1
|
Chen Y, Hagopian B, Tan S. Cholesterol metabolism and intrabacterial potassium homeostasis are intrinsically related in Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.10.622811. [PMID: 39605342 PMCID: PMC11601456 DOI: 10.1101/2024.11.10.622811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Potassium (K+) is the most abundant intracellular cation, but much remains unknown regarding how K+ homeostasis is integrated with other key bacterial biology aspects. Here, we show that K+ homeostasis disruption (CeoBC K+ uptake system deletion) impedes Mycobacterium tuberculosis (Mtb) response to, and growth in, cholesterol, a critical carbon source during infection, with K+ augmenting activity of the Mtb ATPase MceG that is vital for bacterial cholesterol import. Reciprocally, cholesterol directly binds to CeoB, modulating its function, with a residue critical for this interaction identified. Finally, cholesterol binding-deficient CeoB mutant Mtb are attenuated for growth in lipid-rich foamy macrophages and in vivo colonization. Our findings raise the concept of a role for cholesterol as a key co-factor, beyond its role as a carbon source, and illuminate how changes in bacterial intrabacterial K+ levels can act as part of the metabolic adaptation critical for bacterial survival and growth in the host.
Collapse
Affiliation(s)
- Yue Chen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Berge Hagopian
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
2
|
Yari S, Afrough P, Yari F, Ghazanfari Jajin M, Fateh A, Hadizadeh Tasbiti A. A potent subset of Mycobacterium tuberculosis glycoproteins as relevant candidates for vaccine and therapeutic target. Sci Rep 2023; 13:22194. [PMID: 38092899 PMCID: PMC10719292 DOI: 10.1038/s41598-023-49665-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
Tuberculosis (TB) remains one of the most afflictive bacterial infections globally. In high burden TB countries, surveillance, diagnosis and treatment of drug resistant TB (RR and X/MDRTB) display a crucial public health challenge. Therefore, we need new TB vaccines; diagnostic and therapeutic strategies to briskly prevent disease promotion; reduce drug-resistant TB and protect everyone from disease. The study identified various potent membrane and cell wall M. tuberculosis glycolipoproteins that are relevant for diagnostics, drug and vaccine discovery. A M. tuberculosis Proskauer and Beck broth culture was extracted for total proteins by ammonium sulfate method. After ConA-Affinity Chromatography reputed glycoproteins were collected followed by 2DE gel electrophoresis and LC Mass spectrometry. A total of 293 glycoproteins were identified using GlycoPP and IEDB database. Probable conserved trans-membrane protein (Rv0954), LpqN (Rv0583), PPE68 (Rv3873), Phosphate-binding protein (Rv0932c), PPE61 (Rv3532) and LprA (Rv1270c), had the highest glycosylation percentage value with 13.86%, 11.84%, 11.68%, 11.1%, 10.59% and10.2%, respectively. Our study discloses several dominant glycoproteins that play roles in M. tuberculosis survival, and immunogenicity. These include glycoproteins involved in antigenicity, transport and biosynthesis of M. tuberculosis cell envelope, pathogen-host interaction and drug efflux pumps, which are considered as a feasible drug targets or TB new vaccine candidates.
Collapse
Affiliation(s)
- Shamsi Yari
- TB Protein Chemistry Lab, Tuberculosis and Pulmonary Research Department, Pasteur Institute of Iran, Pasteur Ave, Tehran, 13164, Iran
| | - Parviz Afrough
- Hepatitis Research Center, Shahid Rahimi Hospital, Aligoudarz School of Nursing, Lorestan University of Medical Science, Khorramabad, Iran
| | - Fatemeh Yari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion, Tehran, Iran
| | - Morteza Ghazanfari Jajin
- TB Protein Chemistry Lab, Tuberculosis and Pulmonary Research Department, Pasteur Institute of Iran, Pasteur Ave, Tehran, 13164, Iran
| | - Abolfazl Fateh
- TB Protein Chemistry Lab, Tuberculosis and Pulmonary Research Department, Pasteur Institute of Iran, Pasteur Ave, Tehran, 13164, Iran
| | - Alireza Hadizadeh Tasbiti
- TB Protein Chemistry Lab, Tuberculosis and Pulmonary Research Department, Pasteur Institute of Iran, Pasteur Ave, Tehran, 13164, Iran.
