1
|
Wu T, Sun Y, Wang D, Isaji T, Fukuda T, Suzuki C, Hanamatsu H, Nishikaze T, Tsumoto H, Miura Y, Furukawa JI, Gu J. The acetylglucosaminyltransferase GnT-Ⅲ regulates erythroid differentiation through ERK/MAPK signaling. J Biol Chem 2024; 300:108010. [PMID: 39571652 DOI: 10.1016/j.jbc.2024.108010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 12/15/2024] Open
Abstract
Differentiation therapy is an alternative strategy used in treating chronic myelogenous leukemia to induce the differentiation of immature or cancerous cells toward mature cells and inhibit tumor cell proliferation. We aimed to explore N-glycans' roles in erythroid differentiation using the sodium butyrate (NaBu)-induced model of K562 cells (WT/NaBu cells). Here, using lectin blot, flow cytometry, real-time PCR, and mass spectrometry analyses, we demonstrated that the mRNA levels of N-acetylglucosaminyltransferase Ⅲ ((encoded by the MGAT3 gene) and its product (bisected N-glycans) were significantly increased during erythroid differentiation. To address the importance of GnTN-acetylglucosaminyltransferase-Ⅲ in this progress, we established a stable MGAT3 KO K562 cell line using the CRISPR/Cas9 technology. Compared to WT/NaBu cells, MGAT3 KO significantly impeded the progression of erythroid differentiation, as shown in decreased cell color and levels of erythroid markers, glycophorin A (CD235a), and β-globin. Consistently, MGAT3 KO mitigated the inhibitory impact of NaBu on cell proliferation. During induction, MGAT3 KO suppressed the cellular phosphorylated tyrosine and phospho-extracellular signal-regulated kinase (ERK)1/2 levels. Inhibition of the ERK/mitogen-activated protein kinase signaling pathway using U0126 blocked erythroid differentiation while concurrently suppressing the expression levels of MGAT3 and bisected N-glycans. Furthermore, the lack of bisecting GlcNAc modification on c-Kit and transferrin receptor 1 (CD71) suppressed cellular signaling and accelerated the degradation of the CD71 protein, respectively. Our study highlights the critical role of MGAT3 in regulating erythroid differentiation associated with the ERK/mitogen-activated protein kinase signaling pathway, which may shed light on identifying new differentiation therapy in chronic myelogenous leukemia.
Collapse
Affiliation(s)
- Tiangui Wu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yuhan Sun
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Dan Wang
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Chiharu Suzuki
- Division of Glyco-Systems Biology, Institute for Glyco-Core Research, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Hisatoshi Hanamatsu
- Division of Glyco-Systems Biology, Institute for Glyco-Core Research, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Takashi Nishikaze
- Solutions COE, Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto, Japan
| | - Hiroki Tsumoto
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Yuri Miura
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Jun-Ichi Furukawa
- Division of Glyco-Systems Biology, Institute for Glyco-Core Research, Tokai National Higher Education and Research System, Nagoya, Japan; Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
2
|
Guo Y, Ashrafizadeh M, Tambuwala MM, Ren J, Orive G, Yu G. P-glycoprotein (P-gp)-driven cancer drug resistance: biological profile, non-coding RNAs, drugs and nanomodulators. Drug Discov Today 2024; 29:104161. [PMID: 39245345 DOI: 10.1016/j.drudis.2024.104161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/07/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Drug resistance has compromised the efficacy of chemotherapy. The dysregulation of drug transporters including P-glycoprotein (P-gp) can mediate drug resistance through drug efflux. In this review, we highlight the role of P-gp in cancer drug resistance and the related molecular pathways, including phosphoinositide 3-kinase (PI3K)-Akt, phosphatase and tensin homolog (PTEN) and nuclear factor-κB (NF-κB), along with non-coding RNAs (ncRNAs). Extracellular vesicles secreted by the cells can transport ncRNAs and other proteins to change P-gp activity in cancer drug resistance. P-gp requires ATP to function, and the induction of mitochondrial dysfunction or inhibition of glutamine metabolism can impair P-gp function, thus increasing chemosensitivity. Phytochemicals, small molecules and nanoparticles have been introduced as P-gp inhibitors to increase drug sensitivity in human cancers.
Collapse
Affiliation(s)
- Yang Guo
- Department of Respiratory and Critical Care Medicine, Shenyang Tenth People's Hospital (Shenyang Chest Hospital), No. 11 Beihai Street, Dadong District, Shenyang 110044, Liaoning, China
| | - Milad Ashrafizadeh
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
| | - Guiping Yu
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, No. 163 Shoushan Road, Jiangyin, China.
