- Department of Pathology, Microbiology, and Immunology (PMI) New York Medical College Valhalla NY USA
| | - Victor Garcia
- Department of Pharmacology New York Medical College Valhalla NY USA
| | - Joseph M Miano
- Department of Medicine Vascular Biology Center, Medical College of Georgia at Augusta University Augusta GA USA
| | - Sachin A Gupte
- Department of Pharmacology New York Medical College Valhalla NY USA
| |
Collapse
|
2
|
Signoretti C, Gupte SA. G6PD Orchestrates Genome-Wide DNA Methylation and Gene Expression in the Vascular Wall. Int J Mol Sci 2023; 24:16727. [PMID: 38069050 PMCID: PMC10706803 DOI: 10.3390/ijms242316727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Recent advances have revealed the importance of epigenetic modifications to gene regulation and transcriptional activity. DNA methylation, a determinant of genetic imprinting and the de novo silencing of genes genome-wide, is known to be controlled by DNA methyltransferases (DNMT) and demethylases (TET) under disease conditions. However, the mechanism(s)/factor(s) influencing the expression and activity of epigenetic writers and erasers, and thus DNA methylation, in healthy vascular tissue is incompletely understood. Based on our recent studies, we hypothesized that glucose-6-phosphate dehydrogenase (G6PD) is a modifier of DNMT and TET expression and activity and an enabler of gene expression. In the aorta of CRISPR-edited rats with the Mediterranean G6PD variant, we determined DNA methylation by whole-genome bisulfite sequencing, gene expression by RNA sequencing, and large artery stiffness by echocardiography. Here, we documented higher expression of Dnmt1, Dnmt3a, Tet2, and Tet3 in aortas from Mediterranean G6PDS188F variant (a loss-of-function single nucleotide polymorphism) rats than their wild-type littermates. Concomitantly, we identified 17,618 differentially methylated loci genome-wide (5787 hypermethylated loci, including down-regulated genes encoding inflammation- and vasoconstriction-causing proteins, and 11,827 hypomethylated loci, including up-regulated genes encoding smooth muscle cell differentiation- and fatty acid metabolism-promoting proteins) in aortas from G6PDS188F as compared to wild-type rats. Our results demonstrated that nitric oxide, which is generated in a G6PD-derived NADPH-dependent manner, increases TET and decreases DNMT activity. Further, we observed less large artery (aorta) stiffness in G6PDS188F as compared to wild-type rats. These results establish a noncanonical function of the wild-type G6PD and G6PDS188F variant in the regulation of DNA methylation and gene expression in healthy vascular tissue and reveal that the G6PDS188F variant contributes to reducing large artery stiffness.
Collapse
Affiliation(s)
| | - Sachin A. Gupte
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA;
| |
Collapse
|
3
|
Emon IM, Al-Qazazi R, Rauh MJ, Archer SL. The Role of Clonal Hematopoiesis of Indeterminant Potential and DNA (Cytosine-5)-Methyltransferase Dysregulation in Pulmonary Arterial Hypertension and Other Cardiovascular Diseases. Cells 2023; 12:2528. [PMID: 37947606 PMCID: PMC10650407 DOI: 10.3390/cells12212528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
DNA methylation is an epigenetic mechanism that regulates gene expression without altering gene sequences in health and disease. DNA methyltransferases (DNMTs) are enzymes responsible for DNA methylation, and their dysregulation is both a pathogenic mechanism of disease and a therapeutic target. DNMTs change gene expression by methylating CpG islands within exonic and intergenic DNA regions, which typically reduces gene transcription. Initially, mutations in the DNMT genes and pathologic DNMT protein expression were found to cause hematologic diseases, like myeloproliferative disease and acute myeloid leukemia, but recently they have been shown to promote cardiovascular diseases, including coronary artery disease and pulmonary hypertension. We reviewed the regulation and functions of DNMTs, with an emphasis on somatic mutations in DNMT3A, a common cause of clonal hematopoiesis of indeterminant potential (CHIP) that may also be involved in the development of pulmonary arterial hypertension (PAH). Accumulation of somatic mutations in DNMT3A and other CHIP genes in hematopoietic cells and cardiovascular tissues creates an inflammatory environment that promotes cardiopulmonary diseases, even in the absence of hematologic disease. This review summarized the current understanding of the roles of DNMTs in maintenance and de novo methylation that contribute to the pathogenesis of cardiovascular diseases, including PAH.