| |
Collapse
|
3
|
Chen J, Fruhauf A, Fan C, Ponce J, Ueberheide B, Bhabha G, Ekiert DC. Structure of an endogenous mycobacterial MCE lipid transporter. Nature 2023; 620:445-452. [PMID: 37495693 DOI: 10.1038/s41586-023-06366-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
To replicate inside macrophages and cause tuberculosis, Mycobacterium tuberculosis must scavenge a variety of nutrients from the host1,2. The mammalian cell entry (MCE) proteins are important virulence factors in M. tuberculosis1,3, where they are encoded by large gene clusters and have been implicated in the transport of fatty acids4-7 and cholesterol1,4,8 across the impermeable mycobacterial cell envelope. Very little is known about how cargos are transported across this barrier, and it remains unclear how the approximately ten proteins encoded by a mycobacterial mce gene cluster assemble to transport cargo across the cell envelope. Here we report the cryo-electron microscopy (cryo-EM) structure of the endogenous Mce1 lipid-import machine of Mycobacterium smegmatis-a non-pathogenic relative of M. tuberculosis. The structure reveals how the proteins of the Mce1 system assemble to form an elongated ABC transporter complex that is long enough to span the cell envelope. The Mce1 complex is dominated by a curved, needle-like domain that appears to be unrelated to previously described protein structures, and creates a protected hydrophobic pathway for lipid transport across the periplasm. Our structural data revealed the presence of a subunit of the Mce1 complex, which we identified using a combination of cryo-EM and AlphaFold2, and name LucB. Our data lead to a structural model for Mce1-mediated lipid import across the mycobacterial cell envelope.
Collapse
Affiliation(s)
- James Chen
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Alice Fruhauf
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Catherine Fan
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Jackeline Ponce
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University School of Medicine, New York, NY, USA
| | - Beatrix Ueberheide
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
| | - Damian C Ekiert
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
- Department of Microbiology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Wong AI, Beites T, Planck KA, Fieweger RA, Eckartt KA, Li S, Poulton NC, VanderVen BC, Rhee KY, Schnappinger D, Ehrt S, Rock J. Cyclic AMP is a critical mediator of intrinsic drug resistance and fatty acid metabolism in M. tuberculosis. eLife 2023; 12:e81177. [PMID: 36810158 PMCID: PMC9995111 DOI: 10.7554/elife.81177] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/22/2023] [Indexed: 02/24/2023] Open
Abstract
Cyclic AMP (cAMP) is a ubiquitous second messenger that transduces signals from cellular receptors to downstream effectors. Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, devotes a considerable amount of coding capacity to produce, sense, and degrade cAMP. Despite this fact, our understanding of how cAMP regulates Mtb physiology remains limited. Here, we took a genetic approach to investigate the function of the sole essential adenylate cyclase in Mtb H37Rv, Rv3645. We found that a lack of rv3645 resulted in increased sensitivity to numerous antibiotics by a mechanism independent of substantial increases in envelope permeability. We made the unexpected observation that rv3645 is conditionally essential for Mtb growth only in the presence of long-chain fatty acids, a host-relevant carbon source. A suppressor screen further identified mutations in the atypical cAMP phosphodiesterase rv1339 that suppress both fatty acid and drug sensitivity phenotypes in strains lacking rv3645. Using mass spectrometry, we found that Rv3645 is the dominant source of cAMP under standard laboratory growth conditions, that cAMP production is the essential function of Rv3645 in the presence of long-chain fatty acids, and that reduced cAMP levels result in increased long-chain fatty acid uptake and metabolism and increased antibiotic susceptibility. Our work defines rv3645 and cAMP as central mediators of intrinsic multidrug resistance and fatty acid metabolism in Mtb and highlights the potential utility of small molecule modulators of cAMP signaling.
Collapse
Affiliation(s)
- Andrew I Wong
- Laboratory of Host-Pathogen Biology, The Rockefeller UniversityNew YorkUnited States
| | - Tiago Beites
- Department of Microbiology and Immunology, Weill Cornell MedicineNew YorkUnited States
| | - Kyle A Planck
- Department of Microbiology and Immunology, Weill Cornell MedicineNew YorkUnited States
- Division of Infectious Diseases, Department of Medicine, Weill Cornell MedicineNew YorkUnited States
| | - Rachael A Fieweger
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Kathryn A Eckartt
- Laboratory of Host-Pathogen Biology, The Rockefeller UniversityNew YorkUnited States
| | - Shuqi Li
- Laboratory of Host-Pathogen Biology, The Rockefeller UniversityNew YorkUnited States
| | - Nicholas C Poulton
- Laboratory of Host-Pathogen Biology, The Rockefeller UniversityNew YorkUnited States
| | - Brian C VanderVen
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Kyu Y Rhee
- Department of Microbiology and Immunology, Weill Cornell MedicineNew YorkUnited States
- Division of Infectious Diseases, Department of Medicine, Weill Cornell MedicineNew YorkUnited States
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell MedicineNew YorkUnited States
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell MedicineNew YorkUnited States
| | - Jeremy Rock
- Laboratory of Host-Pathogen Biology, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|