| |
Collapse
|
3
|
Tan Z, Ning L, Cao L, Zhou Y, Li J, Yang Y, Lin S, Ren X, Xue X, Kang H, Li X, Guan F. Bisecting GlcNAc modification reverses the chemoresistance via attenuating the function of P-gp. Theranostics 2024; 14:5184-5199. [PMID: 39267774 PMCID: PMC11388069 DOI: 10.7150/thno.93879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Rationale: Chemoresistance is a key factor contributing to the failure of anti-breast cancer chemotherapy. Although abnormal glycosylation is closely correlated with breast cancer progression, the function of glycoconjugates in chemoresistance remains poorly understood. Methods: Levels and regulatory roles of bisecting N-acetylglucosamine (GlcNAc) in chemoresistant breast cancer cells were determined in vitro and in vivo. Glycoproteomics guided identification of site-specific bisecting GlcNAc on P-glycoprotein (P-gp). Co-immunoprecipitation coupled mass spectrometry (Co-IP-MS) and proximity labelling MS identified the interactome of P-gp, and the biological function of site-specific bisecting GlcNAc was investigated by site/truncation mutation and structural simulations. Results: Bisecting GlcNAc levels were reduced in chemoresistant breast cancer cells, accompanied by an enhanced expression of P-gp. Enhanced bisecting GlcNAc effectively reversed chemoresistance. Mechanical study revealed that bisecting GlcNAc impaired the association between Ezrin and P-gp, leading to a decreased expression of membrane P-gp. Bisecting GlcNAc suppressed VPS4A-mediated P-gp recruitment into microvesicles, and chemoresistance transmission. Structural dynamics analysis suggested that bisecting GlcNAc at Asn494 introduced structural constraints that rigidified the conformation and suppressed the activity of P-gp. Conclusion: Our findings highlight the crucial role of bisecting GlcNAc in chemoresistance and suggest the possibility of reversing chemoresistance by modulating the specific glycosylation in breast cancer therapy.
Collapse
Affiliation(s)
- Zengqi Tan
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, P.R. China
| | - Lulu Ning
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710069, P.R. China
| | - Lin Cao
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, P.R. China
| | - Yue Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, P.R. China
| | - Jing Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, P.R. China
| | - Yunyun Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, P.R. China
| | - Shuai Lin
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710069, P.R. China
| | - Xueting Ren
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710069, P.R. China
| | - Xiaobo Xue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, P.R. China
| | - Huafeng Kang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710069, P.R. China
| | - Xiang Li
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, P.R. China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, P.R. China
| |
Collapse
|
4
|
Sun Y, Wu T, Gu J. An emerging role of N-glycosylation in cancer chemoresistance. Carbohydr Res 2024; 539:109107. [PMID: 38613897 DOI: 10.1016/j.carres.2024.109107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/15/2024]
Abstract
Chemoresistance poses a significant obstacle in the effective treatment of cancer, limiting the success of chemotherapy regimens. N-glycosylation, the most important post-translational modification (PTM), plays multifaceted roles in the intricate landscape of cancer progression, particularly drug resistance in cancer cells. This review explores the complex relationship between N-glycosylation and chemoresistance in cancer. Altered glycosylation patterns have been proven to impact drug efflux mechanisms in cancer cells, which can further influence the intracellular concentration of chemotherapy drugs. Moreover, N-glycosylation also plays a regulatory role in cell signaling pathways and apoptosis regulators, continuously affecting the stemness and survival of cancer cells under the selective pressure of chemotherapy. Additionally, the impact of the tumor microenvironment on glycosylation patterns adds complexity to this interplay. This review discusses current research findings, challenges, and future directions based on the roles of N-glycosylation in cancer chemoresistance, emphasizing the potential for targeted therapeutic interventions to enhance the effectiveness of chemotherapy and improve patient outcomes.
Collapse
Affiliation(s)
- Yuhan Sun
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi, 981-8558, Japan.
| | - Tiangui Wu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi, 981-8558, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi, 981-8558, Japan.
| |
Collapse
|
5
|
Kundu A, Ghosh P, Bishayi B. Vitexin along with verapamil downregulates efflux pump P-glycoprotein in macrophages and potentiate M1 to M2 switching via TLR4-NF-κB-TNFR2 pathway in lipopolysaccharide treated mice. Immunobiology 2024; 229:152767. [PMID: 38103391 DOI: 10.1016/j.imbio.2023.152767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023]
Abstract
The lipopolysaccharide, a microbial toxin, is one of the major causative agents of sepsis. P-gp expression and its functions are altered during inflammation. LPS has been known to impair the functions of P-gp, an efflux transporter. But the effect of LPS on P-gp expression in murine peritoneal macrophages is poorly understood. Molecular docking studies reveal that vitexin is a potent substrate and verapamil a potent inhibitor of P-gp. In the present experimental study, the curative potential of vitexin as a fruit component and verapamil treated as a control inhibitor of P-gp was examined in a murine LPS sepsis model. The effects of vitexin and verapamil on P-gp expression in macrophages correlating with changes in macrophage polarization and associated functional responses during LPS induced sepsis were studied. Peritoneal macrophages of LPS (10 mg/kg body weight) challenged mice exhibited elevated levels of H2O2, superoxide, and NO in parallel with lower antioxidant activity. LPS treatment increased P-gp expression through increased TLR4/expression. However, LPS challenged mice treated with vitexin (5 mg/kg body weight) + verapamil (5 mg/kg body weight) showed higher anti-oxidant enzyme activity (SOD, CAT and GRx) resulting in reduced oxidative stress. This combination treatment also elevated TNFR2, concomitant with down-regulation of TLR4, NF-κB and P-gp expression in murine peritoneal macrophages, resulting in a switch from M1 to M2 polarisation of macrophages and reduced inflammatory responses. In conclusion, combined vitexin and verapamil treatment could be used as a promising therapy to regulate P-gp expression and protection against LPS mediated sepsis and inflammatory damages.