Collapse
Affiliation(s)
- Isaac M. Emon
- Department of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (I.M.E.); (R.A.-Q.)
| | - Ruaa Al-Qazazi
- Department of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (I.M.E.); (R.A.-Q.)
| | - Michael J. Rauh
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Stephen L. Archer
- Department of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (I.M.E.); (R.A.-Q.)
| |
Collapse
|
4
|
Mao M, Song S, Li X, Lu J, Li J, Zhao W, Liu H, Liu J, Zeng B. Advances in epigenetic modifications of autophagic process in pulmonary hypertension. Front Immunol 2023; 14:1206406. [PMID: 37398657 PMCID: PMC10313199 DOI: 10.3389/fimmu.2023.1206406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Pulmonary hypertension is characterized by pulmonary arterial remodeling that results in increased pulmonary vascular resistance, right ventricular failure, and premature death. It is a threat to public health globally. Autophagy, as a highly conserved self-digestion process, plays crucial roles with autophagy-related (ATG) proteins in various diseases. The components of autophagy in the cytoplasm have been studied for decades and multiple studies have provided evidence of the importance of autophagic dysfunction in pulmonary hypertension. The status of autophagy plays a dynamic suppressive or promotive role in different contexts and stages of pulmonary hypertension development. Although the components of autophagy have been well studied, the molecular basis for the epigenetic regulation of autophagy is less understood and has drawn increasing attention in recent years. Epigenetic mechanisms include histone modifications, chromatin modifications, DNA methylation, RNA alternative splicing, and non-coding RNAs, which control gene activity and the development of an organism. In this review, we summarize the current research progress on epigenetic modifications in the autophagic process, which have the potential to be crucial and powerful therapeutic targets against the autophagic process in pulmonary hypertension development.
Collapse
Affiliation(s)
- Min Mao
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- National Health Commission (NHC) Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shasha Song
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Xin Li
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- National Health Commission (NHC) Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jiayao Lu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Jie Li
- Marketing Department, Shenzhen Reyson Biotechnology Co., Ltd, Shenzhen, China
- Nanjing Evertop Electronics Ltd., Nanjing, China
| | - Weifang Zhao
- Quality Management Department International Registration, North China Pharmaceutical Co., Ltd. (NCPC), Hebei Huamin Pharmaceutical Co., Ltd., Shijiazhuang, China
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- National Health Commission (NHC) Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jingxin Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Bin Zeng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
5
|
Signoretti C, Gupte SA. Studies in CRISPR-generated Mediterranean G6PD variant rats reveal G6PD orchestrates genome-wide DNA methylation and gene expression in vascular wall. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531429. [PMID: 36945640 PMCID: PMC10028921 DOI: 10.1101/2023.03.06.531429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Background Recent advances have revealed the importance of epigenetic modifications to gene regulation and transcriptional activity. DNA methylation, a determinant of genetic imprinting and de novo silencing of genes genome-wide, is known to be controlled by DNA methyltransferases (DNMT) and demethylases (TET) under disease conditions. However, the mechanism(s)/factor(s) influencing the expression and activity of DNMTs and TETs, and thus DNA methylation, in healthy vascular tissue is incompletely understood. Based on our recent studies, we hypothesized that glucose-6-phosphate dehydrogenase (G6PD) is a modifier of DNMT and TET expression and activity and an enabler of gene expression. Methods In aorta of CRISPR-edited rats with the Mediterranean G6PD variant we determined DNA methylation by whole-genome bisulfite sequencing, gene expression by RNA sequencing, and large artery stiffness by echocardiography. Results Here, we documented higher expression of Dnmt3a, Tet2, and Tet3 in aortas from Mediterranean G6PDS188F variant (a loss-of-function single nucleotide polymorphism) rats than their wild-type littermates. Concomitantly, we identified 17,618 differentially methylated loci genome-wide (5,787 hypermethylated loci, including down-regulated genes encoding inflammation- and vasoconstriction-causing proteins, and 11,827 hypomethylated loci, including up-regulated genes encoding smooth muscle cell differentiation- and fatty acid metabolism-promoting proteins) in aorta from G6PDS188F as compared to wild-type rats. Further, we observed less large artery (aorta) stiffness in G6PDS188F as compared to wild-type rats. Conclusions These results establish a noncanonical function of the wild-type G6PD and G6PDS188F variant in the regulation of DNA methylation and gene expression in healthy vascular tissue and reveals G6PDS188F variant contributes to reduce large artery stiffness.
Collapse
Affiliation(s)
| | - Sachin A. Gupte
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA, 10595
| |
Collapse
|