1
|
Naro C, Ruta V, Sette C. Splicing dysregulation: hallmark and therapeutic opportunity in pancreatic cancer. Trends Mol Med 2024:S1471-4914(24)00308-3. [PMID: 39648052 DOI: 10.1016/j.molmed.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/10/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer characterized by dismal prognosis. Late diagnosis, resistance to chemotherapy, and lack of efficacious targeted therapies render PDAC almost untreatable. Dysregulation of splicing, the process that excises the introns from nascent transcripts, is emerging as a hallmark of PDAC and a possible vulnerability of this devastating cancer. Splicing factors are deregulated in PDAC and contribute to all steps of tumorigenesis, from inflammation-related early events to metastasis and acquisition of chemoresistance. At the same time, splicing dysregulation offers a therapeutic opportunity to target cancer-specific vulnerabilities. We discuss mounting evidence that splicing plays a key role in PDAC and the opportunities that this essential process offers for developing new targeted therapies.
Collapse
Affiliation(s)
- Chiara Naro
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; Gemelli Science and Technology Park (GSTeP) Organoids Research Core Facility, Fondazione Policlinico A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Veronica Ruta
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; Gemelli Science and Technology Park (GSTeP) Organoids Research Core Facility, Fondazione Policlinico A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy.
| |
Collapse
|
2
|
Moreno-Aguilera M, Neher AM, Mendoza MB, Dodel M, Mardakheh FK, Ortiz R, Gallego C. KIS counteracts PTBP2 and regulates alternative exon usage in neurons. eLife 2024; 13:e96048. [PMID: 38597390 PMCID: PMC11045219 DOI: 10.7554/elife.96048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024] Open
Abstract
Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.
Collapse
Affiliation(s)
| | - Alba M Neher
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Mónica B Mendoza
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Martin Dodel
- Barts Cancer Institute, Queen Mary University of LondonLondonUnited Kingdom
| | - Faraz K Mardakheh
- Barts Cancer Institute, Queen Mary University of LondonLondonUnited Kingdom
| | - Raúl Ortiz
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Carme Gallego
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| |
Collapse
|
3
|
Liao C, Yang J, Chen L, Ye Z. Identification of hypoxic-related lncRNAs prognostic model for revealing clinical prognostic and immune infiltration characteristic of cutaneous melanoma. Aging (Albany NY) 2024; 16:3734-3749. [PMID: 38364250 PMCID: PMC10929800 DOI: 10.18632/aging.205556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/26/2023] [Indexed: 02/18/2024]
Abstract
BACKGROUND Cutaneous melanoma (CM) remains a significant threat to human health. There are clues to the potential role of hypoxia in CM progression. However, the role of hypoxia-related lncRNAs (HRLs) in CM has not been clarified. METHODS We obtained hypoxia related genes from MSigDB database and subsequently identified HRLs by applying TCGA database. LASSO-univariate and multivariate Cox analysis were used to comprehensively analyze the survival characteristics and HRLs expressions, and a novel HRLs-related prognostic risk model was subsequently established for comprehensive analysis. RESULTS The established risk model could evaluate the clinical outcome of CM accurately. The ability of the model-related risk score was also validated as an independent prognostic indicator of CM. Immune infiltration, TMB analysis, drug sensitivity analysis and immunotherapy evaluation were conducted to comprehensively assess the possible causes of the difference in prognosis. The reliability of bioinformatics results was partially verified by RT-qPCR. CONCLUSION We established a new HRLs related risk model and discussed the potential role of hypoxia in the development of CM, which provided a novel basis for CM risk stratification.
Collapse
Affiliation(s)
- Congjuan Liao
- Dermatology and STD Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen and Longgang District People’s Hospital of Shenzhen, Shenzhen 518172, China
| | - Jiabao Yang
- Dermatology and STD Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen and Longgang District People’s Hospital of Shenzhen, Shenzhen 518172, China
| | - Liuting Chen
- Beijing University of Chinese Medicine Shenzhen Hospital (Long Gang), Shenzhen 518116, China
| | - Zhiguang Ye
- Dermatology and STD Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen and Longgang District People’s Hospital of Shenzhen, Shenzhen 518172, China
| |
Collapse
|
4
|
Moon HS, Mahzarnia A, Stout J, Anderson RJ, Strain M, Tremblay JT, Han ZY, Niculescu A, MacFarlane A, King J, Ashley-Koch A, Clark D, Lutz MW, Badea A. Multivariate investigation of aging in mouse models expressing the Alzheimer's protective APOE2 allele: integrating cognitive metrics, brain imaging, and blood transcriptomics. Brain Struct Funct 2024; 229:231-249. [PMID: 38091051 PMCID: PMC11082910 DOI: 10.1007/s00429-023-02731-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/03/2023] [Indexed: 01/31/2024]
Abstract
APOE allelic variation is critical in brain aging and Alzheimer's disease (AD). The APOE2 allele associated with cognitive resilience and neuroprotection against AD remains understudied. We employed a multipronged approach to characterize the transition from middle to old age in mice with APOE2 allele, using behavioral assessments, image-derived morphometry and diffusion metrics, structural connectomics, and blood transcriptomics. We used sparse multiple canonical correlation analyses (SMCCA) for integrative modeling, and graph neural network predictions. Our results revealed brain sub-networks associated with biological traits, cognitive markers, and gene expression. The cingulate cortex emerged as a critical region, demonstrating age-associated atrophy and diffusion changes, with higher fractional anisotropy in males and middle-aged subjects. Somatosensory and olfactory regions were consistently highlighted, indicating age-related atrophy and sex differences. The hippocampus exhibited significant volumetric changes with age, with differences between males and females in CA3 and CA1 regions. SMCCA underscored changes in the cingulate cortex, somatosensory cortex, olfactory regions, and hippocampus in relation to cognition and blood-based gene expression. Our integrative modeling in aging APOE2 carriers revealed a central role for changes in gene pathways involved in localization and the negative regulation of cellular processes. Our results support an important role of the immune system and response to stress. This integrative approach offers novel insights into the complex interplay among brain connectivity, aging, and sex. Our study provides a foundation for understanding the impact of APOE2 allele on brain aging, the potential for detecting associated changes in blood markers, and revealing novel therapeutic intervention targets.
Collapse
Affiliation(s)
- Hae Sol Moon
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Ali Mahzarnia
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Jacques Stout
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, USA
| | - Robert J Anderson
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Madison Strain
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Jessica T Tremblay
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Zay Yar Han
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Andrei Niculescu
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Anna MacFarlane
- Department of Neuroscience, Duke University, Durham, NC, USA
| | - Jasmine King
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Allison Ashley-Koch
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Darin Clark
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Michael W Lutz
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - Alexandra Badea
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA.
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, USA.
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|