Collapse
Affiliation(s)
- Ayantika Kundu
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Pratiti Ghosh
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India.
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India.
| |
Collapse
|
6
|
Kariya Y, Gu J, Kariya Y. Integrin α6β4 Confers Doxorubicin Resistance in Cancer Cells by Suppressing Caspase-3-Mediated Apoptosis: Involvement of N-Glycans on β4 Integrin Subunit. Biomolecules 2023; 13:1752. [PMID: 38136623 PMCID: PMC10741852 DOI: 10.3390/biom13121752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Drug resistance is a major obstacle to successful cancer treatment. Therefore, it is essential to understand the molecular mechanisms underlying drug resistance to develop successful therapeutic strategies. α6β4 integrin confers resistance to apoptosis and regulates the survival of cancer cells; however, it remains unclear whether α6β4 integrin is directly involved in chemoresistance. Here, we show that α6β4 integrin promotes doxorubicin resistance by decreasing caspase-3-mediated apoptosis. We found that the overexpression of α6β4 integrin by the β4 integrin gene rendered MDA-MB435S and Panc-1 cells more resistant to doxorubicin than control cells. The acquired resistance to doxorubicin by α6β4 integrin expression was abolished by the deletion of the cytoplasmic signal domain in β4 integrin. Similar results were found in MDA-MB435S and Panc-1 cells when N-glycan-defective β4 integrin mutants were overexpressed or bisecting GlcNAc residues were increased on β4 integrin by the co-expression of N-acetylglucosaminyltransferase III with β4 integrin. The abrogation of α6β4 integrin-mediated resistance to doxorubicin was accompanied by reduced cell viability and an increased caspase-3 activation. Taken together, our results clearly suggest that α6β4 integrin signaling plays a key role in the doxorubicin resistance of cancer cells, and N-glycans on β4 integrin are involved in the regulation of cancer cells.
Collapse
Affiliation(s)
- Yoshinobu Kariya
- Department of Biochemistry, Fukushima Medical University, Fukushima City 960-1295, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Komatsushima 981-8558, Japan;
| | - Yukiko Kariya
- Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima City 960-1295, Japan
| |
Collapse
|
7
|
Tian Y, Lei Y, Wang Y, Lai J, Wang J, Xia F. Mechanism of multidrug resistance to chemotherapy mediated by P‑glycoprotein (Review). Int J Oncol 2023; 63:119. [PMID: 37654171 PMCID: PMC10546381 DOI: 10.3892/ijo.2023.5567] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/06/2023] [Indexed: 09/02/2023] Open
Abstract
Multidrug resistance (MDR) seriously limits the clinical application of chemotherapy. A mechanism underlying MDR is the overexpression of efflux transporters associated with chemotherapeutic drugs. P‑glycoprotein (P‑gp) is an ATP‑binding cassette (ABC) transporter, which promotes MDR by pumping out chemotherapeutic drugs and reducing their intracellular concentration. To date, overexpression of P‑gp has been detected in various types of chemoresistant cancer and inhibiting P‑gp‑related MDR has been suggested. The present review summarizes the mechanisms underlying MDR mediated by P‑gp in different tumors and evaluated the related signaling pathways, with the aim of improving understanding of the current status of P‑gp‑mediated chemotherapeutic resistance. This review focuses on the main mechanisms of inhibiting P‑gp‑mediated MDR, with the aim of providing a reference for the study of reversing P‑gp‑mediated MDR. The first mechanism involves decreasing the efflux activity of P‑gp by altering its conformation or hindering P‑gp‑chemotherapeutic drug binding. The second inhibitory mechanism involves inhibiting P‑gp expression to reduce efflux. The third inhibitory mechanism involves knocking out the ABCB1 gene. Potential strategies that can inhibit P‑gp include certain natural products, synthetic compounds and biological techniques. It is important to screen lead compounds or candidate techniques for P‑gp inhibition, and to identify inhibitors by targeting the relevant signaling pathways to overcome P‑gp‑mediated MDR.
Collapse
Affiliation(s)
- Yichen Tian
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing 400038, P.R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Yongrong Lei
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing 400038, P.R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Yani Wang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing 400038, P.R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Jiejuan Lai
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing 400038, P.R. China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Feng Xia
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing 400038, P.R. China
| |
Collapse
|