1
|
Xiong W, Su R, Han X, Zhu M, Tang H, Huang S, Wang P, Zhu G. Molecular insights and functional analysis of isocitrate dehydrogenase in two gram-negative pathogenic bacteria. World J Microbiol Biotechnol 2024; 40:357. [PMID: 39425873 DOI: 10.1007/s11274-024-04169-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Klebsiella pneumoniae and Legionella pneumophila are common Gram-negative bacteria that can cause lung infections. The multidrug resistance of K. pneumoniae presents a significant challenge for treatment. This study focuses on isocitrate dehydrogenase (IDH), a key enzyme in the oxidative metabolic pathway of these two bacteria. KpIDH and LpIDH were successfully overexpressed and purified, and their biochemical characteristics were thoroughly investigated. The study revealed that KpIDH and LpIDH are homodimeric enzymes with molecular weights of approximately 70 kDa. They are completely dependent on the coenzyme NADP+ and are inactive towards NAD+. KpIDH exhibits the highest catalytic activity at pH 8.0 in the presence of Mn2+ and at pH 7.8 in the presence of Mg2+. Its optimal catalytic performance is achieved with both ions at 55 °C. LpIDH exhibited its highest activity at pH 7.8 in the presence of Mn2+ and Mg2+, respectively, and exhibits optimal catalytic performance at 45 °C. Heat inactivation studies showed that KpIDH and LpIDH retained over 80% of their activity after being exposed to 45 °C for 20 min. Furthermore, we successfully altered the coenzyme specificity of KpIDH and LpIDH from NADP+ to NAD+ by replacing four key amino acid residues. This study provides a comprehensive biochemical characterization of two multidrug-resistant bacterial IDHs commonly found in hospital environments. It enhances our understanding of the characteristics of pathogenic bacteria and serves as a reference for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Wei Xiong
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Rui Su
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Xueyang Han
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Mengxiao Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Hongyiru Tang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Shiping Huang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China.
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui, 237012, China.
| | - Peng Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China.
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China.
| |
Collapse
|
2
|
Chmelová Ľ, Záhonová K, Albanaz ATS, Hrebenyk L, Horváth A, Yurchenko V, Škodová-Sveráková I. Distribution and Functional Analysis of Isocitrate Dehydrogenases across Kinetoplastids. Genome Biol Evol 2024; 16:evae042. [PMID: 38447055 PMCID: PMC10946238 DOI: 10.1093/gbe/evae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/09/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024] Open
Abstract
Isocitrate dehydrogenase is an enzyme converting isocitrate to α-ketoglutarate in the canonical tricarboxylic acid (TCA) cycle. There are three different types of isocitrate dehydrogenase documented in eukaryotes. Our study points out the complex evolutionary history of isocitrate dehydrogenases across kinetoplastids, where the common ancestor of Trypanosomatidae and Bodonidae was equipped with two isoforms of the isocitrate dehydrogenase enzyme: the NADP+-dependent isocitrate dehydrogenase 1 with possibly dual localization in the cytosol and mitochondrion and NADP+-dependent mitochondrial isocitrate dehydrogenase 2. In the extant trypanosomatids, isocitrate dehydrogenase 1 is present only in a few species suggesting that it was lost upon separation of Trypanosoma spp. and replaced by the mainly NADP+-dependent cytosolic isocitrate dehydrogenase 3 of bacterial origin in all the derived lineages. In this study, we experimentally demonstrate that the omnipresent isocitrate dehydrogenase 2 has a dual localization in both mitochondrion and cytosol in at least four species that possess only this isoform. The apparent lack of the NAD+-dependent isocitrate dehydrogenase activity in trypanosomatid mitochondrion provides further support to the existence of the noncanonical TCA cycle across trypanosomatids and the bidirectional activity of isocitrate dehydrogenase 3 when operating with NADP+ cofactor instead of NAD+. This observation can be extended to all 17 species analyzed in this study, except for Leishmania mexicana, which showed only low isocitrate dehydrogenase activity in the cytosol. The variability in isocitrate oxidation capacity among species may reflect the distinct metabolic strategies and needs for reduced cofactors in particular environments.
Collapse
Affiliation(s)
- Ľubomíra Chmelová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Kristína Záhonová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Amanda T S Albanaz
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Liudmyla Hrebenyk
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Anton Horváth
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Ingrid Škodová-Sveráková
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| |
Collapse
|
3
|
Chen X, Ding J. Molecular insights into the catalysis and regulation of mammalian NAD-dependent isocitrate dehydrogenases. Curr Opin Struct Biol 2023; 82:102672. [PMID: 37542909 DOI: 10.1016/j.sbi.2023.102672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 08/07/2023]
Abstract
Eukaryotic NAD-dependent isocitrate dehydrogenases (NAD-IDHs) are mitochondria-localized enzymes which catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate using NAD as a cofactor. In mammals, NAD-IDHs (or IDH3) consist of three types of subunits (α, β, and γ), and exist as (α2βγ)2 heterooctamer. Mammalian NAD-IDHs are regulated allosterically and/or competitively by a diversity of metabolites including citrate, ADP, ATP, NADH, and NADPH, which are associated with cellular metabolite flux, energy demands, and redox status. Proper assembly of the component subunits is essential for the catalysis and regulation of the enzymes. Recently, crystal structures of human IDH3 have been solved in apo form and in complex with various ligands, revealing the molecular mechanisms for the assembly, catalysis, and regulation of the enzyme.
Collapse
Affiliation(s)
- Xingchen Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jianping Ding
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 393 Huaxia Zhong Road, Shanghai 201210, China.
| |
Collapse
|
4
|
Wang QX, Zhang PY, Li QQ, Tong ZJ, Wu JZ, Yu SP, Yu YC, Ding N, Leng XJ, Chang L, Xu JG, Sun SL, Yang Y, Li NG, Shi ZH. Challenges for the development of mutant isocitrate dehydrogenases 1 inhibitors to treat glioma. Eur J Med Chem 2023; 257:115464. [PMID: 37235998 DOI: 10.1016/j.ejmech.2023.115464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Glioma is one of the most common types of brain tumors, and its high recurrence and mortality rates threaten human health. In 2008, the frequent isocitrate dehydrogenase 1 (IDH1) mutations in glioma were reported, which brought a new strategy in the treatment of this challenging disease. In this perspective, we first discuss the possible gliomagenesis after IDH1 mutations (mIDH1). Subsequently, we systematically investigate the reported mIDH1 inhibitors and present a comparative analysis of the ligand-binding pocket in mIDH1. Additionally, we also discuss the binding features and physicochemical properties of different mIDH1 inhibitors to facilitate the future development of mIDH1 inhibitors. Finally, we discuss the possible selectivity features of mIDH1 inhibitors against WT-IDH1 and IDH2 by combining protein-based and ligand-based information. We hope that this perspective can inspire the development of mIDH1 inhibitors and bring potent mIDH1 inhibitors for the treatment of glioma.
Collapse
Affiliation(s)
- Qing-Xin Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Peng-Yu Zhang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qing-Qing Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Zhen-Jiang Tong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jia-Zhen Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Shao-Peng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Liang Chang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jin-Guo Xu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|